首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the ability of radiation to modulate mesangial cell expression of various molecules involved in promoting extracellular matrix (ECM) accumulation [fibronectin, plasminogen activator-inhibitor 1 (Pai1), and tissue inhibitor of metalloproteinase-2 (Timp2)] and degradation (Tgfb, plasminogen activators u-PA or t-PA, matrix metalloproteinases Mmp2 and Mmp9), primary cultures of rat mesangial cells (passage number 6-11) were placed in serum-free medium 24 h prior to irradiation with single doses of 0.5-20 Gy (137)Cs gamma rays. After irradiation, cells were maintained in serum-free medium for a further 48 h. Irradiation of quiescent mesangial cells resulted in significant (P < 0.05) time- and dose-dependent increases in Fn and Pai1 mRNA and/or immunoreactive protein. Despite an increase in Tgfb1 mRNA, there was little evidence for an increase in total Tgfb protein. Indeed, active levels remained unaltered after irradiation. Irradiation led to differential changes in MMP expression; active Mmp2 levels increased, while Mmp9 levels appeared unaltered. In addition, secretion of plasminogen activators into the medium was unchanged after irradiation, while secretion of Timp2 increased. We conclude that irradiating mesangial cells leads to altered production of various molecules involved in accumulation and degradation of extracellular matrix.  相似文献   

2.
Despite evidence of selective radiation-induced modulation of expression of rat mesangial cell Tgfb gene isoforms, it is unclear whether these changes in gene expression are accompanied by changes in protein secretion. To address this issue, primary cultures of rat mesangial cells (passage number 6- 11) were placed in serum-free medium 24 h prior to irradiation with single doses of 0.5-20 Gy of (137)Cs gamma rays. After irradiation, cells were maintained in serum-free medium for a further 24 h. Irradiation of quiescent mesangial cells resulted in a significant (P 相似文献   

3.
Accumulating evidence demonstrates that aldosterone can cause extra-cellular matrix (ECM) accumulation, in addition to regulating sodium and potassium homeostasis. Increased extra-cellular matrix production by renal glomerular mesangial cells has been suggested to be involved in pathogenesis of glomerular sclerosis. The present studies examine whether aldosterone is also produced in renal mesangial cells, and the effect of aldosterone on ECM accumulation in these cells. In cultured renal mesangial cells, aldosterone synthase (CYP11B2), mineralocorticoid receptor (MR), and 11beta-HSD2 mRNA expressions were detected by RT-PCR. The ability of renal mesangial cells to produce aldosterone was confirmed by directly detecting aldosterone in culture medium via radioimmunoassay. Real-time RT-PCR showed that the expression of CYP11B2 mRNA in mesangial cells was significantly enhanced by AngII (P<0.001) and by potassium (P<0.05). Exposure of the cultured mesangial cells to aldosterone significantly increased fibronectin production from 12.4+/-1.9 to 74.6+/-16.8ng/ml (P<0.05). The aldosterone induced fibronectin production was abolished by aldosterone receptor antagonist spironolactone. Aldosterone also increased the TGF-beta1 reporter luciferase activity from 0.8+/-0.1 to 1.7+/-0.1 (P<0.05). Immunoblot showed TGF-beta1 protein expression was increased following aldosterone treatment. Blocking TGF-beta1 signaling pathway by knocking down Smad2 significantly blunted the aldosterone induced fibronectin production. The present studies indicate that renal mesangial cell is a target of local aldosterone action, which promotes ECM protein fibronectin production via TGF-beta1/Smad2 signaling pathway.  相似文献   

