首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotting, lectin binding, and 125I surface labeling of sporozoites were used to probe sporozoites of the rat coccidian, Eimeria nieschulzi. Analysis of silver stained gels revealed >50 bands. Surface iodination revealed about 14 well labeled, and about 10 weakly labeled but potential, surface proteins. The most heavily labeled surface proteins had molecular masses of 60, 53–54, 45, 28, 23–24, 17, 15, 14, 13, and 12 kD. Following electrophoresis and Western blotting, 2 of the 12 125I labeled lectin probes bound to two bands on the blots, which collectively indicated that two bands were glycosylated. Concanavalin A (ConA) specifically recognized a band at 53 kD, which may represent a surface glycoprotein, and a lectin derived from Osage orange (MPA) bound to a single band at 82–88 kD, that may also be a surface molecule. Immunoblotting using sera collected from rats inoculated orally with oocysts, as well as sera from mice hyperimmunized with sporozoites, revealed that many surface molecules appear to be immunogenic.  相似文献   

2.
A 35 kD major surface antigen of Dirofilaria immitis third-stage larvae was characterized biochemically and immunologically. Living larvae were iodinated by using Iodo-gen, iodosulfanilic acid, lactoperoxidase-glucose oxidase, and Bolton-Hunter reagents. Detergent extracts of larvae labeled by the first three methods showed one major 35 kD component and a number of smaller components of about 6 kD, as analyzed by one-dimensional SDS-PAGE. In contrast, extracts from larvae labeled with the Bolton-Hunter reagent showed multiple bands on gels. The 35kD molecule was shown to be exposed on the larval surface, insofar as it was accessible to trypsin-proteolysis on living radiolabeled larvae. Two-dimensional gel electrophoresis resolved the 35 kD band into two components: a major one with a pI of 3.8, and a minor one of pI 7.3. The lower m.w. bands were resolved into about 12 constituents with pI values from 3.5 to 8.0. Of all these surface molecules, the only one that was antigenic was the 35 kD component. It could be immunoprecipitated with sera from dogs carrying an occult experimental D. immitis infection or with sera from dogs immunized with irradiated third-stage larvae of this parasite. Similarly, sera from rabbits immunized repeatedly with normal unirradiated larvae also precipitated the 35 kD antigen. None of these sera, however, contained detectable antibodies to the surface-labeled low m.w. molecules. Sera from rabbits immunized with D. immitis adult worms and microfilariae precipitated the 35 kD antigen, which is therefore not stage specific. In contrast, sera from dogs experimentally infected with Toxocara canis and Ancylostoma caninum or with Uncinaria stenocephala (a canine hookworm) did not contain antibodies to the 35 kD antigen, but did cross-react with many other D. immitis adult and microfilarial antigens. This molecule may therefore be species specific. Evidence for glycosylation of the 35 kD molecule was not found: it did not bind to peanut, wheat germ, lentil, or Ulex europeus lectins, and its electrophoretic mobility was not altered after treatment with endoglycosidase-F or mild alkali solutions.  相似文献   

3.
Leishmania braziliensis: localization of glycoproteins in promastigotes   总被引:2,自引:0,他引:2  
Two species of glycoproteins from Leishmania braziliensis promastigotes of apparent molecular weights of 53,000 (glycoprotein 53) and 47,000 (glycoprotein 47) were localized. Four lectins with different sugar specificities bound to the blotting sheet to which the electrophoretically separated materials were transferred. Concanavalin A and Ricinus communis agglutinin bound to the band of glycoprotein 53 and the lectin from Dolichos biflorus bound to the band of glycoprotein 47. Wheat germ agglutinin bound to the bands of both glycoproteins. Histochemical examinations using fluorescence labeled lectins demonstrated that the glycoproteins 53 and 47 were located on the cell surface and in the cytoplasm of promastigotes, respectively. The results are consistent with the result of agglutination test.  相似文献   

