首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
An Acinetobacter sp. utilized 2-methoxy-4-formylphenoxyacetic acid, dehydrodivanillyl alcohol, dehydrodiisoeugenol and conidendrin as sole carbon source. It also degraded 14C-labelled DHP lignin and teakwood lignin. Vanillic acid, protocatechuic acid and catechol were separated from 2-methoxy-4-formylphenoxyacetic acid grown cultures. Both protocatechuic acid and catechol were formed from dehydrodivanillyl alcohol, dehydrodiisoeugenol and conidendrin. On the dimeric lignin model substances this Acinetobacter sp. produced protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase.  相似文献   

2.
Acinetobacter sp. evolved 14CO2 from 14C-(ring)DHP lignin and 14C-teakwood lignin. Veratrylglycerol-beta-guaiacyl ether, a lignin model compound with beta-o-4 linkage was cleaved by Acinetobacter sp. Veratrylglycerol-beta-guaiacyl ether into 2(o-methoxyphenoxy) ethanol and veratrylalcohol 2(o-methoxyphenoxy) ethanol was degraded to guaiacol and then to catechol whereas veratrylalcohol was converted to veratraldehyde, veratric acid, vanillic acid, protocatechuic acid and catechol. Both catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase were detected in veratrylglycerol-beta-guaiacyl ether grown cultures.  相似文献   

3.
Summary Pseudomonas sp. strain T-12 transforms several substituted benzenes to catechols utilizing the two initial enzymes of the toluene degradative pathway, toluene-2,3-dioxygenase and toluene-2,3-dihydrodiol dehydrogenase. Several novel substrates for this catechol synthesizing system have been previously identified including cyclopropylbenzene, -methylstyrene, anisole, benzonitrile, ,,-trifluorotoluene, benzyl alcohol, 1-phenylethanol, 2-phenylethanol, p-difluorobenzene, and p-fluorobenzonitrile. The catechol products from these substrates are identified here as the 2,3-dihydroxy derivatives. Evidence is also presented which suggests that benzonitrile is metabolized like the halobenzenes and with 2,3-dihydroxybenzonitrile acting as a suicide substrate for catechol-2,3-dioxygenase. The scope and utility of Pseudomonas sp. strain T-12 catalyzed oxygenations is discussed.  相似文献   

4.
Catechol 1,2-dioxygenase (C12O) was purified to electrophoretic homogeneity from Acinetobacter sp. DS002. The pure enzyme appears to be a homodimer with a molecular mass of 66 kDa. The apparent Km and Vmax for intradiol cleavage of catechol were 1.58 μM and 2 units per mg of protein respectively. Unlike other C12Os reported in the literature, the catechol 1,2-dioxygenase of Acinetobacter showed neither intradiol nor extradiol cleavage activity when substituted catechols were used as substrates. However, it has shown mild intradiol cleavage activity when benzenetriol was used as substrate. As determined by two dimensional electrophoresis (2DE) followed MALDI-TOF/TOF analyses and gel permeation chromatography, no isoforms of C12O was observed in Acinetobacter sp. DS002. Further, the C12O was seen only in cultures grown in benzoate and it was completely absent in succinate grown cultures. Based on the sequence information obtained from MS/MS data, degenerate primers were designed to amplify catA gene from the genomic DNA of Acinetobacter sp. DS002. The sequence of the PCR amplicon and deduced amino acid sequence showed 97% similarity with a catA gene of Acinetobacter baumannii AYE (YP_001713609).  相似文献   

5.
Candida albicans utilized 14C (ring) labelled dehydropolymer of coniferyl alcohol, 14C-teakwood lignin and indulin and released p-hydroxybenzoic acid, vanillic acid, 3,4-dihydroxybenzoic acid and catechol as by products from lignin. Candida albicans produced catechol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase, intra- and extracellular polyphenol oxidase and peroxidase during indulin degradation. The study suggests that Candida albicans degrades different types of lignin.  相似文献   

