首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupling of M(2) and M(3) muscarinic receptors to activation of mitogen-activated protein (MAP) kinases and phosphorylation of caldesmon was studied in canine colonic smooth muscle strips in which M(3) receptors were selectively inactivated by N, N-dimethyl-4-piperidinyl diphenylacetate (4-DAMP) mustard (40 nM). ACh elicited activation of extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 MAP kinases in control muscles and increased phosphorylation of caldesmon (Ser(789)), a putative downstream target of MAP kinases. Alkylation of M(3) receptors with 4-DAMP had only a modest inhibitory effect on ERK activation, p38 MAP kinase activation, and caldesmon phosphorylation. Subsequent treatment with 1 microM AF-DX 116 completely prevented activation of ERK and p38 MAP kinase and prevented caldesmon phosphorylation. Caldesmon phosphorylation was blocked by the MAP kinase/ERK kinase inhibitor PD-98509 but not by the p38 MAP kinase inhibitor SB-203580. These results indicate that colonic smooth muscle M(2) receptors are coupled to ERK and p38 MAP kinases. Activation of ERK, but not p38 MAP kinases, results in phosphorylation of caldesmon in vivo, which is a novel function for M(2) receptor activation in smooth muscle.  相似文献   

2.
Mitogen-activated protein (MAP) kinases signal to proteins that could modify smooth muscle contraction. Caldesmon is a substrate for extracellular signal-related kinases (ERK) and p38 MAP kinases in vitro and has been suggested to modulate actin-myosin interaction and contraction. Heat shock protein 27 (HSP27) is downstream of p38 MAP kinases presumably participating in the sustained phase of muscle contraction. We tested the role of caldesmon and HSP27 phosphorylation in the contractile response of vascular smooth muscle by using inhibitors of both MAP kinase pathways. In intact smooth muscle, PD-098059 abolished endothelin-1 (ET-1)-stimulated phosphorylation of ERK MAP kinases and caldesmon, but p38 MAP kinase activation and contractile response remained unaffected. SB-203580 reduced muscle contraction and inhibited p38 MAP kinase and HSP27 phosphorylation but had no effect on ERK MAP kinase and caldesmon phosphorylation. In permeabilized muscle fibers, SB-203580 and a polyclonal anti-HSP27 antibody attenuated ET-1-dependent contraction, whereas PD-098059 had no effect. These results suggest that ERK MAP kinases phosphorylate caldesmon in vivo but that activation of this pathway is unnecessary for force development. The generation of maximal force may be modulated by the p38 MAP kinase/HSP27 pathway.  相似文献   

3.
Bursts in reactive oxygen species productionare important mediators of contractile dysfunction duringischemia-reperfusion injury. Cellular mechanisms that mediatereactive oxygen species-induced changes in cardiac myocyte functionhave not been fully characterized. In the present study,H2O2 (50 µM) decreased contractility of adultrat ventricular myocytes. H2O2 caused aconcentration- and time-dependent activation of extracellularsignal-regulated kinases 1 and 2 (ERK1/2), p38, and c-JunNH2-terminal kinase (JNK) mitogen-activated protein (MAP)kinases in adult rat ventricular myocytes. H2O2 (50 µM) caused transient activation of ERK1/2 and p38 MAP kinase thatwas detected as early as 5 min, was maximal at 20 min (9.6 ± 1.2- and 9.0 ± 1.6-fold, respectively, vs. control), and returned tobaseline at 60 min. JNK activation occurred more slowly (1.6 ± 0.2-fold vs. control at 60 min) but was sustained at 3.5 h. Theprotein kinase C inhibitor chelerythrine completely blocked JNKactivation and reduced ERK1/2 and p38 activation. The tyrosine kinaseinhibitors genistein and PP-2 blocked JNK, but not ERK1/2 and p38,activation. H2O2-inducedNa+/H+ exchanger phosphorylation was blocked bythe MAP kinase kinase inhibitor U-0126 (5 µM). These resultsdemonstrate that H2O2-induced activation of MAPkinases may contribute to cardiac myocyte dysfunction duringischemia-reperfusion.