4.
Iodination of Myxococcus xanthus during development   总被引:5,自引:4,他引:1       下载免费PDF全文
Intact cells of Myxococcus xanthus were iodinated with [125I]lactoperoxidase to permit examination of the surface components accessible to labeling during cell development. Vegetative cells, starved on a defined solid medium, aggregated, formed fruiting bodies, and produced myxospores. Cells collected at different stages were iodinated, and their proteins were analyzed by one- and two-dimensional electrophoresis and autoradiography. One-dimensional electrophoresis revealed six iodinated bands in vegetative cell extracts. During development, 10 radioactive bands were detected, 4 of which migrated to the same positions as those of vegetative cells. Only six bands were detected in purified, labeled myxospores. Of these, one band possessed mobility similar to that of labeled vegetative cell proteins, whereas the other bands possessed mobility similar to that detected in developing cells. Analysis of two-dimensional gels indicated that at least 14 proteins were iodinated in vegetative cells, one of which was intensely labeled (protein b). Another of the proteins (protein a) was labeled throughout development. During development, about 30 proteins were iodinated and the prominently labeled ones were designated c, d, e, f, and g. The latter two (proteins f and g) were not detected in purified, iodinated myxospores. The data indicated a pronounced change in surface structure during development; some of the change may be involved in cellular interaction during aggregation.  相似文献   

5.
125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27 and p55 bands by chemical cleavage and protease fragmentation revealed no common bands excluding that p27 is a degradation product of p55. These data indicate that N-bromoacetyl derivatives of T4 and T3 affinity label a limited but similar constellation of membrane proteins with BrAcT4 incorporation greater than that of BrAcT3. One membrane protein (p27) of low abundance (2-5 pmol/mg microsomal protein) with a reactive sulfhydryl group is selectively labeled under conditions identical to those used to measure thyroid hormone 5'-deiodination. Only p27 showed differential affinity labeling in the presence of noncovalently bound inhibitors or substrates on 5'-deiodinase suggesting that p27 is likely to be a component of type I 5'-deiodinase in rat liver and kidney.  相似文献   

6.
Earlier studies suggested that specific communication between the parasite and the host cell may play a role in cellular invasion by sporozoites of species of avian Eimeria. In this study, quantification of cellular invasion and modified Western blot analysis were used to explore the possibility that parasite receptors for interaction with the host cell might be involved in the sporozoite-host cell communication. Invasion in cultured cells treated with a homogenate of Eimeria adenoeides sporozoites was approximately 50% lower than that in untreated cultures. When the sporozoite homogenate was solubilized in sodium dodecyl sulfate and electrophoretically separated, components of the cultured host cells bound consistently to sporozoite bands having Mr of 23 and 40 kDa. Biotinylation of intact sporozoites revealed at least 14 biotin-labeled bands, including bands at 23 and 40 kDa, that were considered to be surface molecules. If the sporozoites were incubated in trypsin after they were biotinylated, only two biotinylated bands at 18 and 23 kDa remained; the 40-kDa biotinylated band was not detected. Despite the removal of the majority of the surface molecules, the cell homogenate still bound to the trypsin-treated sporozoites; the intensity of the label was similar to that resulting from the binding of cell homogenate to untreated sporozoites. The data show specific interactions between 23- and 40-kDa sporozoite bands and host cell components, and provide evidence that the 23-kDa molecule may be located on the sporozoite surface and the 40-kDa molecule located intracellularly.  相似文献   

