首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new model for simulating nitrogen leaching fromforested ecosystems has been applied to data from anexperimentally manipulated 30-year-old Sitka sprucestand. The manipulation experiment (at Aber, in north-western Wales, UK) was part of the European NITREXproject and involved five years of additions ofinorganic nitrogen to the spruce stand. The model(MERLIN) is a catchment-scale, mass-balance model thatsimulates both biotic and abiotic processes affectingnitrogen in ecosystems.The structure of MERLIN includes representationsof the inorganic soil, one plant compartment and twosoil organic compartments. Fluxes in and out of thesimulated ecosystem and transfers between compartmentsare regulated by atmospheric deposition, hydrologicaldischarge and biological processes such as plantuptake, litter production, immobilization,mineralization, nitrification and denitrification.Rates of nitrogen uptake, cycling and release amongpools are regulated by carbon productivity, inorganicnitrogen availability and the C:N ratios of theorganic pools. Inputs to the model are temporalsequences of carbon fluxes and pools, hydrologicaldischarge and external sources of nitrogen.The NITREX experiment at Aber began in 1990 withweekly additions of ammonium nitrate(NH4NO3) at a rate of 35 kg N ha-1 yr-1.Data were collected from both control andtreatment plots within the stand. The site-intensivedata from the control plots at Aber were augmented bydata taken from a chronosequence of 20 Sitka sprucestands and data from a survey of 5 moorland catchmentsin the same region to providecalibration data for the model. The data were used toestablish current conditions at the Aber site and toreconstruct historical sequences of carbon fluxes andpools from 1900 to the present day with which to drivethe model. The reconstructed sequences included anincrease in nitrogen deposition and a vegetationchange from moorland to plantation forest in 1960. Thecalibrated model was then used to predict the effectsof the experimental nitrogen additions begun in 1990.MERLIN successfully reproduced the observedincrease in NO3 leaching from aging spruce standsthat results from forest maturation and increasednitrogen deposition (as inferred from thechronosequence and forest survey data in the region).MERLIN also correctly predicted the increases insoilwater NO3 concentrations, the changes innitrogen content of tree and soil organic matterpools, and the changes in nitrogen fluxes that occurin spruce stands in response to increased nitrogeninputs (as observed in the nitrogen additionexperiment).  相似文献   

2.
模拟氮沉降下南方针叶林红壤的养分淋溶和酸化   总被引:8,自引:0,他引:8  
以中国科学院红壤生态实验站林草生态试验区针叶林红壤为研究对象,在恒温(20 ℃)条件下,通过大土柱(直径10 cm、高60 cm),8个月间隙性淋溶试验模拟研究了不同氮输入量(0、7.8、26和52 mg N/月/柱)对针叶林红壤NO3-、NH4+、H+和土壤盐基离子(Ca2+、Mg2+、K+、Na+)淋溶以及土壤酸化的影响.结果表明,土壤交换态盐基总量、Ca2+和Mg2+淋溶量随氮输入量的增加而增加,土壤交换态Na+和K+则无明显影响.4种N输入处理的土壤交换态盐基总量净淋溶(淋溶出的盐基与淋洗液累计输入的盐基之差)分别占土壤交换性盐基总量的13.9%、18.6%、31.8% 和57.9%,土壤交换态Ca2+净淋溶分别占土壤交换性Ca2+总量的19.6%、25.8%、45.3%和84.8%,土壤交换态Mg2+净淋溶分别占土壤交换性Mg2+总量的4.4%、6.1%、10.9%和17.1%.随氮输入量增加,表层土壤pH值逐渐下降,4种N输入处理的表层土壤pH(KCl)分别为3.85、3.84、3.80和3.75;随氮输入量增加,淋溶液中无机氮、NO3-和H+逐渐增加.氮沉降可促进针叶林红壤的有机氮矿化,加速养分淋失和土壤酸化.  相似文献   