  相似文献   

4.
Smooth muscle contraction is initiated by myosin light chain (MLC) phosphorylation catalyzed by the Ca(2+) dependent MLC kinase. However, many aspects of smooth muscle contraction cannot be accounted for by MLC phosphorylation. One hypothesis that has received experimental support involves the thin filament protein caldesmon. Caldesmon inhibits myosin ATPase activity; phosphorylation of caldesmon relieves this inhibitory effect. The primary candidates for catalysis of caldesmon phosphorylation are the p42/p44 ERK MAP kinases. However, we and others have shown that inhibition of the ERK MAP kinases has no effect on many smooth muscles. The goal of this study was to determine if evidence for a second endogenous caldesmon kinase may be obtained. We used Triton X-100 skinned and intact tissues of the swine carotid artery to address this goal. Caldesmon phosphorylation was evident in resting and Ca(2+) stimulated Triton X-100 skinned fibers. Ca(2+)-dependent caldesmon phosphorylation was partially sensitive to the ERK MAP kinase inhibitor PD98059, whereas all caldesmon phosphorylation was sensitive to the general kinase inhibitor, staurosporine. Histamine increased caldesmon phosphorylation levels in intact swine carotid artery, which was sensitive to both PD98059 and staurosporine. Histamine increased ERK MAP kinase activity, which was reversed by PD98059, staurosporine, and EGTA. Histamine-induced contractions were inhibited by staurosporine but not by PD98059. We interpret these results to suggest that although ERK MAP kinases catalyze caldesmon phosphorylation, a second staurosporine sensitive kinase is also important in caldesmon phosphorylation and it is this pathway that may be more important in contractile regulation.  相似文献   

5.
The purpose of this study was to investigate the potential roleof mitogen-activated protein (MAP) kinase in smooth muscle contractionby monitoring MAP kinase activation, caldesmon phosphorylation, andcontractile force during agonist stimulation. Isometric tension inresponse to KCl and phenylephrine (PE) was measured from strips offerret aorta. MAP kinase activation was monitored by Western blot usinga phosphospecific p44/p42 MAP kinase antibody. Caldesmon phosphorylation was assessed using specific phosphocaldesmonantibodies. We report here that treatment of smooth muscle strips withPD-098059, a specific inhibitor of MAP kinase kinase, did notdetectably modify the KCl-evoked contraction but significantlyinhibited the contraction to PE in the absence of extracellularCa2+. In this experimentalcondition, where the contraction occurs in the absence of increases in20-kDa myosin light chain phosphorylation, PD-098059 also inhibitedsignificantly MAP kinase and caldesmon phosphorylation. Collectively,these results demonstrate a direct cause-and-effect relationshipbetween MAP kinase activation and Ca2+-independent smooth musclecontraction and support the concept of caldesmon phosphorylation as themissing link between both events.

  相似文献   

6.
Myocardial dysfunction leading to dilated cardiomyopathy has been documented with surprisingly high frequency in human immunodeficiency virus (HIV)-infected individuals. p38 MAP kinase has been implicated as a mediator of myocardial dysfunction. We previously reported p38 MAP kinase activation by the HIV coat protein gp120 in neonatal rat cardiac myocytes. We now report the direct inotropic effects of HIV gp120 on adult rat ventricular myocytes (ARVM). ARVM were continuously superfused with gp120, and percent fractional shortening (FS) was determined by automated border detection and simultaneous intracellular ionized free Ca2+ concentration ([Ca2+]i) measured by fura 2-AM fluorescence: gp120 alone increased FS and increased [Ca2+]i within 5 min and then depressed FS without a decrease in [Ca2+]i by 20–60 min, which persisted for at least 2 h. Exposure of ARVM to gp120 also resulted in the phosphorylation of the upstream regulator of p38 MAP kinase MKK3/6, p38 MAP kinase itself, and its downstream effector, ATF-2, over a similar time course. ERK (p44/42) and JNK stress signaling pathways were not similarly activated. The effects of the p38 MAP kinase inhibitor were concentration dependent. SB-203580 (10 µM) blocked both p38 MAP kinase phosphorylation and the delayed negative inotropic effect of gp120. SB-203580 (5 µM) selectively blocked phosphorylation of ATF-2 without blocking the phosphorylation of MKK3/6 or p38 MAP kinase itself. SB-203580 (5 µM) administered before, with, or after gp120 blocked the negative inotropic effect of gp120 in ARVM. p38 MAP kinase activation may be a common stress-response mechanism contributing to myocardial dysfunction in HIV and other nonischemic as well as ischemic cardiomyopathies. cardiomyopathy; cell signaling  相似文献   