4.
5.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix synthesis leading to progressive glomerular fibrosis. The intracellular signaling mechanisms involved in this process remain incompletely understood. The p38 mitogen-activated protein kinase (MAPK) is a major stress signal transducing pathway that is rapidly activated by TGF-beta1 in mesangial cells. We have previously demonstrated MKK3 as the immediate upstream MAPK kinase required for selective activation of p38 MAPK isoforms, p38alpha and p38delta, and stimulation of pro-alpha1(I) collagen by TGF-beta1 in murine mesangial cells. In this study, we further sought to determine MAPK kinase 3 (MKK3)-dependent TGF-beta1 responses by gene expression profiling analysis utilizing mesangial cells isolated from Mkk3-/- mice compared with Mkk3+/+ controls. Interestingly, vascular endothelial growth factor (VEGF) was identified as a TGF-beta1-induced gene affected by deletion of Mkk3. VEGF is a well known endothelial mitogen, whose actions in nonendothelial cell types are still not well understood. We confirmed that TGF-beta1 increased VEGF mRNA and protein synthesis of VEGF164 and VEGF188 isoforms in wild-type mesangial cells. However, in the Mkk3-/- mesangial cells, both TGF-beta1-induced VEGF mRNA and VEGF164 protein expression were inhibited, whereas TGF-beta1-induced VEGF188 protein expression was unaffected. Furthermore, transfection of dominant negative mutants of p38alpha and p38delta resulted in marked inhibition of TGF-beta1-induced VEGF164 expression but not VEGF188, and treatment with recombinant mouse VEGF164 increased collagen and fibronectin mRNA expression in mesangial cells. Taken together, our findings suggest a critical role for the MKK3-p38alpha and p38delta MAPK pathway in mediating VEGF164 isoform-specific stimulation by TGF-beta1 in mesangial cells. Further, VEGF164 stimulates collagen and fibronectin expression in mesangial cells and thus in turn enhances TGF-beta1-induced extracellular matrix and may play an important role in progressive glomerular fibrosis.  相似文献   

6.
TGF-beta1 plays an important role in the maintenance of immune homeostasis and self-tolerance. To determine the mechanism by which TGF-beta1 prevents autoimmunity we have analyzed T cell activation in splenic lymphocytes from TGF-beta1-deficient mice. Here we demonstrate that unlike wild-type splenic lymphocytes, those from Tgfb1(-/-) mice are hyporesponsive to receptor-mediated mitogenic stimulation, as evidenced by diminished proliferation and reduced IL-2 production. However, they have elevated levels of IFN-gamma and eventually undergo apoptosis. Receptor-independent stimulation of Tgfb1(-/-) T cells by PMA plus ionomycin induces IL-2 production and mitogenic response, and it rescues them from anergy. Tgfb1(-/-) T cells display decreased CD3 expression; increased expression of the activation markers LFA-1, CD69, and CD122; and increased cell size, all of which indicate prior activation. Consistently, mutant CD4(+) T cells have elevated intracellular Ca(2+) levels. However, upon subsequent stimulation in vitro, increases in Ca(2+) levels are less than those in wild-type cells. This is also consistent with the anergic phenotype. Together, these results demonstrate that the ex vivo proliferative hyporesponsiveness of Tgfb1(-/-) splenic lymphocytes is due to prior in vivo activation of T cells resulting from deregulated intracellular Ca(2+) levels.  相似文献   

7.
Abrupt discontinuation of 3-hydroxy-3-methylglutaryl-coenzyme-A-reductase inhibitors (statins) is associated with increased cardiovascular risk. To investigate the molecular mechanisms determining the increased cardiovascular risk after statin withdrawal, we studied the effects of statin treatment and withdrawal on angiotensin II (AII) actions in rat aortic vascular smooth muscle cells (VSMC) in culture. In VSMC, AII stimulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and of p38 mitogen-activated protein kinase (p38 MAPK), with an EC50% of 0.86 and 3 nM, respectively. Maximal stimulation was observed after 5-10 min of exposure to AII. Pretreatment with 1-3 microM simvastatin for 24h inhibited AII-mediated stimulation of ERK1/2 and p38 MAPK phosphorylation; without affecting the levels on non-phosphorylated MAPK. Washout of simvastatin produced a rebound increase above control levels of AII-mediated phosphorylation of ERK1/2 and p38 MAPK. As previously reported for other agonists, the rebound increase of AII effects was observed from 1 to 3h after statin withdrawal, and was lost at later times. The basal levels of phosphorylation and the amount of non-phosphorylated kinases were unaffected by statin withdrawal. Similar effects were observed with lovastatin. Our results suggest that statins modulate AII effects in VSMC, and that transient increases in AII effects mediated via the MAPK pathway may play a role in the vascular dysfunction associated with statin withdrawal.  相似文献   