7.
Whole rat liver nuclei were reacted with UDP-[14C]galactose in the presence of bovine beta(1----4) galactosyltransferase. The reaction mixture was electrophoresed on a reducing sodium dodecyl sulfate-polyacrylamide gel. Autoradiograms of the gel demonstrated a major labeled broad band migrating with an apparent molecular weight of 65,000-66,000. A number of other less prominently labeled bands were also present. The labeled 65,000-66,000 band when cut from the gel and subjected to alkaline reduction while in the gel matrix exclusively yielded a 14C-labeled disaccharide that co-migrated with a [14C]Gal-GlcNAcol standard in descending paper chromatography. Treatment of this disaccharide with beta-galactosidase (beta-D-galactoside galactohydrolase; EC 3.2.1.23) from Aspergillus niger removed all the [14C]galactose label. Treatment of the labeled 65,000-66,000 polypeptide with Endoglycosidase F, however, did not remove the [14C]galactose label. Western transfer blots of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels performed with horseradish peroxidase-labeled succinyl wheat germ agglutinin, a lectin specific for GlcNAc, on unlabeled nuclei revealed a dominant band at 63,000-64,000. Subjecting 14C-labeled nuclei to this procedure resulted in a shift of the major horseradish peroxidase-labeled succinyl wheat germ agglutinin band to 65,000-66,000. The shifted band was coincident with the [14C]galactose band as visualized on an autoradiogram. A survey of other rat tissue nuclei revealed the same spectrum of [14C]galactose acceptor proteins with a dominant 65,000-66,000 galactose-labeled band.  相似文献   

8.
We isolated a mixture of beta-galactoside-binding lectins from rat lung and raised polyclonal antibody against 14 kD lectin purified from the mixture of lectins. Immunoblotting of the mixture of lectins, which was separated with SDS-PAGE under reducing condition and transferred onto a NC paper, showed that the antibody reacted with two bands at 14 and 29 kD, indicating that these two lectins have common antigenic determinants(s). Immunohistochemically, the antibody recognized only bronchiolar Clara cells with intense immunofluorescence in their apical cytoplasmic protrusions where the secretory granules of the cells are known to be stored. Thus, to determine if the lectin(s) might be secreted into airways, we next raised antibody against airway secretions free from serum as well as surfactant proteins. By immunoblot analysis, the resulting antibody stained 29,45 and 55 kD bands, but not 14 kD band, on a NC paper transferred with the mixture of lectins. These findings suggest that at least 29 kD lung lectin is located in bronchiolar Clara cells and secreted by these cells into airways.  相似文献   

9.
Sanjukta Parui 《Grana》2013,52(5):311-315
The pollen of Ricinus communis L., a potentially allergenic plant, was extracted to identify the allergenic determinants responsible for causing respiratory disorders. The soluble proteins were extracted and subjected to ammonium sulphate precipitation at 80% saturation and the total protein separated on 12% SDS-Polyacrylamide gel. In order to avoid the time consuming and expensive biochemical methods of column chromatography, each band was directly recovered from the gel by electroelution and the allergenic proteins identified directly by skin tests, without the necessity of Phadezym RAST or ELISA inhibition by reaction with serum IgE, the general procedure to identify the allergens. The fourth and the fifth band in the protein profile of R. communis pollen, RC4 (77 kD) and RC5 (66 kD) were the two major allergenic components. RC3 (91 kD) also induced a considerable amount of reactivity in sensitive patients. Contrary to the earlier reports of protein bands of R. communis ranging from 14 kD to 70 kD, 4 bands above 70 kD i.e. RC1 (123 kD), RC2 (97 kD), RC3 (91 kD) and RC4 (77 kD) are reported here for the first time. Immunodiffusion analysis with pooled sera of patients sensitive to the total extract also revealed similar results.  相似文献   