3.
Considerable knowledge exists about the effect of aluminium (Al) on root vitality, but whether elevated levels of Al affect soil microorganisms is largely unknown. We thus compared soils from Al-treated and control plots of a field experiment with respect to microbial and chemical parameters, as well as root growth and vitality. The field experiment was established in a 50-year-old Norway spruce (Picea abies L.) stand where no Al or low concentrations of Al had been added every 7–10 days during the growth season for 7 years. Analysis of soil solutions collected using zero tension lysimeters and porous suction cups showed that Al treatment lead to increased concentrations of Al, Ca and Mg and lower pH and [Ca + Mg + K/Al] molar ratio. Corresponding soil analyses showed that soil pH remained unaffected (pH 3.8), that exchangeable Al increased, while exchangeable Ca and Mg decreased due to the Al treatment. Root in-growth into cores placed in the upper 20 cm of the soil during three growth seasons was not affected by Al additions, neither was nutrient concentration or mortality of these roots. The biomass of some taxonomic groups of soil microorganisms, analyzed using specific membrane components (phospholipid fatty acids; PLFAs), was clearly affected by the imposed Al treatment, both in the organic soil horizon and in the underlying mineral soil. Microbial community structure in both horizons was also clearly modified by the Al treatment. Shifts in PLFA trans/cis ratios indicative of short term physiological stress were not observed. Yet, aluminium stress was indicated both by changes in community structure and in ratios of single PLFAs for treated/untreated plots. Thus, soil microorganisms were more sensitive indicators of subtle chemical changes in soil than chemical composition and vitality of roots.  相似文献   

4.
The aim of this paper is to describe the influence of spruce (Picea abies) afforestation on soil chemical properties, especially on soil acidity and aluminium (Al) mobilization and speciation in soil. For our study we used a unique set of three adjacent plots, including a meadow and two spruce forest stands of different age, in otherwise comparable conditions. The plots were located in the region of Giant Mountains, north-eastern Czech Republic. In general, pH values decreased and Al concentrations increased significantly after afforestation. Speciation of KCl-extractable and water-soluble Al in soil samples was done by means of HPLC/IC method. The concentrations of Al(X)1+ and Al(Y)2+ forms (in both extracts) are higher in humic and organically enriched (Bhs) horizons. The highest concentration of Al3+ in both extracts is in the B horizons of old forest.Generally, in all studied stands majority of Al in aqueous extract is in the Al(X)1+ form, which indicates that a large amount of mobile Al is bound in organic complexes. It suggests that actual toxicity is rather low. On the other hand, we have proved that majority of KCl-extractable Al exists in Al3+ form. Thus we can conclude that disturbance of existing equilibrium may cause massive release of highly toxic Al3+ from soil sorption complex to the soil solution, and consequently it can endanger the whole ecosystem. Moreover, continuous soil acidification accelerated by anthropogenic factors leading to Al mobilization represents a chemical time bomb.  相似文献   

5.
Investigations into the proton cycle of a forest ecosystem in the Netherlands revealed an intermediate rate of soil acidification: 4.5 × 102 keq km-2 yr-1 of which 2/3 is caused by external proton sources. The high retention of NH4-N in the biomass is the dominant source of protons. This retention of accounts for 90% of the external and for 59% of the total proton source, while atmospheric input of free acidity only accounts for 4% of total proton production. Next to this, Ca release by weathering is the main proton sink, accounting for 72% to total proton consumption. The proton transfer processes have caused very acid conditions of the upper soil horizons (pH 2.9–3.5) which resulted in the mobilization of aluminium as inorganic monomeric (toxic) Al up to maximum concentrations of 1500 μmol L-1 (40 mg Al3+ L-1).  相似文献   