8.
In the present studies, we have investigated the effect of angiotensin II (AII) on guanine nucleotide regulatory protein (G protein) expression and functions in A10 smooth muscle cells. AII treatment of A10 cells enhanced the levels of inhibitory guanine nucleotide regulatory protein (Gi) as well as Gi mRNA and not of stimulatory guanine nucleotide regulatory protein (Gs) in a concentration-dependent manner as determined by immunoblot and Northern blot analysis, respectively. AII-evoked increased expression of Gialpha-2 and Gialpha-3 was inhibited by actinomycin D treatment (RNA synthesis inhibitor). The increased expression of Gialpha-2 and Gialpha-3 by AII was not reflected in functions, because the GTPgammaS-mediated inhibition of forskolin-stimulated adenylyl cyclase and the receptor-mediated inhibition of adenylyl cyclase by AII and C-ANP4-23 [des(Gln18, Ser19, Gln20, Leu21, Gly22) ANP4-23-NH2] were not augmented but attenuated in AII-treated A10 cells. The attenuation was prevented by staurosporine (a protein kinase C inhibitor) treatment. On the other hand, AII treatment did not affect the expression and functions of stimulatory guanine nucleotide regulatory protein (Gs), however, the stimulatory effects of 5'-O-(3-thiotriphosphate), isoproterenol, and N-ethylcarboxamide adenosine (NECA) on adenylyl cyclase activity were inhibited to various degrees by AII treatment. Staurosporine reversed the AII-evoked attenuation of isoproterenol- and NECA-stimulated enzyme activity. From these results, it can be suggested that AII, whose levels are increased in hypertension, may be one of the possible contributing factors responsible for exhibiting an enhanced expression of Gi protein in hypertension.  相似文献   

9.
10.
Tgfb3, a member of the TGF-beta superfamily, is tightly regulated, both spatially and temporally, during embryogenesis. Previous mouse knockout studies have demonstrated that Tgfb3 is absolutely required for normal palatal fusion and pulmonary development. We have generated a novel tool to ablate genes in Tgfb3-expressing cells by targeting the promoterless Cre-pgk-Neo cassette into exon 1 of the mouse Tgfb3 gene, which generates a functionally null Tgfb3 allele. Using the Rosa26 reporter assay, we demonstrate that Cre-induced recombination was already induced at embryonal day 10 (E10) in the ventricular myocardium, limb buds, and otic vesicles. At E14, robust recombination was detected in the prefusion palatal epithelium. Deletion of the TGF-beta type I receptor Alk5 (Tgfbr1) specifically in Tgfb3 expressing cells using the Tgfb3-Cre driver line lead to a cleft palate phenotype similar to that seen in conventional Tgfb3 null mutants. In addition, Alk5/ Tgfb3-Cre mice displayed hydrocephalus, and severe intracranial bleeding due to germinal matrix hemorrhage.  相似文献   