6.
Summary Coir, fibre of coconut used for making ropes results in the accumulation of huge quantities of lignin waste. Enrichment technique yielded a lignin a degrading bacterium characterized as Pseudomonas sp. KUO3. This organism was able to degrade acid, dioxane and fibre lignins which are the true representatives of native lignin. The direct polyphenol oxidase and laccase enzyme assays and the indirect ligninase assay with -keto--methyl thiol butyric acid and the concomitant release of phenols and sugars proved the organism's ability to degrade lignin.  相似文献   

7.
1. Artificial lignins have been produced on potato parenchyma. 2. The methoxyl-free lignin and 4-hydroxy-3-methoxy (guaiacyl) lignins could be estimated by the sulphuric acid method but the 4-hydroxy-3,5-dimethoxy (syringyl) lignins could not. 3. Permanganate oxidation of isolated p-coumaric lignin gave 4-hydroxybenzoic acid, 4-hydroxyisophthalic acid and small amounts of hydroxytrimesic acid and 4-hydroxyphthalic acid. Ferulic lignin gave vanillic acid and 5-carboxyvanillic acid and also small amounts of 4-hydroxybenzoic acid and dehydrodivanillic acid. The sinapic lignin gave traces of syringic acid and of 4-hydroxybenzoic acid. 4. The p-coumaric lignin is a highly condensed polymer. The ferulic lignin is partly uncondensed and partly condensed through the 5-position like gymnosperm lignin. The sinapic lignin shows no evidence of condensation and is probably an ether-linked polymer.  相似文献   

8.
A Pseudomonas sp. strain, CP4, was isolated that used phenol up to 1.5 g/l as sole source of carbon and energy. Optimal growth on 1.5 g phenol/l was at pH 6.5 to 7.0 and 30°C. Unadapted cells needed 72 h to decrease the chemical oxygen demand (COD) of about 2000 mg/l (from 1 g phenol/l) to about 200 mg/l. Adapted cells, pregrown on phenol, required only 65 h to decrease the COD level to below 100 mg/l. Adaptation of cells to phenol also improved the degradation of cresols. Cell-free extracts of strain CP4 grown on phenol or o-, m- or p-cresol had sp. act. of 0.82, 0.35, 0.54 and 0.32 units of catechol 2,3-dioxygenase and 0.06, 0.05, 0.05 and 0.03 units of catechol 1,2-dioxygenase, respectively. Cells grown on glucose or succinate had neither activity. Benzoate and all isomers of cresol, creosote, hydroxybenzoates, catechol and methyl catechol were utilized by strain CP4. No chloroaromatic was degraded, either as sole substrate or as co-substrate.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

9.
A pleiotropic mutant of Phanerochaete chrysosporium 104-2 lacking phenol oxidase and unable to form fruit bodies and a revertant strain 424-2 were isolated after UV mutagenesis. Strains 104-2 and 424-2 had no apparent dysfunction in primary metabolism with glucose as a carbon source. Unlike the wild type strain and strain 424-2, strain 104-2 was unable to evolve 14CO2 from 14C ring, side chain and 3-O-14C-methoxy labeled lignin. In addition, strain 104-2 was unable to evolve 14CO2 from a variety of lignin model compounds including 14C-4-methoxy labeled veratrylglycerol--guaiacyl (V) ether, -14C-guaiacylglycerol--guaiacyl ether (VI), as well as 1-(14C-4-methoxy, 3-methoxyphenyl)1,2 propene (III) and 1-(14C-4-methoxy-3-methoxyphenyl) 1,2 dihydroxypropane (IV). The addition of peroxidase/H2O2 to cultures of strain 104-2 did not alter its capacity to degrade the labeled lignins. A variety of unlabeled lignin model compounds previously shown to be degraded by the wild type organism including -aryl ether dimers and diaryl propane dimers were also not degraded by the mutant 104-2. The revertant strain 424-2 regained the capacity to degrade these compounds. The substrates described are degraded by oxygen requiring system(s) expressed during the secondary phase of growth, suggesting this pleiotropic mutant is possibly defective in the onset of postprimary metabolism. The inability of the mutant to produce the secondary metabolite veratryl alcohol and to elaborate enzymes in the veratryl alcohol biosynthetic pathway supports this hypothesis.Abbreviations GLC gas liquid chromatography - TMSi trimethylsilyl - MS mass spectrometry - LDS lignin degrading system  相似文献   

