首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation pathway of 2-acetylaminofluorene (AAF) to N-hydroxy-2-amino-fluorene (N-OH-AF), a potent mutagen to Salmonella, by guinea pig liver postmitochondrial supernatant fraction (S-9 fraction) was studied. 2-Aminofluorene (AF), as well as N-hydroxy-2-acetylaminofluorene (N-OH-AAF, Takeishi et al., Mutation Res. in press), was detected as a metabolite of AAF. The mutagenicities of AF and N-OH-AAF comparable to that of AAF were inhibited by antiserum against NADPH-cytochrome c reductase and by paraoxon, respectively. These data indicate that in the mutagenic activation of AAF, N-OH-AF can be produced by both N-hydroxylation of AF and deacetylation of N-OH-AAF. Furthermore, the data on the relative contribution of paraoxon-sensitive activation pathway to mutagenicities of AAF and N-OH-AAF led to a conclusion that deacetylation of AAF followed by N-hydroxylation to produce N-OH-AF is the main pathway for the mutagenic activation of AAF by guinea pig liver S-9 fraction.  相似文献   

2.
Monolayers of rat hepatocytes metabolize 0.25 m M 2-acetylaminofluorene (AAF) to various ether-extractable, water-soluble as well as covalently bound products. The major ether-extractable metabolite formed is 2-aminofuorene (AF), followed by 7-OH-AAF and 9-OH-AAF. Pretreatment of rats with the inducer Aroclor 1254 (PCB) increased the metabolism of AAF and caused an increased DNA repair synthesis in hepatocytes exposed to AAF or AF. With N-OH-AAF, a decreased genotoxic response in PCB-treated cells compared to control cells was seen. The addition of harman and norharman decreased the metabolism of AAF to ether-extractable metabolites, water-soluble metabolites and metabolites covalently bound to macromolecules. In contrast, the DNA-repair synthesis caused by the same concentrations of AAF was increased by harman. One explanation for this apparent discrepancy could be that the aromatic amines changed the metabolism of harman and norharman in such a way that these compounds were converted into genotoxic metabolites.Abbreviations AAF 2-acetylaminofluorene - AF 2-aminofluorene - DMSO dimethylsulfoxide - HPLC high performance liquid chromatography - N-OH-AAF N-ydroxy-2-acetylaminofluorene - PCB polychlorinated biphenyls, Aroclor 1254 - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin - TdR thymidine - Trp-P-1 3-amino-1,4dimethyl-5H-pyrido(4,3b)indole - Trp-P-2 3-amino-l-methyl-5H-pyrido(4,3b)indole - UDS unscheduled DNA synthesis  相似文献   

3.
Coincubation of isolated and intact rat hepatocytes and Salmonella typhimurium, (Salmonella/hepatocyte system) strain TA 98 was employed to determine both bacterial mutagenicity and DNA damage in the hepatocytes as measured by alkaline elution, following treatment with 2-acetylaminofluorene (AAF), 2-aminofluorene (AF) and N-hydroxy-2-acetylaminofluorene (N-OH-AAF). Both the mutagenicity and the rate of DNA elution were dose-dependent for all three compounds. N-OH-AAF was 5 times more mutagenic and caused 80–100 times more DNA damage in the hepatocytes than AAF and AF when compared on a molar basis. The Salmonella/hepatocyte system may provide a more comprehensive evaluation of the potential genotoxic effect of chemicals than the currently used microbial mutagenesis sytems.  相似文献   

4.
The metabolism and mutagenicity of 2-acetylaminofluorene were measured using freshly prepared intact bladder and liver cells from the cow, dog and rat. High pressure liquid chromatography was used to separate 2-acetylaminofluorene metabolites, andSalmonella typhimurium, strain TA98, was used to detect mutagenic intermediates. Species differences as well as animal-to-animal variation within a species were observed. Mutagenic activity with 2-acetylaminofuorene was greater with cow bladder cells than with dog or rat bladder cells. However, dog bladder cells were most active in metabolizing 2-acetylaminofluorene, and rat bladder cells were least active. Liver cells from all three species metabolized 2-acetylaminofluorene to mutagens forSalmonella, with dog and cow cells being more active than rat liver cells. However, cow liver cells were the most active in metabolizing 2-acetylaminofuorene, followed by rat and dog cells. With all cell types studied, except rat bladder cells, aminofluorene was the major metabolite detected. Carbon and N-hydroxylated products were produced by liver and bladder cells of the three species and glucuronide and sulfate conjugates of the metabolites were detected from both cell types. Correlations between mutagenic activity and the level of metabolism or any individual metabolite were not apparent. The data suggest that the relative contribution of bladder cell metabolism in aromatic amine induced bladder cancer may vary with the species.Abbreviations AAF 2-acetylaminofluorene - 4-ABP 4-aminobiphenyl - AF aminofluorene - BZ benzidine - cytochrome P-450 a collective term for all forms of the cytochrome P-450 polysubstrate mono-oxygenases - FMO flavin mono-oxygenases - HPLC high pressure liquid chromatography - MNNG N-methyl-N-nitro-N-nitrosoguani-dine - 2-NA 2-naphthylamine - N-OH-AAF N-hydroxy-2-acetylaminofluorene - 1-OH-AAF 1-hydroxy-2-acetylaminofluorene - 5-OH-AAF 5-hydroxy-2-acetylaminofluorene - 7-OH-AAF 7-hydroxy-2-acetylaminofluorene - 8OH-AAF 8-hydroxy-2-acetylaminofluorene - 9-OH-AAF 9-hydroxy-2-acetylaminofluorene - UDS unscheduled DNA synthesis  相似文献   