10.
Fibroblasts from dermatosparactic sheep fail to contract collagen gels and show a reduced attachment to collagenous substrates. By comparing collagen-binding membrane proteins of normal (+/+), homozygote (-/-), and heterozygote (+/-) fibroblasts, we present evidence that the interaction of normal fibroblasts with native type I collagen involves a protein of apparent Mr = 34,000 which is absent from dermatosparactic fibroblasts and seems to be related to anchorin CII. This conclusion was reached from the following experiments: (a) On a blot of membrane proteins from normal fibroblasts radioactively labeled type I collagen bound predominantly to a protein band of 34 kD; dermatosparactic membranes revealed only a small amount of binding to a component with a molecular mass of 47 kD. (b) After separation of normal fibroblast membrane proteins on type I collagen-Sepharose, a collagen-binding component of 34 kD was found which was absent from the corresponding fraction of dermatosparactic membranes. (c) Antibodies to anchorin CII stained the surface of normal (+/+), but not of dermatosparactic (-/-) fibroblasts and labeled a 34-kD component after immunoblotting of normal fibroblast membrane proteins. (d) After metabolic labeling of fibroblasts with [35S]methionine and immunoprecipitation with anti-anchorin CII, 40- and 34-kD components were precipitated from extracts of normal fibroblasts, while the latter component was absent from affected cells. Similar differences were found after immunoblotting of membranes from whole normal or affected skin. These data indicate that dermatosparaxis of sheep involves a molecular defect of a collagen-binding protein. Therefore this disease represents a model to study the complex interaction of cells with the extracellular matrix on a molecular level.  相似文献   

11.
Two glycoproteins were isolated from lysates of thioglycollate-stimulated, murine peritoneal macrophages by affinity chromatography on immobilized Griffonia simplicifolia I lectin and by preparative SDS/PAGE. The glycoproteins were readily labeled on the surface of intact macrophages with 3H and 125I. The labeled glycoproteins migrated as broad bands of molecular mass 92-109 kDa and 115-125 kDa. The mobility of the glycoproteins decreased only slightly after reduction with dithiothreitol, indicating the absence of intersubunit disulfide bridges. The 92-kDa and 115-kDa glycoproteins had pI 5.2-5.4 and pI less than or equal to 4, respectively. Digestion of both glycoproteins with alpha-galactosidase released 23% of their 3H content and abolished their ability to bind to the G. simplicifolia I lectin, showing that they contain terminal alpha-D-galactosyl groups. After reduction with 2-mercaptoethanol, each glycoprotein fraction was sensitive to N-glycanase; the 115-kDa glycoproteins produced a smear with the front at approximately 67 kDa, whereas the 92-kDa glycoprotein gave two bands of 61 kDa and 75 kDa. Unreduced glycoproteins were insensitive to N-glycanase, suggesting the presence of intramolecular disulfide bonds. Although each glycoprotein fraction was sensitive to endoglycosidase H, this enzyme produced only slight changes in molecular mass when compared with N-glycanase. From these results as well as from the specificity of the enzymes involved, it is concluded that each glycoprotein fraction contains complex-type oligosaccharides and a small amount of high-mannose and/or hybrid-type oligosaccharides. While each glycoprotein fraction was bound to Datura stramonium lectin, they failed to react with anti-[i-(Den)] serum and their digestion with endo-beta-galactosidase did not cause a band shift in SDS/PAGE. Taken together, these results suggest the presence of N-acetyllactosamine units which are not arrayed in linear form but occur as single units, bound either to C2 and C6, or to C2 and C4, or both, of outer mannosyl residues on complex-type oligosaccharides. The glycoprotein(s) fraction precipitated with anti-[I (Step)] serum, suggesting the presence of branched lactosaminoglycans. Digestion of both glycoprotein fractions with a mixture of sialidase and O-glycanase did not alter their mobility in SDS/PAGE, suggesting a lack or low content of O-linked trisaccharides and tetrasaccharides. Each glycoprotein fraction was bound specifically to Sambucus nigra and Maackia amurensis immobilized lectins, indicating the presence of sialic acid linked alpha 2,6 to subterminal D-galactose or N-acetylgalactosamine residues, and alpha 2,3 to N-acetyllactosamine residues, respectively.  相似文献   