6.
Relations among nitrogen load, soil acidification and forest growth have been evaluated based on short‐term (<15 years) experiments, or on surveys across gradients of N deposition that may also include variations in edaphic conditions and other pollutants, which confound the interpretation of effects of N per se. We report effects on trees and soils in a uniquely long‐term (30 years) experiment with annual N loading on an un‐polluted boreal forest. Ammonium nitrate was added to replicated (N=3) 0.09 ha plots at two doses, N1 and N2, 34 and 68 kg N ha?1 yr?1, respectively. A third treatment, N3, 108 kg N ha?1 yr?1, was terminated after 20 years, allowing assessment of recovery during 10 years. Tree growth initially responded positively to all N treatments, but the longer term response was highly rate dependent with no gain in N3, a gain of 50 m3 ha?1 stemwood in N2 and a gain of 100 m3 ha?1 stemwood in excess of the control (N0) in N1. High N treatments caused losses of up to 70% of exchangeable base cations (Ca2+, Mg2+, K+) in the mineral soil, along with decreases in pH and increases in exchangeable Al3+. In contrast, the organic mor‐layer (forest floor) in the N‐treated plots had similar amounts per hectare of exchangeable base cations as in the N0 treatment. Magnesium was even higher in the mor of N‐treated plots, providing evidence of up‐lift by the trees from the mineral soil. Tree growth did not correlate with the soil Ca/Al ratio (a suggested predictor of effects of soil acidity on tree growth). A boron deficiency occurred on N‐treated plots, but was corrected at an early stage. Extractable NH4+ and NO3?were high in mor and mineral soils of on‐going N treatments, while NH4+ was elevated in the mor only in N3 plots. Ten years after termination of N addition in the N3 treatment, the pH had increased significantly in the mineral soil; there were also tendencies of higher soil base status and concentrations of base cations in the foliage. Our data suggest the recovery of soil chemical properties, notably pH, may be quicker after removal of the N‐load than predicted. Our long‐term experiment demonstrated the fundamental importance of the rate of N application relative to the total amount of N applied, in particular with regard to tree growth and C sequestration. Hence, experiments adding high doses of N over short periods do not mimic the long‐term effects of N deposition at lower rates.  相似文献   

7.
王轶浩  陈展  周建岗  张媛媛 《生态学报》2021,41(13):5184-5194
马尾松对酸沉降危害极其敏感,生产实践中往往通过林分改造来应对酸沉降危害。为掌握酸雨区马尾松纯林改造对土壤酸化环境的影响及科学指导经营管理,采用空间代替时间的方法,对重庆铁山坪林场的马尾松纯林及其阔叶化改造后的香樟林、木荷林、马尾松×香樟混交林和马尾松×木荷混交林土壤养分、酸化特征及团聚体稳定性进行研究。结果表明:(1)除木荷混交林的腐殖质层土壤有机碳和全氮含量显著增加外,其他森林类型总体均减少(P<0.05);香樟林及其混交林的各层土壤全磷和全钾含量均增加,但木荷林及其混交林均减少(P<0.05)。(2)改造为香樟林及其混交林能显著提高土壤pH值、交换性盐基离子含量和盐基饱和度,降低交换性Al3+含量,但改造为木荷林及其混交林则总体对土壤酸化特征影响不明显(P>0.05)。(3)木荷林及其混交林淀积层的水稳性大团聚体含量增加,香樟林及其混交林则是微团聚体含量增加(P<0.05)。(4)改造对各森林类型腐殖质层和木荷林淋溶层及淀积层的土壤团聚体稳定性均无显著影响,但能增强马尾松混交林和香樟林淋溶层或淀积层的土壤团聚体稳定性(P<0.05)。综合来看,改造能改变土壤酸化环境,但各森林类型的影响不同,改造为香樟林或其混交林的改善效果总体好于木荷林或其混交林。因而对酸雨区马尾松纯林改造,还应根据改造树种特性及林分特征,科学确定相应的改造方法,尤其应注重改造林分的全过程抚育经营,以营造良好的林下环境。  相似文献   

8.
Water was sampled from an acid forest soil 1 year after a Sitka spruce crop had been clear-felled. In samples extracted using porous ceramic cups, total dissolved nitrogen varied according to depth from 2.6 to 3.6 mg.l−1. In the organic horizons, dissolved nitrogen was mainly in organic form. As it passed down the profile, it was progressively transformed to nitrate. Nitrification was obviously active in this acid soil. The role of dissolved organic nitrogen should not be underestimated in nutrient cycling studies.  相似文献   