5.
Primary cultures of rat urothelial cells were exposed to hydroxyurea, [3H]thymidine, and 4-nitroquinoline 1-oxide (NQO) or N-hydroxy-4-aminoquinoline 1-oxide (HAQO) in a serum-free media for 2 h; unscheduled DNA synthesis (UDS) was measured by autoradiography. Both NQO and HAQO produced unscheduled DNA synthesis. Dicumarol, an inhibitor of NQO nitroreductase, inhibited the activity of NQO and, to a lesser extent, HAQO. Pyrophosphate, an inhibitor of seryl-AMP synthetase, inhibited the activity of both compounds. Neither dicumarol nor pyrophosphate, under similar experimental conditions, inhibited the activity of N-hydroxy-N-2-acetylaminofluorene (N-OH-AAF). These results support the idea that nitro-reductase and seryl-AMP synthetase may be involved in the activation of NQO.  相似文献   

6.
32P-Postlabeling techniques have been developed to detect and measure adducts formed by covalent binding of carcinogens of Known or unknown origin with DNA (and RNA). The assay is applicable to various classes of chemical carcinogens and permits detection of many adducts at attomole (10–18 mol) level using microgram amounts of DNA. Here, we demonstrate the application of the assay for the analysis of short- and long-term persistence of 2-acetylaminofluorene-DNA adducts in rat liver in vivo and also outline examples illustrating the applicability of the procedure to different experimental problems.Abbreviations AAF 2-acetylaminofluorene - N-OH-AAF N-hydroxy-2-acetylaminofluorene  相似文献   

7.
The direct-acting cytotoxic properties of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and N-hydroxy-2-aminofluorene (N-OH-AF) have been determined in repair-proficient (AA8-4) and repair-deficient (UV-5) Chinese hamster ovary cells. Cytotoxicity comparisons indicate that UV-5 cells are considerably more sensitive to exposure to N-OH-AAF than is the parental AA8-4 cell line, i.e., concentrations needed to obtain a D37 for survival of AA8-4 is greater than 5-fold higher than for UV-5. Mutation analysis at the HGPRT locus also indicates the increased sensitivity of UV-5 cells to N-OH-AAF as witnessed by an enhanced induction of 6-thioguanine-resistant colonies at equitoxic doses. Conversely, N-OH-AAF, did not induce a 'UV-mimetic' response when comparing genotoxicity between these two cell lines. Our data coupled with previously published model-building and adduct removal studies (Broyde and Hingerty, 1983; Fuchs and Daune, 1974; Grunberger and Weinstein, 1976; Yamasaki et al., 1977) suggest that the minor DNA adduct species, N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene, may be responsible for the hypermutagenicity witnessed in DNA excision-repair-deficient cells treated with N-OH-AAF.  相似文献   

8.
9.
The metabolism and mutagenic activation of 2-acetylaminofluorene by human and rat hepatocytes and kidney cells were measured. High performance liquid chromatography was used to separate the 2-acetylaminofluorene metabolites, and a cell-mediated Salmonella typhimurium mutagenesis assay was used to detect mutagenic intermediates. Rat and human differences were observed with cells from both organs and levels of metabolism and mutagenesis were higher in human cells. Within a species, liver and kidney cell differences were also evident, with levels of hepatocyte-mediated metabolism and mutagenesis being greater than kidney cells. Human inter-individual variation was apparent with cells from both organs, but the variation observed was significantly greater in hepatocytes than kidney cells. A knowledge of such differences, including an understanding that they may vary with the chemical being studied, should be useful in the extrapolation of rodent carcinogenesis data to humans.Abbreviations AAF 2-acetylaminofluorene - AF 2-aminofluorene - DMSO dimethylsulfoxide - HPLC high performance liquid chromatography - N-OH-AAF N-hydroxy-2-acetylaminofluorene - 1-OH-AAF 1-hydroxy-2-acetylaminofluorene - 3-OH-AAF 3-hydroxy-2-acetylaminofluorene - 5/9-OH-AAF a combination of 5 and 9-hydroxy-2-acetylaminofluorene - 7-OH-AAF 7-hydroxy-2-acetylaminofluorene - 8-OH-AAF 8-hydroxy-2-acetylaminofluorene  相似文献   