12.
A sialic acid-specific lectin was isolated from the albumin glands of the garden snail Cepaea hortensis by affinity chromatography on fetuin-Sepharose following gel filtration on Superdex 200. The purified native lectin showed a molecular mass of about 95 kDa by gel filtration and 100 kDa by SDS electrophoresis. It was cleaved by boiling in buffer containing SDS in three serological identical bands corresponding to molecular masses of about 24, 20 and 16 kDa, respectively. From these three fragments, only the 24- and the 20-kDa bands were found to be glycosylated. Only the three sugars mannose, galactose and N-acetylglucosamine could be detected in a molar ratio of 3:8.6:2. The oligosaccharide moieties seem to be N- and partially O-glycosidic bound. Isoelectric focusing (IEF) of the purified lectin revealed a heterogeneous pattern with bands in the pH range of 4.3-5.0. Isolated bands of different isoelectric points showed in SDS electrophoresis the same three fragments with molecular masses of 24, 20 or 16 kDa. The heterogeneity of the lectin was revealed either by IEF or amino acid sequencing of internal tryptic peptides.  相似文献   

13.
Axenically transformed primary sporocysts of Schistosoma mansoni (NMRI strain) were labeled with 125I in an effort to identify sporocyst proteins exposed at the tegumental surface. Using the 125I activating reagent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenylglycoluril, in conjunction with SDS-PAGE and autoradiography, up to 12 bands were radiolabeled out of 60 components visualized by silver staining. Labeled proteins ranged in apparent Mr from greater than 200 to less than 12 kDa. Pronase treatment of living sporocysts after radioiodination removed all labeled material, suggesting that only surface proteins were being iodinated. Western blot analysis employing 5 monoclonal antibodies (MAB's) to sporocyst surface antigens revealed a wide range of reactivities which produced banding patterns closely reflecting autoradiograms of identical samples. The concomitant removal by Pronase of immunoreactive and radiolabeled surface proteins with identical Mr in the range of 90-130 kDa suggests that epitopes recognized by these antibodies are associated with these higher molecular weight surface proteins. However, although Pronase removes all labeled surface proteins, substantial nonradiolabeled, immunoreactive material with Mr less than 90 kDa still remains on enzyme-treated parasites. This indicates that MAB-reactive epitopes, in addition to their occurrence with surface proteins, are also associated with either unlabeled, protease-resistant surface components or internal antigens. The immunohistochemical localization of antibody-reactive material in gland-like structures within sporocysts supports an internal source for nonradiolabeled, immunoreactive components. Finally, the periodate sensitivity of the epitopes recognized by all tested MAB's suggests that carbohydrate moieties may represent a common and extremely immunogenic constituent of the sporocyst surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ulex europaeus agglutinin (UEAI) binds mainly to endothelial cells in human tissues. In cultured human umbilical vein endothelial cells TRITC-UEAI gave an even surface staining but no binding to pericellular material. After permeabilization of the cells UEAI decorated the Golgi apparatus as a juxtanuclear structure. Electrophoresis of Triton X-100 lysates of 35S-methionine labeled cells bound to lectin agarose beads showed that a similar set of polypeptides was recognized by UEA-I and WGA while distinctly different polypeptides were bound to LcA-agarose. Surface labelling revealed major glycoproteins with Mr 220 kD, 160 kD, 140 kD, 120 kD, 80 kD and 50 kD, most of which could be extracted with Triton X-100. However, only the 140 kD gp, 120 kD gp and 80 kD gp showed binding to UEA 140 kD gp, 120 kD gp and 80 kD gp showed binding to UEA I-lectin. The results show that among a distinct set of surface glycoproteins in cultured human endothelial cells only a few have alpha-l-fucosyl moieties capable of binding to UEAI lectin.  相似文献   

15.
Commercially available 125I-labeled erythropoietin, obtained by genetic engineering from a human gene, was used to characterize receptors for this hormone on the cell surface of rat erythroid progenitor cells. A low number of high affinity binding sites (487 +/- 32 sites/cell, Kd = 167 +/- 14 pm) were found. Nonerythroid cells and erythrocytes did not exhibit specific binding. The high affinity binding was reversible and displaced by unlabeled erythropoietin, but not by other hormones and growth factors. After incubation at 37 degrees C, nearly 35% of the specifically bound erythropoietin seemed to be internalized, as judged by resistance to acidic buffer treatment. Thus, binding showed characteristics of a hormone-receptor association. 125I-Erythropoietin-labeled cells were treated with the bifunctional reagent dissucinimidyl suberate. Analysis of the cellular extracts by polyacrylamide gel electrophoresis under denaturing and reducing conditions revealed that erythropoietin can be cross-linked to two molecules of 94 and 78 kDa, respectively. Both labeled bands disappeared when the cells were labeled in the presence of an excess of unlabeled erythropoietin. Under nonreducing conditions, a cross-linked band of 230-255 kDa was observed. The relationships between these bands are discussed.  相似文献   