7.
Extracellular signal-regulated kinases (ERKs) phosphorylate the high molecular mass isoform of the actin-binding protein caldesmon (h-CaD) at two sites (Ser(759) and Ser(789)) during smooth muscle stimulation. To investigate the role of phosphorylation at these sites, antibodies were generated against phosphopeptides analogous to the sequences around Ser(759) and Ser(789). Affinity-purified antibodies were phosho- and sequence-specific. The major site of phosphorylation in h-CaD in porcine carotid arterial muscle strips was at Ser(789); however, the amount of phosphate did not vary appreciably with either KCl or phorbol ester stimulation. Phosphorylation at Ser(759) of h-CaD was almost undetectable (<0.005 mol of phosphate/mol of protein). Moreover, phosphorylation of the low molecular mass isoform of the protein (l-CaD) at the site analogous to Ser(789) was greater in serum-stimulated cultured smooth muscle cells than in serum-starved cells. Serum-stimulated l-CaD phosphorylation was attenuated by the protein kinase inhibitor PD98059. These data 1) identify Ser(789) of h-CaD as the major site of ERK-dependent phosphorylation in carotid arteries; 2) show that the level of phosphorylation at Ser(789) is relatively constant following carotid arterial muscle stimulation, despite an increase in total protein phosphate content; and 3) suggest a functional role for ERK-dependent l-CaD phosphorylation in cell division.  相似文献   

8.
We havepreviously shown that Ca2+-dependent Clsecretion across intestinal epithelial cells is limited by a signalingpathway involving transactivation of the epidermal growth factorreceptor (EGFR) and activation of ERK mitogen-activated protein kinase (MAPK). Here, we have investigated a possible role for p38 MAPK inregulation of Ca2+-dependent Cl secretion.Western blot analysis of T84 colonic epithelial cells revealed that the muscarinic agonist carbachol (CCh; 100 µM)stimulated phosphorylation and activation of p38 MAPK. The p38inhibitor SB-203580 (10 µM) potentiated and prolonged short-circuitcurrent (Isc) responses to CCh acrossvoltage-clamped T84 cells to 157.4 ± 6.9% of thosein control cells (n = 21; P < 0.001).CCh-induced p38 phosphorylation was attenuated by the EGFR inhibitortyrphostin AG-1478 (0.1 nM-10 µM) and by the Src family kinaseinhibitor PP2 (20 nM-2 µM). The effects of CCh on p38phosphorylation were mimicked by thapsigargin (TG; 2 µM), whichspecifically elevates intracellular Ca2+, and wereabolished by the Ca2+ chelator BAPTA-AM (20 µM), implyinga role for intracellular Ca2+ in mediating p38 activation.SB-203580 (10 µM) potentiated Isc responses toTG to 172.4 ± 18.1% of those in control cells (n = 18; P < 0.001). When cells were pretreated withSB-203580 and PD-98059 to simultaneously inhibit p38 and ERK MAPKs,respectively, Isc responses to TG and CCh weresignificantly greater than those observed with either inhibitor alone.We conclude that Ca2+-dependent agonists stimulate p38 MAPKin T84 cells by a mechanism involving intracellularCa2+, Src family kinases, and the EGFR. CCh-stimulated p38activation constitutes a similar, but distinct and complementary,antisecretory signaling pathway to that of ERK MAPK.