10.
Oxidation of 2-acetylaminofluorene (AAF), a carcinogen, by a chemical model for cytochrome P450 was investigated to identify an active mutagen and elucidate the oxidation pathway. The oxidation system consisted of a water-insoluble tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride and tert-butyl hydroperoxide. The mutagen derived from AAF by the chemical model was 2-nitro-9-fluorenone (NO(2)=FO), which was mutagenic in Salmonella typhimurium TA1538. AAF was oxidized initially at position 9 of the fluorene carbon by the chemical model forming 2-acetylamino-9-fluorenol (AAF-OH), and then oxidized further to 2-acetylamino-9-fluorenone (AAF=O) as a major product. Initial oxidation of the nitrogen formed 2-nitrofluorene (NO(2)F), and further oxidation yielded 2-nitro-9-fluorenol (NO(2)F-OH) as a minor product. These products, AAF-OH, AAF=O, NO(2)F, and NO(2)F-OH, and their presumable common intermediate, N-hydroxy-2-acetylaminofluorene, were oxidized by the chemical model, and the formation of NO(2)F=O was determined. These results showed that NO(2)F=O was the mutagen derived from AAF in the presence of the chemical model and was formed via oxidation of N-OH-AAF, NO(2)F, and NO(2)F-OH. These results may lead to a new metabolic pathway of AAF.  相似文献   

11.
Butylated hydroxytoluene (BHT) protected against DNA damage induced in rat hepatocytes by 2-acetylaminofluorene (2AAF) or N-hydroxy 2AAF as shown by a marked reduction of unscheduled DNA synthesis. BHT also inhibited 2AAF-induced DNA damage (as shown by reduced repair) in human hepatocytes. In addition, rats pre-treated with BHT in the diet (0.5% w/w for 10 days) provided hepatocytes which exhibited less unscheduled DNA synthesis than did hepatocytes from control rats when these cells were exposed to either 2AAF or N-hydroxy 2AAF. The results indicate both direct (in vitro) and indirect (by pre-treatment in vivo) inhibitory effects of BHT on the genotoxicity of 2AAF in liver cells, in accord with the reported anti-tumorigenicity in the liver. This effect contracts with a BHT-mediated increase in the efflux of 2AAF-derived mutagens from liver cells which may contribute to enhanced extrahepatic carcinogenesis.  相似文献   

12.
Groups of male Alderley Park rats were dosed concomitantly with 2-acetylaminofluorene (2AAF) by gavage at doses between 0.01 mg/kg and 40 mg/kg, and livers sampled 2-72 h later. The liver of one group of animals was perfused to yield hepatocytes which were assayed in vitro for unscheduled DNA synthesis (UDS) via incorporation of tritiated thymidine and autoradiography. DNA was extracted from the livers of the other group and DNA adduct levels determined using the 32P-postlabelling technique. The major C-8 2-aminofluorene/guanosine adduct and 3 minor adducts were quantitated, enabling the relative sensitivity of the 2 techniques to be compared. A dose- and time-related UDS response was observed, which, at the most sensitive time-point (12 h) enabled DNA repair to be discerned at a dose level of 0.1-1 mg/kg of 2AAF, a response classified as formally positive at 5 mg/kg 2AAF. Only the C-8 adduct, as determined by 32P-postlabelling, was discernible at 0.01 mg/kg of 2AAF, although other adducts were visible on autoradiograms at higher dose levels. It is concluded that as part of a well-defined dose response, UDS can be discerned with confidence for doses of 2AAF between approximately 0.1 and 5 mg/kg, and DNA adducts for doses of 2AAF between approximately 0.01 and 1 mg/kg. Discernible UDS for 2AAF in the rat liver is apparent at approximately 13 DNA (total) adducts/10(8) nucleotides, or approximately 8 DNA (C-8) adducts/10(8) nucleotides. The presumed C-8 2-acetylaminofluorene/guanosine adduct, prepared by reaction of 2-acetoxy-2-acetylaminofluorene (2AAAF) with DNA, was a significant but unreliable marker of 2AAF/DNA adducts in the rat liver in vivo. DNA repair did not appear to remove DNA adducts selectively, and adducts remained in DNA when discernible DNA repair had ceased.  相似文献   

