共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner 下载免费PDF全文
Bottger G Barnett P Klein AT Kragt A Tabak HF Distel B 《Molecular biology of the cell》2000,11(11):3963-3976
A number of peroxisome-associated proteins have been described that are involved in the import of proteins into peroxisomes, among which is the receptor for peroxisomal targeting signal 1 (PTS1) proteins Pex5p, the integral membrane protein Pex13p, which contains an Src homology 3 (SH3) domain, and the peripheral membrane protein Pex14p. In the yeast Saccharomyces cerevisiae, both Pex5p and Pex14p are able to bind Pex13p via its SH3 domain. Pex14p contains the classical SH3 binding motif PXXP, whereas this sequence is absent in Pex5p. Mutation of the conserved tryptophan in the PXXP binding pocket of Pex13-SH3 abolished interaction with Pex14p, but did not affect interaction with Pex5p, suggesting that Pex14p is the classical SH3 domain ligand and that Pex5p binds the SH3 domain in an alternative way. To identify the SH3 binding site in Pex5p, we screened a randomly mutagenized PEX5 library for loss of interaction with Pex13-SH3. Such mutations were all located in a small region in the N-terminal half of Pex5p. One of the altered residues (F208) was part of the sequence W(204)XXQF(208), that is conserved between Pex5 proteins of different species. Site-directed mutagenesis of Trp204 confirmed the essential role of this motif in recognition of the SH3 domain. The Pex5p mutants could only partially restore PTS1-protein import in pex5Delta cells in vivo. In vitro binding studies showed that these Pex5p mutants failed to interact with Pex13-SH3 in the absence of Pex14p, but regained their ability to bind in the presence of Pex14p, suggesting the formation of a heterotrimeric complex consisting of Pex5p, Pex14p, and Pex13-SH3. In vivo, these Pex5p mutants, like wild-type Pex5p, were still found to be associated with peroxisomes. Taken together, this indicates that in the absence of Pex13-SH3 interaction, other protein(s) is able to bind Pex5p at the peroxisome; Pex14p is a likely candidate for this function. 相似文献
2.
Kragt A Voorn-Brouwer T van den Berg M Distel B 《The Journal of biological chemistry》2005,280(9):7867-7874
Pex5p is a mobile receptor for peroxisomal targeting signal type I-containing proteins that cycles between the cytoplasm and the peroxisome. Here we show that Pex5p is a stable protein that is monoubiquitinated in wild type cells. By making use of mutants defective in vacuolar or proteasomal degradation we demonstrate that monoubiquitinated Pex5p is not a breakdown intermediate of either system. Monoubiquitinated Pex5p is localized to peroxisomes, and ubiquitination requires the presence of functional docking and RING finger complexes, which suggests that it is a late event in peroxisomal matrix protein import. In pex1, pex4, pex6, pex15, and pex22 mutants, all of which are blocked in the terminal steps of peroxisomal matrix protein import, polyubiquitinated forms of Pex5p accumulate, ubiquitination being dependent on the ubiquitin-conjugating enzyme Ubc4p. However, Ubc4p is not required for Pex5p ubiquitination in wild type cells, and cells lacking Ubc4p are not affected in peroxisome biogenesis. These results indicate that Pex5p monoubiquitination in wild type cells serves to regulate rather than to degrade Pex5p, which is supported by the observed stability of Pex5p. We propose that Pex5p monoubiquitination in wild type cells is required for the recycling of Pex5p from the peroxisome, whereas Ubc4p-mediated polyubiquitination of Pex5p in mutants blocked in the terminal steps of peroxisomal matrix protein import may function as a disposal mechanism for Pex5p when it gets stuck in the import pathway. 相似文献
3.
Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor 总被引:10,自引:3,他引:10 下载免费PDF全文
《The Journal of cell biology》1996,135(1):111-121
We have identified an S. cerevisiae integral peroxisomal membrane protein of M of 42,705 (Pex13p) that is a component of the peroxisomal protein import apparatus. Pex13p's most striking feature is an src homology 3 (SH3) domain that interacts directly with yeast Pex5p (former Pas10p), the recognition factor for the COOH-terminal tripeptide signal sequence (PTS1), but not with Pex7p (former Pas7p), the recognition factor for the NH2-terminal nonapeptide signal (PTS2) of peroxisomal matrix proteins. Hence, Pex13p serves as peroxisomal membrane receptor for at least one of the two peroxisomal signal recognition factors. Cells deficient in Pex13p are unable to import peroxisomal matrix proteins containing PTS1 and, surprisingly, also those containing PTS2. Pex13p deficient cells retain membranes containing the peroxisomal membrane protein Pex11p (former Pmp27p), consistent with the existence of independent pathways for the integration of peroxisomal membrane proteins and for the translocation of peroxisomal matrix proteins. 相似文献
4.
Sato Y Shibata H Nakatsu T Nakano H Kashiwayama Y Imanaka T Kato H 《The EMBO journal》2010,29(24):4083-4093
Peroxisomes require peroxin (Pex) proteins for their biogenesis. The interaction between Pex3p, which resides on the peroxisomal membrane, and Pex19p, which resides in the cytosol, is crucial for peroxisome formation and the post-translational targeting of peroxisomal membrane proteins (PMPs). It is not known how Pex3p promotes the specific interaction with Pex19p for the purpose of PMP translocation. Here, we present the three-dimensional structure of the complex between a cytosolic domain of Pex3p and the binding-region peptide of Pex19p. The overall shape of Pex3p is a prolate spheroid with a novel fold, the 'twisted six-helix bundle.' The Pex19p-binding site is at an apex of the Pex3p spheroid. A 16-residue region of the Pex19p peptide forms an α-helix and makes a contact with Pex3p; this helix is disordered in the unbound state. The Pex19p peptide contains a characteristic motif, consisting of the leucine triad (Leu18, Leu21, Leu22), and Phe29, which are critical for the Pex3p binding and peroxisome biogenesis. 相似文献
5.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2019,1866(2):199-213
Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed.In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis. 相似文献
6.
Src homology 3 (SH3) domains are small non-catalytic protein modules capable of mediating protein-protein interactions by binding to proline-X-X-proline (P-X-X-P) motifs. Here we demonstrate that the SH3 domain of the integral peroxisomal membrane protein Pex13p is able to bind two proteins, one of which, Pex5p, represents a novel non-P-X-X-P ligand. Using alanine scanning, two-hybrid and in vitro interaction analysis, we show that an alpha-helical element in Pex5p is necessary and sufficient for SH3 interaction. Sup pressor analysis using Pex5p mutants located in this alpha-helical element allowed the identification of a unique site of interaction for Pex5p on the Pex13p-SH3 domain that is distinct from the classical P-X-X-P binding pocket. On the basis of a structural model of the Pex13p-SH3 domain we show that this interaction probably takes place between the RT- and distal loops. Thus, the Pex13p-SH3-Pex5p interaction establishes a novel mode of SH3 interaction. 相似文献
7.
Pex14p is a peroxisomal membrane-associated protein involved in docking of both Pex5p and Pex7p to the peroxisomal membrane. Previous studies have shown that, in humans, the N-terminal region of Pex14p interacts with WxxxF/Y motifs in Pex5p. Here, we report that Saccharomyces cerevisiae Pex14p contains two independent Pex5p binding sites, one in the N- and one in the C-terminus. Using deletion analysis we show that, in vivo, both of these interactions are needed for PTS1 import. Furthermore, we show that the characterized WxxxF/Y motifs of Pex5p are not essential for binding to the N-terminus of Pex14p but do play a role in the interaction with the Pex14 C-terminus. Thus, the data suggest that the mechanism of the Pex14p-Pex5p interaction in yeast is different from that previously reported for humans. 相似文献
8.