  相似文献   

9.
Both protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) are involved in mediating vascular smooth muscle contraction. We tested the hypotheses that in addition to PKC activation of ERK1/2, by negative feedback ERKs modulate PKC-induced contraction, and that their interactions modulate both thick and thin myofilament pathways. In ovine middle cerebral arteries (MCA), we measured isometric tension and intracellular free calcium concentration ([Ca(2+)](i)) responses to PKC stimulation [phorbol 12,13-dibutyrate (PDBu), 3 x 10(-6) M] in the absence or presence of ERK1/2 inhibition (U-0126, 10(-5) M). After PDBu +/- ERK1/2 inhibition, we also examined by Western immunoblot the levels of total and phosphorylated ERK1/2, caldesmon(Ser789), myosin light chain(20) (MLC(20)), and CPI-17. PDBu induced significant increase in tension in the absence of increased [Ca(2+)](i). PDBu also increased phosphorylated ERK1/2 levels, a response blocked by U-0126. In turn, U-0126 augmented PDBu-induced contractions. PDBu also was associated with significant increases in phosphorylated caldesmon(Ser789) and MLC(20) levels, each of which peaked at 5 to 10 min. PDBu also increased phosphorylated CPI-17 levels, which peaked at 2 to 3 min. Rho kinase inhibition (Y-27632, 3 x 10(-7) M) did not alter PDBu-induced contraction. These results support the idea that PKC activation can increase CPI-17 phosphorylation to decrease myosin light chain phosphatase activity. In turn, this increases MLC(20) phosphorylation in the thick filament pathway and increases Ca(2+) sensitivity. In addition, ERK1/2-dependent phosphorylation of caldesmon(Ser789) was not necessary for PDBu-induced contraction and appears not to be involved in the reversal of caldesmon's inhibitory effect on actin-myosin ATPase.  相似文献   

10.
Smooth muscles are divided into slowly contracting tonic and relatively fast phasic muscles. In both cases Ca2+ is a key mediator of the contractile response. However, the appearance of a tonic component during sphincter or arterial muscle contraction and its absence in contracting visceral smooth muscle is characteristic of their difference. We have found that in chicken tissues phorbol 12,13-dibutyrate (PDBu) induces a sustained contraction in carotid arterial muscle, but provokes no contraction in phasic gizzard smooth muscle. Next we were aimed to find differences in PDBu-induced phosphorylation of the key proteins involved in regulation of smooth muscle contraction, i.e. caldesmon, myosin light chain kinase (MLCK), and the myosin light chain kinase-related protein (KRP, also known as telokin). Two correlative differences were observed. 1. PDBu stimulated phosphorylation of MLCK in tonic smooth muscle and had no effect on the level of MLCK phosphorylation in phasic muscle. Phosphopeptide mapping suggests the involvement of mitogen-activated protein (MAP) kinases in phosphorylation of MLCK in situ. 2. PDBu induced phosphorylation of MAP-kinase sites in caldesmon in both types of smooth muscle, but this phosphorylation had no significant effect on caldesmon functional activity in vitro. For the first time we have shown that in gizzard PDBu also stimulates a yet unknown transitory caldesmon-kinase different from protein kinase, C, Ca2+/calmodulin-dependent kinase II and casein kinase CK2. 3. No significant difference was found in the kinetics of PDBu-dependent phosphorylation of KRP in tonic and phasic smooth muscles. KRP was also demonstrated to be a major phosphoprotein in smooth muscle phosphorylated in vivo at several sites located within its N-terminal sequence. Protein kinases able to phosphorylate these sites were identified in vitro. Among them, MAP-kinase was suggested to phosphorylate a serine residue homologous to that phosphorylated in MLCK. 4. p42erk2 and p38 MAP-kinases were found in phasic and tonic smooth muscles. Both were responsive to PDBu in cultured chicken aortic smooth muscle cells, and their role in phosphorylation of MLCK and low molecular weight isoform of caldesmon was evaluated.  相似文献   