11.
The components of the insulin-like growth factor (IGF) axis and their roles in regulating proliferation and differentiation of the human colon adenocarcinoma cell line, Caco-2, have been investigated. Caco-2 cells proliferated in serum-free medium at 75% the rate observed in medium containing 10% fetal bovine serum. IGF-I (10 nM) increased Caco-2 cell growth in serum-free medium, but not to the rate seen with serum. Multiple IGF-II mRNA species were produced by Caco-2 cells, but IGF-I mRNA was undetectable. Secretion of radioimmunoassayable IGF-II corresponded with steady-state levels of IGF-II mRNA, neither of which was observed to change markedly over the course of 16 days of Caco-2 cell differentiation. Levels of sucrase-isomaltase mRNA, a marker for enterocytic differentiation, increased 12-fold between days 5 and 16 of culture. Northern blotting of total RNA and ligand blot and immunoblot analyses of serum-free conditioned medium revealed that Caco-2 cells produce several IGF binding proteins (IGFBPs), including IGFBP-2, -3, and -4, as well as a 31,000 M, species that was not identified. The pattern of IGFBP secretion changed dramatically during Caco-2 cell differentiation: IGFBP-3 and IGFBP-2 increased 8.5-fold and 5-fold, respectively, whereas IGFBP-4 and the 31,000 M, species decreased 43% and 90%. Caco-2 cell clones stably transfected with a human IGFBP-4 cDNA construct exhibited a 60% increase in steady-state level of IGFBP-4 mRNA, and secreted twice as much IGFBP-4 protein as controls. Moreover, IGFBP-4-overexpressing cells proliferated at only 25% the rate of control cells in serum-free medium, in conjunction with a 70% increase in expression of sucrase-isomaltase. In summary, these studies indicate that a complex IGF axis is involved in autocrine regulation of Caco-2 cell proliferation and differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Transforming growth factor-beta (TGF-beta) is now known to have a number of actions in addition to the induction of phenotypic transformation in fibroblastic cells. In this paper, we characterize its inhibition of differentiation in rat myoblasts of Yaffe's L6 strain and demonstrate its identity or very close similarity to the differentiation inhibitor (DI) secreted by Buffalo rat liver cells cultured in serum-free medium. At concentrations as low as 60 pg/ml, TGF-beta gave detectable inhibition of differentiation measured as myoblast fusion and creatine kinase elevation; maximal inhibition was observed at and above 0.5 ng/ml (20 pM). The inhibition persisted as long as fresh TGF-beta was added at 48-h intervals, but it was reversed upon removal of the factor. By itself or in the presence of mitogens, TGF-beta had no mitogenic activity in the L6 cells. Concentration dependencies of human TGF-beta and the rat DI were closely parallel in three assays: inhibition of myoblast differentiation, stimulation of normal rat kidney cell growth in soft agar, and competition for displacement of labeled TGF-beta from binding sites on A549 human lung carcinoma cells. We conclude that most if not all of the DI activity found in medium conditioned by Buffalo rat liver cells can be attributed to the presence of TGF-beta or a very similar molecule. These observations also offer a potentially useful approach to study the control of myogenesis; the process(es) can be blocked in cloned L6 myoblasts by incubation with very small quantities of a pure protein in fully defined serum-free medium.  相似文献   

13.
Mesangial cells share features with contractile smooth muscle cells and mechanically support the capillary wall. The role of vitamin D compounds and the transforming growth factor-beta (TGF-beta) type II receptor in modulating the smooth muscle phenotype of cultured mesangial cells was examined. Cell proliferation was significantly inhibited by the vitamin D analog 22-oxa-1,25-dihydroxyvitamin D(3) (22-oxacalcitriol; OCT) rather than by 1,25-dihydroxyvitamin D(3) (1, 25(OH)(2)D(3)) in a dose-dependent manner. OCT-treated early passage mesangial cells (MC-E cells) had increased expression levels of type IV collagen and smooth muscle alpha actin mRNA, but 1, 25(OH)(2)D(3)-treated MC-E cells did not. The addition of a TGF-beta(1)-neutralizing antibody to the OCT-treated MC-E cells blocked this inhibitory effect for cell proliferation and attenuated the up-regulated mRNA levels. However, after exposure to 1, 25(OH)(2)D(3) or OCT, there was no significant difference in the secretion of active TGF-beta. We next investigated whether TGF-beta type II receptor (RII) was involved in this regulation. OCT treatment significantly increased the expression of the RII mRNA in MC-E cells. These results suggest that the vitamin D analog OCT induces smooth muscle phenotypic alterations and that this phenomenon was mediated through the induction of RII in cultured mesangial cells.  相似文献   

14.
Large-scale transient transfection of mammalian cells is a recent and powerful technology for the fast production of milligram amounts of recombinant proteins (r-proteins). As many r-proteins used for therapeutic and structural studies are naturally secreted or engineered to be secreted, a cost-effective serum-free culture medium that allows their efficient expression and purification is required. In an attempt to design such a serum-free medium, the effect of nine protein hydrolysates on cell proliferation, transfection efficiency, and volumetric productivity was evaluated using green fluorescent protein (GFP) and human placental secreted alkaline phosphate (SEAP) as reporter genes. The suspension growing, serum-free adapted HEK293SF-3F6 cell line was stably transfected with an EBNA1-expression vector to increase protein expression when using EBV oriP bearing plasmids. Compared to our standard serum-free medium, concomitant addition of the gelatin peptone N3 and removal of BSA slightly enhanced transfection efficiency and significantly increased volumetric productivity fourfold. Using the optimized medium formulation, transfection efficiencies between 40-60% were routinely obtained and SEAP production reached 18 mg/L(-1). To date, we have successfully produced and purified over fifteen r-proteins from 1-14-L bioreactors using this serum-free system. As examples, we describe the scale-up of two secreted his-tagged r-proteins Tie-2 and Neuropilin-1 extracellular domains (ED) in bioreactors. Each protein was successfully purified to >95% purity following a single immobilized metal affinity chromatography (IMAC) step. In contrast, purification of Tie-2 and Neuropilin-1 produced in serum-containing medium was much less efficient. Thus, the use of our new serum-free EBNA1 cell line with peptone-enriched serum-free medium significantly improves protein expression compared to peptone-less medium, and significantly increases their purification efficiency compared to serum-containing medium. This eliminates labor-intensive and expensive chromatographic steps, and allows for the simple, reliable, and extremely fast production of milligram amounts of r-proteins within 5 days posttransfection.  相似文献   