16.
Proteins and antigens of first-generation merozoites and sporozoites of Eimeria bovis were examined using standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and lactoperoxidase iodination procedures. SDS-PAGE gels revealed both common and unique protein bands in merozoite and sporozoite extracts, ranging in molecular weight (Mr) from 15,000 to 215,000. Nitrocellulose immunoblots of separated proteins, when probed with sera obtained from immunized calves, revealed numerous IgG-binding antigens of Mr 18,000 to 180,000 in merozoites and Mr 28,000 to approximately 118,000 in sporozoites. Although merozoite and sporozoite preparations each contained antigens of different molecular weights, 4 antigens had the same migratory distance in both preparations (Mr 58,000, 70,000, 83,000, 98,000). Of 3 types of immune sera used to probe immunoblots, serum taken from a calf that had been inoculated with oocysts of E. bovis and boosted 10 wk later by subcutaneous injection with 2 X 10(7) live merozoites emulsified in Freund's complete adjuvant consistently identified and reacted more intensely with more antigens of merozoites and sporozoites than the other immune sera tested. Autoradiographic analysis of radioiodinated parasites revealed major surface proteins on merozoites of between 15,000 and 18,000 Mr and 3 surface proteins on sporozoites of Mr 28,000, 77,000, and 183,000. All but the 183,000 protein elicited an IgG antibody response in the host.  相似文献   

17.
Summary We isolated a mixture of -galactoside-binding lectins from rat lung and raised polyclonal antibody against 14 kD lectin purified from the mixture of lectins. Immunoblotting of the mixture of lectins, which was separated with SDS-PAGE under reducing condition and transferred onto a NC paper, showed that the antibody reacted with two bands at 14 and 29 kD, indicating that these two lectins have common antigenic determinant(s). Immunohistochemically, the antibody recognized only bronchiolar Clara cells with intense immunofluorescence in their apical cytoplasmic protrusions where the secretory granules of the cells are known to be stored. Thus, to determine if the lectin(s) might be secreted into airways, we next raised antibody against airway secretions free from serum as well as surfactant proteins. By immunoblot analysis, the resulting antibody stained 29,45 and 55 kD bands, but not 14 kD band, on a NC paper transferred with the mixture of lectins. These findings suggest that at least 29 kD lung lectin is located in bronchiolar Clara cells and secreted by these cells into airways.  相似文献   

18.
The glomerular epithelial polyanion is a specialized cell surface component found on renal glomerular epithelial cells (podocytes) that is rich in sialoprotein(s), as detected by staining with cationic dyes (colloidal iron, alcian blue) and wheat germ agglutinin (WGA). We have isolated rat glomeruli and analyzed their protein composition by SDS PAGE in 5-10% gradient gels. When the gels were stained with alcian blue or "Stains All," a single band with an apparent Mr of 140,000 was detected that also stained very prominently with silver, but not with Coomassie Blue. This band predominated in fluorograms of gels of isolated glomeruli that had been labeled in their sialic acid residues by periodate-[3H]borohydride. In lectin overlays, the 140-kilodalton (kd) band was virtually the only one that bound [125I]wheat germ agglutinin, and this binding could be prevented by predigestion with neuraminidase. [125I]Peanut lectin bound exclusively to the 140-kd band after neuraminidase treatment. An antibody was prepared that specifically recognizes only the 140-kd band by immunoprecipitation and immuneoverlay. By immunoperoxidase and immunogold techniques, it was localized to the surface coat of the glomerular epithelium and, less extensively, to that of endothelial cells. When analyzed (after electroelution from preparative SDS gels), the 140-kd band was found to contain approximately 20% hexose and approximately 4.5% sialic acid. These findings indicate that the 140-kd protein is the major sialoprotein of the glomerulus, and it is the only component of glomerular lysates with an affinity for cationic dyes and lectins identical to that defined histochemically for the epithelial polyanion in situ. Since this molecule is a major component of the cell coat or glycocalyx of the podocytes, we have called it "podocalyxin."  相似文献   