Interactions of Pex7p and Pex18p/Pex21p with the peroxisomal docking machinery: implications for the first steps in PTS2 protein import 下载免费PDF全文
Stein K Schell-Steven A Erdmann R Rottensteiner H 《Molecular and cellular biology》2002,22(17):6056-6069
Peroxisomal PTS2-dependent matrix protein import starts with the recognition of the PTS2 targeting signal by the import receptor Pex7p. Subsequently, the formed Pex7p/cargo complex is transported from the cytosol to the peroxisomal docking complex, consisting of Pex13p and Pex14p. In Saccharomyces cerevisiae, the latter event is thought to require the redundant Pex18p and Pex21p. Here we mapped the Pex7p interaction domain of Pex13p to its N-terminal 100 amino acids. Pex18p and Pex21p also interacted with this region, albeit only in the presence of Pex7p. Expression of an N-terminally deleted version of Pex13p in a pex13delta mutant failed to restore growth on fatty acids due to a specific defect in the import of PTS2-containing proteins. We further show by yeast two-hybrid analysis, coimmunoprecipitation, and in vitro binding assays that Pex7p can bind Pex13p and Pex14p in the absence of Pex18p/Pex21p. The PTS2 protein thiolase was shown to interact with Pex14p but not with Pex13p in a Pex7p- and Pex18p/Pex21p-dependent manner, suggesting that only Pex14p binds cargo-loaded PTS2 receptor. We also found that the cytosolic Pex7p/thiolase-containing complex includes Pex18p. This complex accumulated in docking mutants but was absent in cells lacking Pex18p/Pex21p, indicating that Pex18p/Pex21p are required already before the docking event. 相似文献
9.
Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway 下载免费PDF全文
Import of peroxisomal matrix proteins is essential for peroxisome biogenesis. Genetic and biochemical studies using a variety of different model systems have led to the discovery of 23 PEX genes required for this process. Although it is generally believed that, in contrast to mitochondria and chloroplasts, translocation of proteins into peroxisomes involves a receptor cycle, there are reported differences of an evolutionary conservation of this cycle either with respect to the components or the steps involved in different organisms. We show here that the early steps of protein import into peroxisomes exhibit a greater similarity than was thought previously to be the case. Pex20p of Yarrowia lipolytica, Pex18p and Pex21p of Saccharomyces cerevisiae and mammalian Pex5pL fulfil a common function in the PTS2 pathway of their respective organisms. These non-orthologous proteins possess a conserved sequence region that most likely represents a common PTS2-receptor binding site and di-aromatic pentapeptide motifs that could be involved in binding of the putative docking proteins. We propose that not necessarily the same proteins but functional modules of them are conserved in the early steps of peroxisomal protein import. 相似文献
10.
The majority of peroxisomal matrix proteins are recognized by the import receptor Pex5p. The receptor is dynamic in terms of its overall architecture and association with the peroxisomal membrane. It participates in different protein complexes during the translocation of cargos from the cytosol to the peroxisomal matrix. Its sequence comprises two structurally and functionally autonomous parts. The N-terminal segment interacts with several peroxins that assemble into distinct protein complexes during cargo translocation. Despite evidence for alpha-helical binding motifs for some of these components (Pex13p, Pex14p) its overall appearance is that of a molten globule and folding/unfolding transitions may play a critical role in its function. In contrast, most of the C-terminal part of the receptor folds into a ring-like alpha-helical structure and binds folded and functionally intact peroxisomal targets that bear a C-terminal peroxisomal targeting signal type-1. Some of these targets also bind to secondary binding sites of the receptor. 相似文献
11.
Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p 总被引:1,自引:0,他引:1 下载免费PDF全文
Schäfer A Kerssen D Veenhuis M Kunau WH Schliebs W 《Molecular and cellular biology》2004,24(20):8895-8906
Within the extended receptor cycle of peroxisomal matrix import, the function of the import receptor Pex5p comprises cargo recognition and transport. While the C-terminal half (Pex5p-C) is responsible for PTS1 binding, the contribution of the N-terminal half of Pex5p (Pex5p-N) to the receptor cycle has been less clear. Here we demonstrate, using different techniques, that in Saccharomyces cerevisiae Pex5p-N alone facilitates the import of the major matrix protein Fox1p. This finding suggests that Pex5p-N is sufficient for receptor docking and cargo transport into peroxisomes. Moreover, we found that Pex5p-N can be functionally replaced by Pex18p, one of two auxiliary proteins of the PTS2 import pathway. A chimeric protein consisting of Pex18p (without its Pex7p binding site) fused to Pex5p-C is able to partially restore PTS1 protein import in a PEX5 deletion strain. On the basis of these results, we propose that the auxiliary proteins of the PTS2 import pathway fulfill roles similar to those of the N-terminal half of Pex5p in the PTS1 import pathway. 相似文献
12.