9.
The boreal forest is expected to experience the greatest warming of all forest biomes, raising concerns that some of the large quantities of soil carbon in these systems may be added to the atmosphere as CO2. However, nitrogen deposition or fertilization has the potential to increase boreal forest production and retard the decomposition of soil organic matter, hence increasing both tree stand and soil C storage. The major contributors to soil‐surface CO2 effluxes are autotrophic and heterotrophic respiration. To evaluate the effect of nutrient additions on the relative contributions from autotrophic and heterotrophic respiration, a large‐scale girdling experiment was performed in a long‐term nutrient optimization experiment in a 40‐year‐old stand of Norway spruce in northern Sweden. Trees on three nonfertilized plots and three fertilized plots were girdled in early summer 2002, and three nonfertilized and three fertilized plots were used as control plots. Each plot was 0.1 ha and contained around 230 trees. Soil‐surface CO2 fluxes, soil moisture, and soil temperature were monitored in both girdled and nongirdled plots. In late July, the time of the seasonal maximum in soil‐surface CO2 efflux, the total soil‐CO2 efflux in nongirdled plots was 40% lower in the fertilized than in the nonfertilized plots, while the efflux in girdled fertilized and nonfertilized plots was 50% and 60% lower, respectively, than in the corresponding nongirdled controls. We attribute these reductions to losses of the autotrophic component of the total soil‐surface CO2 efflux. The estimates of autotrophic respiration are conservative as root starch reserves were depleted more rapidly in roots of girdled than in nongirdled trees. Thus, heterotrophic activity was overestimated. Calculated on a unit area basis, both the heterotrophic and autotrophic soil respiration was significantly lower in fertilized plots, which is especially noteworthy given that aboveground production was around three times higher in fertilized than in nonfertilized plots.  相似文献   

10.
van Praag  H.J.  Weissen  F.  Dreze  P.  Cogneau  M. 《Plant and Soil》1997,189(2):267-273
In the Ardennes, spruce decline is correlated with Mg deficiency caused by acid rain leaching of soil nutrients, associated with solubilization of Al-containing soil minerals. Laboratory experiments were carried out to measure the uptake and translocation of 45Ca and 28 Mg by intact roots of spruce seedlings in solutions containing various amounts of added AlCl3. Translocation rates in the various organs of the seedlings were higher for magnesium than for calcium. A 1 mt M Al nutrient solution had a much stronger inhibitory effect on uptake and translocation of Mg than it had on Ca. These rate differences result largely from differences in the chemical characteristics of these two elements.  相似文献   

11.
In this review, I summarized the results obtained from experimental studies on the ecophysiological responses of Japanese forest tree species to O3, simulated acid rain and soil acidification. Based on the studies conducted in Japan, exposure to ambient levels of O3 below 100 nl·l−1 (ppb) for several months is sufficient to inhibit dry matter production and net photosynthesis of sensitive Japanese forest tree species such as Siebold's beech and Japanese zelkova. On the other hand, exposure to simulated acid rain with a pH of 4.0 or above for several months cannot induce any adverse effects on dry matter production and physiological functions of Japanese forest tree species. However, when the pH of simulated rain or fog is lowered below 4.0, negative effects appear on dry matter production and physiological functions such as transpiration in several sensitive Japanese forest tree species such as Japanese fir and Nikko fir. Based on limited information, it may be concluded that (1) Al dissolved into soil solution is the most important limiting factor for dry matter production, physiological functions and nutrient status of Japanese forest tree species grown in acidic soil, (2) the (Ca+Mg+K)/Al molar ratio in soil solution is a useful indicator to evaluate and predict the effects of soil acidification due to acid deposition on whole-plant dry matter production of Japanese forest tree species at the present time and in the future, and (3) Japanese coniferous tree species such as Japanese cedar and red pine are relatively sensitive to a reduction in (Ca+Mg+K)/Al molar ratio in soil solution compared with European forest tree species such as Norway spruce.  相似文献   

12.
Summary The distribution and storage of major elements in acid soils from a spruce and a beech forest was investigated after fertilization of NH4NO3 and KCl followed by Ca and Mg fertilization by 2 liming applications. All fertilizers were applied on top of the soil without mixing. Most of the added Ca and Mg was detected in the humus layer, a significant part of it still in carbonatic form. The effect of liming on mineral soil pH is very low, and was only observed in the 0–10 cm layer. However, base saturation of the mineral soil increased. The storage of C and N of the humus layer was not affected. N fertilization increased the N storage of the soil only under beech, but was followed by heavy NO3-losses with seepage water under spruce. High leaching rates for K were also found in the spruce stand. The amount of K that was not leached increased the pool of exchangeable K in the deeper soil layer.  相似文献   