10.
The fungus Phoma herbarum isolated from soil showed growth on highly pure lignin extracted from spruce wood and on synthetic lignin (DHP). The lignin remaining after cultivation was shown to have a lower molecular weight. The reduction in the numbers of ether linkages of the extracted lignins was also observed by derivatization followed by reductive cleavage (DFRC) in combination with 31P NMR studies. The fungal strain showed an ability to degrade synthetic lignin by extracellular catalysts. GC–MS was applied to study the evolution of low molar mass adducts, e.g., monolignols and it was shown that a reduced coniferyl alcohol product was produced from DHP in a cell-free environment. The work has demonstrated the ability of soil microbes to grow on lignin as sole carbon source. The potential impact is in the production of low molar mass renewable phenols for material application.  相似文献   

11.
Catechol 2,3-dioxygenase (C23O), a key enzyme in the meta-cleavage pathway of catechol metabolism, was purified from cell extract of recombinant Escherichia coli JM109 harboring the C23O gene (atdB) cloned from an aniline-degrading bacterium Acinetobacter sp. YAA. SDS–polyacrylamide gel electrophoresis and gel filtration chromatography analysis suggested that the enzyme (AtdB) has a molecular mass of 35 kDa as a monomer and forms a tetrameric structure. It showed relative meta-cleavage activities for the following catechols tested: catechol (100%), 3-methylcatechol (19%), 4-methylcatechol (57%), 4-chlorocatechol (46%), and 2,3-dihydroxybiphenyl (5%). To elevate the activity, a DNA self-shuffling experiment was carried out using the atdB gene. One mutant enzyme, named AtdBE286K, was obtained. It had one amino acid substitution, E286K, and showed 2.4-fold higher C23O activity than the wild-type enzyme at 100 μM. Kinetic analysis of these enzymes revealed that the wild-type enzyme suffered from substrate inhibition at >2 μM, while the mutant enzyme loosened substrate inhibition.  相似文献   

12.
Summary Serratia marcescens was found to degrade kraft lignin by only 15%. When 14C-radiolabelled lignocelluloses and DHP lignins were used as substrates the bacterium mineralized to 14CO2 only 1.1–1.9% and 0.4–0.8% of the lignins respectively. However, some 44.4% of the 14C--DHP lignin was recovered as soluble radiolabelled products.  相似文献   

13.
Protoplasts from a lignolytic fungus Fomes annosus were prepared through enzymatic hydrolysis of mycelium utilizing Novozym, a wall lytic enzyme preparation. Isolated protoplasts and living mycelium were compared in their ability to degrade 14C-labelled lignin related phenols and dehydropolymers of labelled coniferyl alcohol (synthetic lignin). The amounts of 14CO2 released from O14CH3-groups, 14C-2-side chains and 14C-rings by protoplasts was in the same range as those for intact mycelium. The methoxyl groups of synthetic lignin were more rapidly metabolized by protoplasts than by mycelium. When calculated in dpm of released 14CO2 per mg protein the decomposition of 14C-labelled synthetic lignin and lignin-related monomers in a hyphae-free system of protoplasts was considerable higher than that obtained by the intact mycelium. The presence of intact hyphae is thus not necessary for lignin degradation to occur.Non-common-abbreviations used DHP Dehydropolymer of coniferyl alcohol - LS lignosulfonates prepared from DHP  相似文献   