15.
In vivo studies have demonstrated that aldosterone is an independent contributor to glomerulosclerosis. In the present study, we have investigated whether aldosterone itself mediated glomerulosclerosis, as angiotensin II (Ang II) did, by inducing cultured renal mesangial cells to produce plasminogen activator inhibitor-1 (PAI-1), and whether these effects were mediated by aldosterone-induced increase in transforming growth factor beta(1) (TGF-beta(1)) expression and cellular reactive oxygen species (ROS) activity. Quiescent rat mesangial cells were treated by aldosterone alone or by combination of aldosterone and spironolactone, Ang II, neutralizing antibody to TGF-beta(1) or antioxidant Nacetylcysteme (NAC). This study indicate that aldosterone can increase PAI-1 mRNA and protein expression by cultured mesangial cells alone, which is independent of aldosterone-induced increases in TGF-beta(1) expression and cellular ROS. The effects on PAI-1, TGF-beta(1) and ROS generation were markedly attenuated by spironolactone, a mineralocorticoid receptor antagonist, which demonstrate that mineralocorticoid receptor (MR) may play a role in mediating these effects of aldosterone.  相似文献   

16.
Cyclosporine A (CsA)-induced glomerulosclerosis is a well-described side effect of CsA treatment. Current evidence indicates that FK506 causes similar morphologic changes. Recently, we demonstrated that CsA up-regulates the expression of transforming growth factor-beta1 (TGF-beta1), its receptors type I (TbetaR-I) and type II (TbetaR-II), as well as related matrix protein synthesis in mesangial cells (MCs). Here, we assessed the effect of FK506 on the expression of TGF-beta1, TbetaR-I, TbetaR-II, fibronectin (FN) and plasminogen activator inhibitor type-1 (PAI-1) in MCs. Resting MCs were incubated with/without FK506. Time- and concentration-dependent expression was measured at the mRNA and protein level. Compared to untreated controls, FK506 stimulated TGF-beta1 mRNA (maximum at 8 h, 100 ng/mL: 2.13+/-0.15-fold, P<0.005) and protein expression (maximum at 96 h, 100 ng/mL: 1.96+/-0.29-fold, P<0.005). In contrast, TbetaR-I and TbetaR-II protein expression remained unchanged. Concerning matrix protein synthesis, FK506 slightly increased FN production (96 h, 100 ng/mL: 1.38+/-0.28-fold, P<0.05), but not PAI-1 production. These results indicate that, comparable to CsA, FK506 induced glomerulosclerosis is also due to a direct effect on mesangial matrix production, which is at least in part mediated via up-regulation of TGF-beta1 expression. The fact that, unlike CsA, FK506 does not increase the expression of TbetaR-I, TbetaR-II, and PAI-1, deserves further investigation.  相似文献   