13.
枯落物输入改变是影响森林生态系统土壤理化性质的一个重要因素,探究其对土壤理化性质的影响对了解和保护森林生态系统的稳定性至关重要。为探究森林生态系统土壤理化性质对枯落物输入改变的响应,对国内外已发表的研究论文中筛选出712组有效数据通过Meta分析,从枯落物输入改变、气候、海拔、林分类型、处理年限等因素揭示枯落物输入对土壤理化性质的影响程度。研究结果表明:枯落物添加使土壤pH降低2.22%;土壤含水量、有机碳、全氮、铵态氮分别提高3.99%、15.9%、9.82%和16.52%;枯落物去除使土壤含水量、pH、有机碳、全氮、C/N、铵态氮分别降低8.16%、4.02%、6.47%、5.09%、10.55%和8.86%。枯落物输入改变对土壤理化性质的影响还受到气候、海拔、林分类型、处理年限等因素的调控。在枯落物输入改变条件下,气候、海拔、林分类型、处理年限等因素对土壤含水量、有机碳、全氮、铵态氮均有显著的促进作用;海拔对土壤pH产生了显著的促进作用,而林分类型对土壤pH产生了抑制作用。同时得出枯落物输入改变条件下,年均温是土壤pH的主要调控因子,年均降水量是土壤含水量的主要调控因子;海拔是土...  相似文献   

14.
Increased emissions of nitrogen compounds have led to atmosphericdeposition to forest soils exceeding critical loads of N overlarge parts of Europe. To determine whether the chemistry offorest soils responds to changes in throughfall chemistry, intactsoil columns were reciprocally transplanted between sites, withdifferent physical conditions, across a gradient of N and Sdeposition in Europe.The transfer of a single soil to the various sites affected itsnet nitrification. This was not simply due to the nitrificationof different levels of N deposition but was explained bydifferences in physical climates which influenced mineralizationrates. Variation in the amount of net nitrification between soiltypes at a specific site were explained largely by soil pH.Within a site all soil types showed similar trends in netnitrification over time. Seasonal changes in net nitrificationcorresponds to oscillations in temperature but variable time lagshad to be introduced to explain the relationships. WithArrhenius law it was possible to approximate gross nitrificationas a function of temperature. Gross nitrification equalled netnitrification after adaptation of the microbial community oftransplanted soils to the new conditions. Time lags, andunderestimates of gross nitrification in autumn, were assumed tobe the result of increased NH 4 + availability due either tochanges in the relative rates of gross and net N transformationsor to altered soil fauna-microbial interactions combined withimproved moisture conditions.Losses of NO 3 - were associated with Ca2+and Mg2+ in non-acidified soil types and with losses ofAl3+ in the acidified soils. For single soils the ionequilibrium equation of Gaines-Thomas provided a useful approximationof Al3+ concentrations in the soil solution as a functionof the concentration of Ca2+. The between site deviationsfrom this predicted equilibrium, which existed for single soils, couldbe explained by differences in throughfall chemistry which affectedthe total ionic strength of the soil solution.The approach of reciprocally transferring soil columnshighlighted the importance of throughfall chemistry, interactingwith the effect of changes in physical climate on forest soilacidification through internal proton production, in determiningsoil solution chemistry. A framework outlining the etiology offorest die-back induced by nitrogen saturation is proposed.  相似文献   

15.
Norway spruce (Picea abies (L.) Karst.) seedlings were grown in a glasshouse pot experiment in soils from 11 declining and 7 healthy spruce stands from France and Germany. In soils from 9 declining stands, seedlings showed decline symptoms (needle yellowing). Soil pasteurization suppressed the symptoms, and reinoculation of the pasteurized soil with a rhizospheric extract from the corresponding stand re-induced yellowing. This suggests that a deleterious soil microflora is associated with spruce decline. The occurrence of this microflora seems to be correlated with the main chemical characteristics of the soils (low pH, low saturation of the adsorbing complex, low exchangeable Ca2+ and Mg2+, and high level of exchangeable Al). ei]R F Huettl  相似文献   