14.
SoftwoodPinus radiata was degraded by the ascomyceteChrysonilia sitophila during 3 months. The total weight loss of the wood was 20% and the carbohydrate and lignin losses were 18% and 25%, respectively. Decayed wood was extracted with solvents of increasing polarity. Methanol and dioxane yielded extracts containing representative low molecular weight degraded lignins. The overall structure of the degraded lignins, as shown by U.V./visible, I.R.,1H and13C NMR spectroscopy, GPC, functional group and elemental analyses, was compared with the structure of milled wood lignin extracted from undecayedP. radiata. The compilation of the data allows us to suggest oxidative C-C and -O-aryl cleavages for the mechanism of lignin degradation by this ascomycete. New saturated carbons on the side chain of the degraded lignins were detected. Based on these data a reductive ability of this microorganism was also suggested.  相似文献   

15.
Pseudomonas putida strain BNF1 was isolated to degrade aromatic hydrocarbons efficiently and use phenol as a main carbon and energy source to support its growth. Catechol 2,3-dioxygenase was found to be the responsible key enzyme for the biodegradation of aromatic hydrocarbons. Catechol 2,3-dioxygenase gene was cloned from plasmid DNA of P. putida strain BNF1. The nucleotide base sequence of a 924 bp segment encoding the catechol 2,3-dioxygenase (C23O) was determined. This segment showed an open reading frame, which encoded a polypeptide of 307 amino acids. C23O gene was inserted into NotI-cut transposon vector pUT/mini-Tn5 (Kmr) to get a novel transposon vector pUT/mini-Tn5-C23O. With the helper plasmid PRK2013, the transposon vector pUT/mini-Tn5-C23O was introduced into one alkanes degrading strain Acinetobacter sp. BS3 by triparental conjugation, and then the C23O gene was integrated into the chromosome of Acinetobacter sp. BS3. And the recombinant BS3-C23O, which could express catechol 2,3-dioxygenase protein, was obtained. The recombinant BS3-C23O was able to degrade various aromatic hydrocarbons and n-alkanes. Broad substrate specificity, high enzyme activity, and the favorable stability suggest that the BS3-C23O was a potential candidate used for the biodegradation of crude oil.  相似文献   

16.
Summary The ability of rhizobia to utilize catechol, protocatechuic acid, salicylic acid, p-hydroxybenzoic acid and catechin was investigated. The degradation pathway of p-hydroxybenzoate byRhizobium japonicum, R. phaseoli, R. leguminosarum, R. trifolii andRhizobium sp. isolated from bean was also studied.R. leguminosarum, R. phaseoli andR. trifolii metabolized p-hydroxybenzoate to protocatechuate which was cleaved by protocatechuate 3,4-dioxygenasevia ortho pathway.R. japonicum degraded p-hydroxybenzoate to catechol which was cleaved by catechol 1,2-dioxygenase.Rhizobium sp., a bean isolate, dissimilatedp-hydroxybenzoate to salicylate. Salicylate was converted to gentisic acid prior to ring cleavage. The rhizobia convertedp-hydroxybenzoate to Rothera positive substance. Catechol and protocatechuic acid were directly cleaved by the species.R. japonicum converted catechin to protocatechuic acid.  相似文献   