17.
18.
Treatment of the transformed mouse embryo fibroblast cell line AKR-MCA with 1% N,N-dimethylformamide (DMF) resulted in the restoration of a nontransformed phenotype in these cells. In order to determine if an increase in growth inhibitory peptides might be responsible for these changes in growth properties of the DMF-treated AKR-MCA cells we examined the serum-free conditioned medium for its ability to inhibit the anchorage-independent growth of a human colon carcinoma cell line. The extracellular levels of inhibitory activity were two-fold higher in conditioned medium derived from AKR-MCA cells than in AKR-MCA cells grown in 1% DMF (AKR-MCA/DMF). Fractionation of the crude conditioned medium indicated the presence of an Mr 20,000 inhibitory fraction in AKR-MCA/DMF conditioned medium which was reduced in AKR-MCA cells. This Mr 20,000 inhibitory activity was acid and heat stable and sensitive to dithiothreitol and trypsin. In addition to inhibiting the growth of a human colon carcinoma cell line this protein induced colony formation in AKR-2B cells and competed for binding to the transforming growth factor beta (TGF-beta) receptor. Therefore, this Mr 20,000 inhibitory polypeptide induced by DMF is probably TGF-beta. TGF-beta was also shown to inhibit the growth of AKR-MCA cells in monolayer culture.  相似文献   

19.
Fibroblast contraction of collagen gels is regarded as a model of wound contraction. Transforming growth factor (TGF)-beta added to such gels can augment contraction consistent with its suggested role as a mediator of fibrotic repair. Since fibroblasts isolated from fibrotic tissues have been suggested to express a "fibrotic phenotype," we hypothesized that TGF-beta exposure may lead to a persistent increase in fibroblasts' contractility. To evaluate this question, confluent human fetal lung fibroblasts were treated with serum-free Dulbecco modified Eagle medium (DMEM), with or without 100 pM [corrected] TGF-beta1, TGF-beta2, or TGF-beta3 for 48 h. Fibroblasts were then trypsinized and cast into gels composed of native type I collagen isolated from rat tail tendons. After 20 min for gelation, the gels were released and maintained in serum-free DMEM. TGF-beta-pretreated fibroblasts caused significantly more rapid gel contraction (52.5+/-0.6, 50.9+/-0.2, and 50.3+/-0.5% by TGF-beta1, -beta2, and -beta3 pretreated fibroblasts, respectively) than control fibroblasts (74.0+/-0.3%, P < 0.01). This effect is concentration dependent (50-200 nM), and all three isoforms had equal activity. The effect of TGF-beta1, however, persisted for only a short period of time following the removal of TGF-beta, and was lost with sequential passage. These observations suggest that the persistent increase in collagen-gel contractility, mediated by fibroblasts from fibrotic tissues, would not appear to be solely due to previous exposure of these cells to TGF-beta.  相似文献   

20.
Summary Previous work has suggested that subcultivated human fetal heart muscle cell cultures contain immature cardiac muscle cells capable only of limited differentiation after mitogen withdrawal. We studied several human fetal heart cultures (14–15 wk gestation) at several passage levels using immunocytochemistry, autoradiography, and Northern blot analysis. Characteristics in high-mitogen (growth) medium were compared with those after serum withdrawal. Cultured cells from one heart, expanded through 2 passages in growth medium, did not beat; however, 75% of cells did beat after subsequent culture for 24 days in low-serum (differentiation) medium containing insulin. In confluent cultures after 1 passage, there was no detectable difference in the number of cardiac myocytes present in growth medium compared with that 7 days after serum withdrawal. After 4 passages, however, serum withdrawal increased the number of cells expressing immunoreactive sarcomeric myosin heavy chain by 100-fold; expression of immunoreactive sarcomeric actin andα-cardiac actin mRNA also increased in the same cultures. Similar results were obtained in cultures kept in differentiation medium for 20 days before passage and expansion in growth medium. Using isopycinc centrifugation, a high-density cell fraction was isolated which contained no immunostained myocytes in growth medium but numerous myocytes after serum withdrawal. Combined immunocytochemistry/autoradiography showed that myocytes synthesize DNA in growth medium and in serum-free medium containing fibroblast growth factor, but not in serum-free medium alone. The results indicate that a) human fetal cardiac muscle cells proliferate in vitro and can maintain a phenotype characteristic of fetal myocytes after multiple subcultivations followed by serum withdrawal; b) after subcultivation in growth medium, some myocytes modulate their phenotype into one in which detectable levels of cardiac contractile proteins are expressed only after mitogen withdrawal, and c) the phenotype attained after serum withdrawal is in part dependent on passage level. Cultured human fetal myocardial cells my provide a useful experimental system for the study of human cardiac muscle cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号