11.
Eicosanoid production is reduced when the nitric oxide (NO·) pathway is inhibited or when the inducible NO synthase gene is deleted, indicating that the NO· and arachidonic acid pathways are linked. We hypothesized that peroxynitrite, formed by the reaction of NO· and superoxide anion, may cause signaling events leading to arachidonic acid release and subsequent eicosanoid generation. Western blot analysis of rat arterial smooth muscle cells demonstrated that peroxynitrite (100–500 µM) and 3-morpholinosydnonimine (SIN-1; 200 µM) stimulate phosphorylation of extracellular signal-regulated kinase (ERK), p38, and cytosolic phospholipase A2 (cPLA2). We found that peroxynitrite-induced arachidonic acid release was completely abrogated by the mitogen-activated protein/ERK kinase (MEK) inhibitor U0126 and by calcium chelators. With the p38 inhibitor SB-20219, we demonstrated that peroxynitrite-induced p38 phosphorylation led to minor arachidonic acid release, whereas U0126 completely blocked p38 phosphorylation. Addition of arachidonic acid caused p38 phosphorylation, suggesting that arachidonic acid or its metabolites are responsible for p38 activation. KN-93, a specific inhibitor of Ca2+/calmodulin-dependent kinase II (CaMKII), revealed no role for this kinase in peroxynitrite-induced arachidonic acid release in our cell system. Together, these results show that in response to peroxynitrite the cell initiates the MEK/ERK cascade leading to cPLA2 activation and arachidonic acid release. Thus studies investigating the role of the NO· pathway on eicosanoid production must consider the contribution of signaling pathways initiated by reactive nitrogen species. These findings may provide evidence for a new role of peroxynitrite as an important reactive nitrogen species in vascular disease. reactive nitrogen species; prostaglandin H2 synthase; extracellular signal-regulated kinase; p38; cytosolic phospholipase A2  相似文献   

12.
Cytoplasmic pH (pHi) was evaluated duringNa+-glucose cotransport in Caco-2 intestinal epithelialcell monolayers. The pHi increased by 0.069 ± 0.002 within 150 s after initiation of Na+-glucosecotransport. This increase occurred in parallel with glucose uptake andrequired expression of the intestinal Na+-glucosecotransporter SGLT1. S-3226, a preferential inhibitor ofNa+/H+ exchanger (NHE) isoform 3 (NHE3),prevented cytoplasmic alkalinization after initiation ofNa+-glucose cotransport with an ED50 of 0.35 µM, consistent with inhibition of NHE3, but not NHE1 or NHE2. Incontrast, HOE-694, a poor NHE3 inhibitor, failed to significantlyinhibit pHi increases at <500 µM.Na+-glucose cotransport was also associated with activationof p38 mitogen-activated protein (MAP) kinase, and the p38 MAP kinase inhibitors PD-169316 and SB-202190 prevented pHi increasesby 100 ± 0.1 and 86 ± 0.1%, respectively. Conversely,activation of p38 MAP kinase with anisomycin induced NHE3-dependentcytoplasmic alkalinization in the absence of Na+-glucosecotransport. These data show that NHE3-dependent cytoplasmic alkalinization occurs after initiation of SGLT1-mediatedNa+-glucose cotransport and that the mechanism of this NHE3activation requires p38 MAP kinase activity. This coordinatedregulation of glucose (SGLT1) and Na+ (NHE3) absorptiveprocesses may represent a functional activation of absorptiveenterocytes by luminal nutrients.