17.
Methylsalicylate-grown cells of Pseudomonas sp. WR 401 cometabolized 3-, 4- and 5-substituted halosalicylates to the corresponding halocatechols. Further degradation was unproductive due to the presence of high levels of catechol 2,3-dioxygenase. This strain acquired the ability to utilize 3-chlorobenzoate following acquisition of genes from Pseudomonas sp. B 13 which are necessary for the assimilation of chlorocatechols. This derivative (WR 4011) was unable to use 4- or 5-chlorosalicylates. Derivatives able to use these compounds were obtained by plating WR 4011 on 5-chlorosalicylate minimal medium; one such derivative was designated WR 4016. The acquisition of this property was accompanied by concomitant loss of the methylsalicylate phenotype. During growth on 4- or 5-chlorosalicylate the typical enzymes of chlorocatechol assimilation were detected in cell free extracts, whereas catechol 2,3-dioxygenase activity was not induced. Repeated subcultivation of WR 4016 in the presence of 3-chlorosalicylate produced variants (WR 4016-1) which grew on all three isomers.Abbreviations CS chlorosalicylate - MS methylsalicylate - 3CB 3-chlorobenzoate - nalr nalidixin-resistant - strr streptomycin-resistant - C230 catechol-2,3-dioxygenase - C120 catechol-1,2-dioxygenase - HMSH 2-hydroxymuconic semialdehyde hydrolase or 2-hydroxy-6-oxo-hexa-2,4-dienoic acid-hydrolase - HMSD 2-hydroxymuconic semialdehyde dehydrogenase - Dienlacton hydrolase 4-carboxymethylenebut-2-en-4-olide hydrolase  相似文献   

18.
Bacteria‐derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram‐negative bacterium Sphingobium sp. SYK‐6 possesses a Cα‐dehydrogenase (LigD) enzyme that has been shown to oxidize the α‐hydroxy functionalities in β–O–4‐linked dimers into α‐keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β–O–4‐linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol‐β‐coniferyl alcohol ether and syringylglycerol‐β‐sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon‐optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC‐MS/MS‐based metabolite profiling indicated that levels of oxidized guaiacyl (G) β–O–4‐coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1‐ to 2.8‐fold increased level of G‐type α‐keto‐β–O–4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.  相似文献   

19.
Lignins are phenylpropanoid polymers, derived from monolignols, commonly found in terrestrial plant secondary cell walls. We recently reported evidence of an unanticipated catechyl lignin homopolymer (C lignin) derived solely from caffeyl alcohol in the seed coats of several monocot and dicot plants. We previously identified plant seeds that possessed either C lignin or traditional guaiacyl/syringyl (G/S) lignins, but not both. Here, we identified several dicot plants (Euphorbiaceae and Cleomaceae) that produce C lignin together with traditional G/S lignins in their seed coats. Solution-state NMR analyses, along with an in vitro lignin polymerization study, determined that there is, however, no copolymerization detectable (i.e., that the synthesis and polymerization of caffeyl alcohol and conventional monolignols in vivo is spatially and/or temporally separated). In particular, the deposition of G and C lignins in Cleome hassleriana seed coats is developmentally regulated during seed maturation; C lignin appears successively after G lignin within the same testa layers, concurrently with apparent loss of the functionality of O-methyltransferases, which are key enzymes for the conversion of C to G lignin precursors. This study exemplifies the flexible biosynthesis of different types of lignin polymers in plants dictated by substantial, but poorly understood, control of monomer supply by the cells.  相似文献   

20.
Degradation of arylglycerol--aryl ethers, the most important substructure in lignin, by Fusarium solani M-13-1 was investigated. The fungus was shake-cultured in mineral salts media which contained either guaiacylglycerol--vanillic acid ether (2), syringylglycerol--vanillin ether (4), veratrylglycerol-vanillin ether (17) or glycerol-2-vanillic acid ether (9) as sole carbon source. Culture filtrates from incubations with 4 contained syringylglycerol-vanillic acid ether (6), 9 and 2,6-dimethoxy-p-benzoquinone (16). Culture filtrates from incubations with 2 also contained 9. Veratrylglycerol--vanillic acid ether (18) derived from 17 was not metabolized further. These results inidicate that the alkyl-aryl C-C bond in both 2 and 5 was cleaved by phenol oxidizing enzymes with formation of 9 and methoxy-p-benzoquinone (15 and 16). Compound 9 was converted to glycerol-2-vanillic acid ether monoacetate (10), glyceric acid-2-vanillic acid ether (11) and ethylene glycol monovanillic acid ether (12).Non-Standard Abbreviations Ar aromatic - THF tetrahydrofuran - TLC thin layer chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号