13.
The metabolism of 2-acetylaminofluorene (AAF) in primary cultures of rat and human hepatocytes was investigated to determine if the activation of this well-studied chemical carcinogen proceeds via similar routes of metabolism between species. The total level of AAF metabolite(s) bound to hepatocellular DNA was determined in the presence of deacetylase inhibitors, diethyl(p-nitrophenyl) phosphate (paraoxon) or bis(p-nitrophenyl) phosphate (BPNPP). These compounds are known to inhibit deacetylase and to decrease the mutagenicity of AAF. Experiments with rat and human hepatocytes demonstrated inhibition in the deacetylation of AAF (5×10−4 M) with paraoxon or BPNPP. The BPNPP (5×10−4 M inhibited 99% of the AF formation in the human hepatocytes and 88% inhibition in the rat hepatocytes. Paraoxon at 10−4 M demonstrated a 98% inhibition of deacetylation with humans and a 92% inhibition with rats. The rat hepatocytes also showed a 53% decrease in DNA binding in the presence of paraoxon. In contrast with human hepatocytes, while paraoxon decreased the AF metabolite by > 97%, there was no change in total DNA binding.  相似文献   

14.
The effects of quercetin on the mutagenicity of 2-acetylaminofluorene (AAF) and its 3 active metabolites, N-hydroxy-AAF (N-OH-AAF), aminofluorene (AF) and N-acetoxy-AAF(N-OAc-AAF) were investigated. The mutagenicity assays were carried out with Salmonella typhimurium TA98, and S9, microsomes and cytosol were used as metabolic activation systems. In the presence of S9, quercetin enhanced the mutagenicity of AAF, N-OH-AAF, AF and N-OAc-AAF by 6.9-, 4.3-, 3.6- and 3.9-fold, respectively. Quercetin enhanced the mutagenicity of these substrates with microsomes, whereas it depressed the mutagenicity of these substrates with cytosol. From these results, it seemed probable that quercetin promotes the N-hydroxylation and deacetylation in the microsomes, whereas it inhibits the deacetylation in the cytosol. It was shown that in the metabolism of AAF and its metabolites, quercetin modulates the balance between the mutagenicity activation and inactivation processes, which is catalysed by the enzymes in the microsomes and cytosol, and causes enhancement of the mutagenicity of AAF.  相似文献   

15.
2-Acetylaminofluorene (AAF) and 2-aminofluorene (AF), as well as their N-hydroxylated metabolites, N-OH-AAF and N-OH-AF, were studied for mutagenic effects in Salmonella typhimurium with rat- and mouse-liver S9 and microsomal subfractions in the presence of cofactors for glucuronidation and glutathione (GSH) transfer. Addition of UDPGA did not affect the mutagenicity of AAF, AF or N-OH-AAF under any experimental condition. Addition of GSH, on the other hand, markedly inhibited AAF, AF and N-OH-AAF. This seemed to be due to the direct effect of GSH, and not through an enzyme-catalyzed conjugation. Further, GSH inhibited the direct mutagenicity of N-OH-AF.  相似文献   

16.
The ability of human red blood cell cytosol to activate aromatic amines was evaluated with the Ames test using Salmonella typhimurium TA98 in the liquid preincubation condition. While negative results were obtained with 4-acetylaminofluorene (4AAF) and 1-naphtylamine (1NA), a slight response was observed for 4-aminobiphenyl (4ABP) and 2-naphthylamine (2NA). Human red blood cell cytosol was able to activate 2-aminofluorene (2AF), 2-acetylaminofluorene (2AAF) and 2-aminoanthracene (2AA) to mutagenic intermediates. Extracts of human red blood cell cytosol incubated with 2AF were analyzed by gas chromatography: N-hydroxy-2-aminofluorene was identified as a metabolite.  相似文献   