  相似文献   

13.
Ca+/calmodulin-dependent protein kinase II(CaM kinase II) has been implicated in the regulation of smooth musclecontractility. The goals of this study were to determine: 1) towhat extent CaM kinase II is activated by contractile stimuli in intactarterial smooth muscle, and 2) the effect of a CaM kinase IIinhibitor (KN-93) on CaM kinase II activation, phosphorylation ofmyosin regulatory light chains (MLC20), and force. Bothhistamine (1 µM) and KCl depolarization activated CaM kinase II witha time course preceding maximal force development, and suprabasal CaM kinase II activation was sustained during tonic contractions. CaMkinase II activation was inhibited by KN-93 pretreatment(IC50 ~1 µM). KN-93 inhibited histamine-induced tonicforce maintenance, whereas early force development andMLC20 phosphorylation responses during the entire timecourse were unaffected. Both force development and maintenance inresponse to KCl were inhibited by KN-93. Rapid increases in KCl-inducedMLC20 phosphorylation were also inhibited by KN-93, whereassteady-state MLC20 phosphorylation responses wereunaffected. In contrast, phorbol 12,13-dibutyrate (PDBu) did notactivate CaM kinase II and PDBu-stimulated force development wasunaffected by KN-93. Thus KN-93 appears to target a step(s) essentialfor force maintenance in response to physiological stimuli, suggestinga role for CaM kinase II in regulating tonic contractile responses inarterial smooth muscle. Pharmacological activation of protein kinase Cbypasses the KN-93 sensitive step.

  相似文献   

14.
We have previously shown that thrombin induces endothelial cell barrier dysfunction via cytoskeleton activation and contraction and have determined the important role of endothelial cell myosin light chain kinase (MLCK) in this process. In the present study we explored p38 MAP kinase as a potentially important enzyme in thrombin-mediated endothelial cell contractile response and permeability. Thrombin induces significant p38 MAP kinase activation in a time-dependent manner with maximal effect at 30 min, which correlates with increased phosphorylation of actin- and myosin-binding protein, caldesmon. Both SB-203580 and dominant negative p38 adenoviral vector significantly attenuated thrombin-induced declines in transendothelial electrical resistance. Consistent with these data SB-203580 decreased actin stress fiber formation produced by thrombin in endothelium. In addition, dominant negative p38 had no effect on thrombin-induced myosin light chain diphosphorylation. Thrombin-induced total and site-specific caldesmon phosphorylation (Ser789) as well as dissociation of caldesmon-myosin complex were attenuated by SB-203580 pretreatment. These results suggest the involvement of p38 MAP kinase activities and caldesmon phosphorylation in the MLCK-independent regulation of thrombin-induced endothelial cell permeability.  相似文献   

15.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

16.
Extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs) phosphorylate caldesmon in vivo, but the function of caldesmon phosphorylation in smooth muscle physiology is controversial. We hypothesized that ERK MAPKs and caldesmon modulate chemotactic migration of cultured canine pulmonary artery smooth muscle cells (PASMCs). Platelet-derived growth factor (PDGF; 10 ng/ml) and endothelin-1 (ET-1; 100 nM) transiently activated ERK MAPKs: PDGF produced higher maximal and more potent activation of ERK MAPKs over 5 h. While both PDGF and ET-1 increased caldesmon phosphorylation, only PDGF stimulated migration of cultured cells (13 times over basal migration). At concentrations from 0.01 to 10 nM, ET-1 failed to enhance migration; 100 nM ET-1 produced only a slight increase (1.31 +/- 0.18 times basal migration). ET-1 (100 nM) did not potentiate migration triggered by 0.5 or 3 ng/ml PDGF. The MEK1 inhibitor PD-98059 (50 microM) abolished the PDGF-stimulated phosphorylation of ERK MAPKs and caldesmon and reduced cell migration by 50%. We conclude that while ERK MAPK activity is not required to initiate migration, an ERK MAPK-caldesmon pathway may modulate later events necessary for PDGF-stimulated migration of cultured PASMCs.  相似文献   