16.
林火干扰对森林生态系统土壤有机碳的影响研究进展   总被引:4,自引:0,他引:4  
林火干扰是森林生态系统特殊而重要的生态因子,可改变生态系统的养分循环与能量传递。研究林火干扰对森林生态系统土壤有机碳的影响,有助于理解森林生态系统中土壤碳固持和碳循环过程,为制定科学合理的旨在减缓全球变化的林火管理策略具有重要意义。从4个方面阐述了林火干扰对森林生态系统土壤有机碳的影响及内在机制:分别从大尺度和小尺度两个方面阐述了林火干扰对土壤有机碳的影响及对森林生态系统碳循环与碳平衡的作用机制;探讨了不同林火干扰类型和林火干扰强度下,土壤活性有机碳对林火干扰的响应机制;阐明了林火干扰对土壤惰性有机碳的影响及作用机制;论述了林火干扰主要通过改变土壤有机碳的输入和输出过程进而影响土壤有机碳的稳定性及内在机制。最后提出了提高林火干扰对森林生态系统土壤有机碳影响定量化研究的4种路径选择:(1)全面比较研究不同林火干扰类型对土壤有机碳循环及其碳素再分配过程的功能特征;(2)进一步阐明林火干扰通过改变植被结构进而影响土壤生物群落结构,剖析土壤碳库循环的内在机制;(3)完善不同时空尺度下林火干扰对森林生态系统土壤碳库周转过程的定量化研究;(4)加强不同林火干扰类型土壤碳库稳定性差异的研究。  相似文献   

17.
Root/microbe competition was investigated as a mechanism controlling fertilizer N uptake by coniferous forest trees. Combinations of biocides both with and without 15N labelled urea, were applied to microcosms containing Sitka spruce seedlings, to selectively inhibit target microbial groups which may be competing with roots for N. After 1 growing season, concentrations of fertilizer N and total N in the trees, as well as populations of microbes and animals, were determined. Biocidal inhibition of microbial populations, particularly of fungi, was associated with significant increases in concentraions of fertilizer N and total N in Sitka spruce seedlings. Application of the fungicide benlate, for example, increased the concentration of fertilizer-derived N in spruce needles by one order of magnitude, and was associated with significant reductions in FDA-active hyphal lengths of fungi. This approach to investigating N-flow offers considerable potential for short term experiments involving competition for fertilizer/available N, where the microbial biomass represents the major sink for N in competition with roots.  相似文献   

18.
For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.  相似文献   

19.
Co‐occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near‐future projected change (+2–4 °C, ?0.3–0.5 pH units; pCO2 400–1820; ΩCa 5.0–1.6; ΩAr 3.3–1.1), and extreme conditions experienced at low tide (+4 °C, ?0.3–0.7 pH units; pCO2 2850–2967; ΩCa 1.1–1.0; ΩAr 0.7–0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near‐future warming and acidification. Spine development, however, was negatively affected by near‐future increased temperature (+2–4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near‐future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature‐pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits.  相似文献   

20.
Inorganic-N concentrations in soil solution of whole tree harvest (WTH) and conventional fell (CF) plots were monitored for two years before felling and four years after felling. Concentrations in the mineral soil after felling were higher than in standing forest for up to 14 months in both felling treatments. In the WTH plots inorganic-N concentrations then dropped steadily until four years after felling they approached zero. In contrast, inorganic-N concentrations of the CF plots remained comparatively large. Inorganic-N was dominated by nitrate throughout the period of the study, and especially in the mineral horizons.Felling debris was not a source of inorganic-N, unless indirectly through release and mineralisation of soluble organic-N. Vegetation cover, biomass and N content were substantially greater in the WTH plots two to three years after felling, compared with the CF. Vegetation cover and brash cover (slash cover in N. America) were negatively correlated. There was also a negative correlation between inorganic-N concentration in soil water samplers and the vegetation cover within the collection area of, or a 1 m square surrounding, these samplers.Two factors are probably responsible for the reduction in inorganic-N concentrations after felling in the WTH — the rapid re-establishment of vegetation and the lack of a N source in felling debris. In the CF plots, brash prevents re-establishment of vegetation over wide areas for at least four years. However, brash is not directly a source of inorganic-N at this stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号