17.
The biological activity of natural and synthetic mineral fibers has been examined. Natural attapulgite [(Mg, Al)2Si4O10(OH).4H20], synthetic xonotlite [Ca3Si3O8(OH)2] and natural sepiolite [Mg2Si3O8.2H2O] were selected. Genotoxic effects were investigated by means of a well established cellular model based upon the measurement of unscheduled DNA synthesis (UDS) in rat hepatocytes in primary culture. The intrinsic capacity of the fibers (1 and 10 µ/ml) to induce UDS was first tested. None of the fiber types showed detectable UDS-eliciting activity. Also, the possible modulation of the cellular response to genotoxic agents by the materials was examined by exposing the cells to mixtures of 2-acetylaminofluorene (AAF) (0.05 and 0.25 µg/ml) and fibers (1 and 10 µg/ml). In these experiments, the UDS response was significantly diminished in the presence of xonotlite. This phenomenon may reflect changes in the uptake and/or metabolism of AAF or may result from an inhibition of DNA repair processes, the latter suggesting a possible cocarcinogenic potential for this synthetic silicate. These results point to the immediate necessity of studying more extensively the biological effects of fibrous materials that can be used as substitutes for asbestos.Abbreviations AAF 2-acetylaminofluorene - DMSO dimethyl-sulfoxide - FBS fetal bovine serum - IRDA Institut de Recherche et de Développement sur l'Amiante - LDH lactate dehydrogenase - UDS unscheduled - DNA synthesis - WME Williams' Medium E This work was supported by the Institut de Recherche et de Développement sur l'Amiante (IRDA), Sherbrooke, Canada.  相似文献   

18.
The activity of chemical-induced unscheduled DNA synthesis was evaluated in hepatocyte primary cultures from Fischer 344 and Sprague-Dawley rats over a period of two years. In this two-year study hepatocytes from both sexes and strains were prepared from animals 2, 8, 14, 20 and 25 months of age and UDS was measured by autoradiography following treatment with N-methyl-AP-vitro-N-nitrosoguanidine and 2-acetylaminofluorine. A dose-related positive response occurred for both compounds throughout the study in hepatocytes from male and female Fischer rats and male Sprague-Dawley rats. The magnitude of the response was greatest in hepatocytes from male Fischer rats and a markedly lower response in unscheduled DNA synthesis occurred in all cultures prepared from animals of both strains and sexes at 20 and 25 months of age. Hepatocytes from female Sprague-Dawley rats showed a low level of unscheduled DNA synthesis with N-methylN-vitro-N-nitrosoguanidine throughout the study. The most striking finding was the absence of a UDS response to 2-acetylaminofuorene by hepatocytes from Sprague-Dawley females at the 8, 14, 20 or 25 month periods. The results indicate an age-related decrease in chemical-induced unscheduled DNA synthesis activity among rats.Abbreviations 2AAF 2-acetylaminofluorine[deDMSO] - dimethylsulfoxide 3H-TdR, meth yl-3H-thymidine - MNNG N-methyl-N-vitro-N-nitrosoguanidine - UDS unscheduled DNA synthesis  相似文献   

19.
The effect of quercetin as the comutagen on 2-acetylaminofluorene (AAF) was investigated. AAF was metabolized with mammalian metabolic systems (S9 mix) in the presence or absence of quercetin in vitro, and its metabolites were determined by high-performance liquid chromatography. In the presence of quercetin, the total metabolic rate of AAF decreased compared with that in the absence of quercetin, whereas the formation of N-hydroxy-AAF (N-OH-AAF) and 2-aminofluorene (AF) increased. Since the main metabolic pathway of AAF is aryl-hydroxylation, it is suggested that the decrease of total metabolic rate of AAF is due to the inhibition of aryl-hydroxylation by quercetin. From these results, it seems probable that the comutagenic effect of quercetin on AAF is due to the inhibition of aryl-hydroxylation (the detoxifying pathway) and the promotion of N-hydroxylation and deacetylation (the activating pathway) in the AAF metabolism with S9 mix.  相似文献   

20.
IN assessing environmental health hazards, the question has arisen of whether “safe”, “tolerable” or “permissible” levels of carcinogens, mutagens or teratogens can be derived by extrapolation of bioassays using rodents exposed for various periods to very high concentrations of chemicals or using cultured mammalian cell lines. Variations in susceptibility are only rarely taken into account, if at all and doses which seem to be harmless to the average person may be harmful to susceptible people. The reduced capacity to repair ultraviolet-induced DNA lesions in xeroderma pigmentosum (XP) cells may exemplify a mechanism leading to an elevated neoplastic transformation rate in man1–4. The question arises as to whether cells with deficient repair synthesis respond to chemical carcinogens in the same manner as cells with adequate repair systems. We report here the levels of DNA repair synthesis in XP cells of five patients exposed to the carcinogenic5,6 and mutagenic7 compounds N-acetoxy or N-hydroxy-2-acetyl-aminofluorene, which are ultimate and proximate carcinogenic forms of 2-acetylaminofluorene (AAF). We were particularly interested in comparing the different levels of DNA repair synthesis following ultraviolet irradiation with those following treatment with chemical carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号