Carvalho AF Pinto MP Grou CP Alencastre IS Fransen M Sá-Miranda C Azevedo JE 《The Journal of biological chemistry》2007,282(43):31267-31272
Protein translocation across the peroxisomal membrane requires the concerted action of numerous peroxins. One central component of this machinery is Pex5p, the cycling receptor for matrix proteins. Pex5p recognizes newly synthesized proteins in the cytosol and promotes their translocation across the peroxisomal membrane. After this translocation step, Pex5p is recycled back into the cytosol to start a new protein transport cycle. Here, we show that mammalian Pex5p is ubiquitinated at the peroxisomal membrane. Two different types of ubiquitination were detected, one of which is thiol-sensitive, involves Cys(11) of Pex5p, and is necessary for the export of the receptor back into the cytosol. Together with mechanistic data recently described for yeast Pex5p, these findings provide strong evidence for the existence of Pex4p- and Pex22p-like proteins in mammals. 相似文献
13.
Pinto MP Grou CP Alencastre IS Oliveira ME Sá-Miranda C Fransen M Azevedo JE 《The Journal of biological chemistry》2006,281(45):34492-34502
Biogenesis of the mammalian peroxisomal membrane requires the action of Pex3p and Pex16p, two proteins present in the organelle membrane, and Pex19p, a protein that displays a dual subcellular distribution (peroxisomal and cytosolic). Pex19p interacts with most peroxisomal intrinsic membrane proteins, but whether this property reflects its role as an import receptor for this class of proteins or a chaperone-like function in the assembly/disassembly of peroxisomal membrane proteins has been the subject of much controversy. Here, we describe an in vitro system particularly suited to address this issue. It is shown that insertion of a reporter protein into the peroxisomal membrane is a Pex3p-dependent process that does not require ATP/GTP hydrolysis. The system can be programmed with recombinant versions of Pex19p, allowing us to demonstrate that Pex19p-cargo protein complexes formed in the absence of peroxisomes are the substrates for the peroxisomal docking/insertion machinery. Data suggesting that cargo-loaded Pex19p displays a much higher affinity for Pex3p than Pex19p alone are also provided. These results suggest that soluble Pex19p participates in the targeting of newly synthesized peroxisomal membrane proteins to the organelle membrane and support the existence of a cargo-induced peroxisomal targeting mechanism for Pex19p. 相似文献
14.
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins. 相似文献
15.
Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor 总被引:11,自引:4,他引:11 下载免费PDF全文
《The Journal of cell biology》1996,135(1):85-95
Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although only a small amount of Pex5p is bound to peroxisomes at steady state (< 5%), loss of Pex13p further reduces the amount of peroxisome- associated Pex5p by approximately 40-fold. Furthermore, loss of Pex13p eliminates import of peroxisomal matrix proteins that contain either the type-1 or type-2 peroxisomal targeting signal but does not affect targeting and insertion of integral peroxisomal membrane proteins. We conclude that Pex13p functions as a docking factor for the predominantly cytoplasmic PTS1 receptor. 相似文献
16.
Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery. 相似文献
17.