19.
A new lectin was purified from tubers of Arum maculatum L. by affinity chromatography on immobilized asialofetuin. Although this lectin is also retained on mannose-Sepharose 4B, under the appropriate conditions free mannose is a poor inhibitor of its agglutination activity. Pure preparations of the Arum lectin apparently yielded a single polypeptide band of approximately 12 kD upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, N-terminal sequencing of the purified protein combined with molecular cloning of the lectin have shown that the lectin is composed of two different 12-kD lectin subunits that are synthesized on a single large precursor translated from an mRNA of approximately 1400 nucleotides. Lectins with similar properties were also isolated from the Araceae species Colocasia esculenta (L.) Schott, Xanthosoma sagittifolium (L.) Schott, and Dieffenbachia sequina Schott. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration of the different Araceae lectins have shown that they are tetrameric proteins composed of lectin subunits of 12 to 14 kD. Interestingly, these lectins are the most prominent proteins in the tuber tissue. Evidence is presented that a previously described major storage protein of Colocasia tubers corresponds to the lectin.  相似文献   

20.
The biosynthesis and carbohydrate processing of the insulin receptor were studied in cultured human lymphocytes by means of metabolic and cell surface labeling, immunoprecipitation with anti-receptor autoantibodies, and analysis on sodium dodecyl sulfate-polyacrylamide gels under reducing conditions. In addition to the two major subunits of Mr = 135,000 and Mr = 95,000, two higher molecular weight bands were detected of Mr = 210,000 and Mr = 190,000. The Mr = 210,000 band and the two major subunits were labeled by [3H]mannose, [3H]glucosamine, [3H]galactose, and [3H]fucose, and were bound by immobilized lentil, wheat germ, and ricin I lectins. On the other hand, the Mr = 190,000 band was labeled only by [3H]mannose and [3H]glucosamine and was bound only by lentil lectin. All four components could be labeled with [35S] methionine; however, in contrast with the other three polypeptides, the Mr = 190,000 band was not labeled by cell surface iodination with lactoperoxidase, suggesting that it is not exposed at the outer surface of the plasma membrane. Pulse-chase studies with [3H]mannose showed that the Mr = 190,000 was the earliest labeled component of the receptor; radioactivity in this band reached a maximum 1 h after the pulse, clearly preceded the appearance of the other components, and had a very brief half-life (t1/2 = 2.5 h). The Mr = 210,000, Mr = 135,000, and Mr = 95,000 bands were next in appearance and reached a maximum 6 h in the chase period. Monensin, an ionophore which interferes with maturation of some proteins, blocked both the disappearance of the Mr = 190,000 protein and the appearance of the Mr = 135,000 and Mr = 95,000 subunits. The mannose incorporated in the Mr = 190,000 component was fully sensitive to treatment with endoglycosidase H while that in the Mr = 210,000 band and the two major subunits was only partially sensitive. Tryptic fingerprints of the 125I-labeled Mr = 210,000 band suggested that this component contains peptides of both the Mr = 135,000 and Mr = 95,000 subunits. In conclusion, the Mr = 190,000 component appears to represent the high mannose precursor form of the insulin receptor that undergoes carbohydrate processing and proteolytic cleavage to generate the two major subunits. In addition, the Mr = 210,000 band is probably the fully glycosylated form of the precursor that escapes cleavage and is expressed in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号