17.
Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.  相似文献   

18.
Regulation of the PHAS-1-eukaryotic initiation factor-4E (eIF4E) complex is the rate-limiting step in the initiation of protein synthesis. This study characterized the upstream signaling pathways that mediate ANG II-dependent phosphorylation of PHAS-1 and eIF4E in vascular smooth muscle. ANG II-dependent PHAS-1 phosphorylation was maximal at 10 min (2.47 ± 0.3 fold vs. control). This effect was completely blocked by the specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase, LY-294002), mammalian target of rapamycin, and extracellular signal-regulated kinase 1/2 (ERK1/2, U-0126) or by a recombinant adenovirus encoding dominant-negative Akt. PHAS-1 phosphorylation was followed by dissociation of eIF4E. Increased ANG II-induced eIF4E phosphorylation was observed at 45 min (2.63 ± 0.5 fold vs. control), was maximal at 90 min (3.38 ± 0.3 fold vs. control), and was sustained at 2 h. This effect was blocked by inhibitors of the ERK1/2 and p38 mitogen-activated protein (MAP) kinase pathways, but not by PI3-kinase inhibition, and was dependent on PKC, intracellular Ca2+, and tyrosine kinases. Downregulation of proline-rich tyrosine kinase 2 (PYK2) by antisense oligonucleotides led to a near-complete inhibition of PHAS-1 and eIF4E phosphorylation in response to ANG II. Therefore, PYK2 represents a proximal signaling intermediate that regulates ANG II-induced vascular smooth muscle cell protein synthesis via regulation of the PHAS-1-eIF4E complex. tyrosine kinase; antisense oligonucleotides; protein synthesis  相似文献   

19.
Several lines of evidence suggest that muscle cells can distinguish between specific mechanical stimuli. To test this concept, we subjected C2C12 myotubes to cyclic uniaxial or multiaxial stretch. Both types of stretch induced an increase in extracellular signal-regulated kinase (ERK) and protein kinase B (PKB/Akt) phosphorylation, but only multiaxial stretch induced ribosomal S6 kinase (p70S6k) phosphorylation. Further results demonstrated that the signaling events specific to multiaxial stretch (p70S6k phosphorylation) were elicited by forces delivered through the elastic culture membrane and were not due to greater surface area deformations or localized regions of large tensile strain. Experiments performed using medium that was conditioned by multiaxial stretched myotubes indicated that a release of paracrine factors was not sufficient for the induction of signaling to p70S6k. Furthermore, incubation with gadolinium(III) chloride (500 µM), genistein (250 µM), PD-98059 (250 µM), bisindolylmaleimide I (20 µM), or LY-294002 (100 µM ) did not block the multiaxial stretch-induced signaling to p70S6k. However, disrupting the actin cytoskeleton with cytochalasin D did block the multiaxial signaling to p70S6k, with no effect on signaling to PKB/Akt. These results demonstrate that specific types of mechanical stretch activate distinct signaling pathways, and we propose that this occurs through direct mechanosensory-mechanotransduction mechanisms and not through previously defined growth factor/receptor binding pathways. growth; hypertrophy; muscle; strain; tension  相似文献   

20.
We have previously shown that thrombin-induced endothelial cell barrier dysfunction involves cytoskeletal rearrangement and contraction, and we have elucidated the important role of endothelial cell myosin light chain kinase and the actin- and myosin-binding protein caldesmon. We evaluated the contribution of calmodulin (CaM) kinase II and extracellular signal-regulated kinase (ERK) activation in thrombin-mediated bovine pulmonary artery endothelial cell contraction and barrier dysfunction. Similar to thrombin, infection with a constitutively active adenoviral alpha-CaM kinase II construct induced significant ERK activation, indicating that CaM kinase II activation lies upstream of ERK. Thrombin-induced ERK-dependent caldesmon phosphorylation (Ser789) was inhibited by either KN-93, a specific CaM kinase II inhibitor, or U0126, an inhibitor of MEK activation. Immunofluorescence microscopy studies revealed phosphocaldesmon colocalization within thrombin-induced actin stress fibers. Pretreatment with either U0126 or KN-93 attenuated thrombin-mediated cytoskeletal rearrangement and evoked declines in transendothelial electrical resistance while reversing thrombin-induced dissociation of myosin from nondenaturing caldesmon immunoprecipitates. These results strongly suggest the involvement of CaM kinase II and ERK activities in thrombin-mediated caldesmon phosphorylation and both contractile and barrier regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号