The recognition of the conserved ATP-binding domains of Pex1p, p97 and NSF led to the discovery of the family of AAA-type ATPases. The biogenesis of peroxisomes critically depends on the function of two AAA-type ATPases, namely Pex1p and Pex6p, which provide the energy for import of peroxisomal matrix proteins. Peroxisomal matrix proteins are synthesized on free ribosomes in the cytosol and guided to the peroxisomal membrane by specific soluble receptors. At the membrane, the cargo-loaded receptors bind to a docking complex and the receptor-docking complex assembly is thought to form a dynamic pore which enables the transition of the cargo into the organellar lumen. The import cycle is completed by ubiquitination- and ATP-dependent dislocation of the receptor from the membrane to the cytosol, which is performed by the AAA-peroxins. Receptor ubiquitination and dislocation are the only energy-dependent steps in peroxisomal protein import. The export-driven import model suggests that the AAA-peroxins might function as motor proteins in peroxisomal import by coupling ATP-dependent removal of the peroxisomal import receptor and cargo translocation into the organelle. 相似文献
18.
Two distinct pathways have recently been proposed for the import of peroxisomal membrane proteins (PMPs): a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex3p-independent class II pathway. We show here that Pex19p plays an essential role as the chaperone for full-length Pex3p in the cytosol. Pex19p forms a soluble complex with newly synthesized Pex3p in the cytosol and directly translocates it to peroxisomes. Knockdown of Pex19p inhibits peroxisomal targeting of newly synthesized full-length Pex3p and results in failure of the peroxisomal localization of Pex3p. Moreover, we demonstrate that Pex16p functions as the Pex3p-docking site and serves as the peroxisomal membrane receptor that is specific to the Pex3p–Pex19p complexes. Based on these novel findings, we suggest a model for the import of PMPs that provides new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. 相似文献
19.
PEX19 is a chaperone and import receptor for newly synthesized, class I peroxisomal membrane proteins (PMPs). PEX19 binds these PMPs in the cytoplasm and delivers them to the peroxisome for subsequent insertion into the peroxisome membrane, indicating that there may be a PEX19 docking factor in the peroxisome membrane. Here we show that PEX3 is required for PEX19 to dock at peroxisomes, interacts specifically with the docking domain of PEX19, and is required for recruitment of the PEX19 docking domain to peroxisomes. PEX3 is also sufficient to dock PEX19 at heterologous organelles and binds PEX19 via a conserved motif that is essential for this docking activity and for PEX3 function in general. Not surprisingly, transient inhibition of PEX3 abrogates class I PMP import but has no effect on class II PMP import or peroxisomal matrix protein import. Taken together, these results suggest that PEX3 plays a selective, essential, and direct role in PMP import as a docking factor for PEX19. 相似文献
20.
In the present study, we investigated molecular mechanisms underlying the import of peroxisome-targeting signal type 2 (PTS2) proteins into peroxisomes. Purified Chinese hamster Pex7p that had been expressed in an Sf9/baculovirus system was biologically active in several assays such as those for PTS2 binding and assessing the restoration of the impaired PTS2 protein import in Chinese hamster ovary (CHO) pex7 mutant ZPG207. Pex7p was eluted as a monomer in gel filtration chromatography. Moreover, the mutation of the highly conserved cysteine residue suggested to be involved in the dimer formation did not affect the complementing activity in ZPG207 cells. Together, Pex7p more likely functions as a monomer. Together with PTS1 protein, the Pex7p-PTS2 protein complex was bound to Pex5pL, the longer form of Pex5p, which was prerequisite for the translocation of Pex7p-PTS2 protein complexes. Pex5pL-(Pex7p-PTS2 protein) complexes were detectable in wild-type CHO-K1 cells and were apparently more stable in pex14 CHO cells deficient in the entry site of the matrix proteins, whereas only the Pex7p-PTS2 protein complex was discernible in a Pex5pL-defective pex5 CHO mutant. Pex7p-PTS2 proteins bound to Pex14p via Pex5pL. In contrast, PTS2 protein-bound Pex7p as well as Pex7p directly and equally interacted with Pex13p, implying that the PTS2 cargo may be released at Pex13p. Furthermore, we detected the Pex13p complexes likewise formed with Pex5pL-bound Pex7p-PTS2 proteins. Thus, the Pex7p-mediated PTS2 protein import shares most of the steps with the Pex5p-dependent PTS1 import machinery but is likely distinct at the cargo-releasing stage. 相似文献