首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dramatic decrease of sudden infant death syndrome (SIDS) has been noted following the issuance of recommendations to adopt the supine sleeping position for infants. It has been suggested that the increased risk could be related to heat stress associated with body position. In the present study, the dry heat losses of small-for-gestational-age newborns nude or clothed were assessed and compared to see whether there is a difference in the ability to lose heat between the prone and supine positions. An anthropomorphic thermal mannequin was exposed to six environmental temperatures, ranging between 25 and 37 degrees C, in a single-walled, air-heated incubator. The magnitudes of heat losses did not significantly differ between the two body positions for the nude (supine 103.46 +/- 29.67 vs. prone 85.78 +/- 34.91 W/m(2)) and clothed mannequin (supine 59.35 +/- 21.51 vs. prone 63.17 +/- 23.06 W/m(2)). With regard to dry heat exchanges recorded under steady-state conditions, the results show that there is no association between body position and body overheating.  相似文献   

2.
We studied the vertical gradient in lung expansion in rabbits in the prone and supine body positions. Postmortem, we used videomicroscopy to measure the size of surface alveoli through transparent parietal pleural windows at dependent and nondependent sites separated in height by 2-3 cm at functional residual capacity (FRC). We compared the alveolar size measured in situ with that measured in the isolated lungs at different deflationary transpulmonary pressures to obtain transpulmonary pressure (pleural surface pressure) in situ. The vertical gradient in transpulmonary pressure averaged 0.48 +/- 0.16 (SD) cmH2O/cm height (n = 10) in the supine position and 0.022 +/- 0.014 (SD) cmH2O/cm (n = 5) in the prone position. In mechanically ventilated rabbits, we used the rib capsule technique to measure pleural liquid pressure at different heights of the chest in prone and supine positions. At FRC, the vertical gradient in pleural liquid pressure averaged 0.63 cmH2O/cm in the supine position and 0.091 cmH2O/cm in the prone position. The vertical gradients in pleural liquid pressure were all less than the hydrostatic value (1 cmH2O/cm), which indicates that pleural liquid is not generally in hydrostatic equilibrium. Both pleural surface pressure and pleural liquid pressure measurements show a greater vertical gradient in the supine than in the prone position. This suggests a close relationship between pleural surface pressure and pleural liquid pressure. Previous results in the dog and pony showed relatively high vertical gradients in the supine position and relatively small gradients in the prone position. This behavior is similar to the present results in rabbits. Thus the vertical gradient is independent of animal size and might be related to chest shape and weight of heart and abdominal contents.  相似文献   

3.
The effects of body position and respiratory frequency (f) on regional gas transport during eucapnic conventional ventilation (CV) and high-frequency ventilation (HFV) were assessed from the washout of nitrogen 13 (13NN) using positron-emission tomography. In one protocol, six dogs were ventilated with CV or HFV at f = 6 Hz and tidal volume (VT) selected supine for eucapnia. A coronal cross section of the lung base was studied in the supine, prone, and right and left lateral decubitus positions. In a second protocol, six dogs were studied prone: apical and basal cross sections were studied in CV and in HFV with f = 3 and 9 Hz at eucapnic VT. Regional alveolar ventilation per unit of lung volume (spVr) was calculated for selected regions and analyzed for gravity-dependent cephalocaudal and right-to-left gradients. In both CV and HFV, nonuniformity in spVr was highest supine and lowest prone. In CV there were vertical gradients of spVr in all body positions: nondependent less ventilated than dependent regions, particularly in the supine position. In HFV there was a moderate vertical gradient in spVr in addition to a preferentially ventilated central region in all body positions. Overall lung spV was unaffected by body position in CV but in HFV was highest supine and lowest prone. Nonuniformity in eucapnic prone HFV was unaffected by f and always higher than in CV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of body position on ventilatory responses to chemical stimuli have rarely been studied in experimental animals, despite evidence that position may be a factor in respiratory results. The purpose of this study was to test whether body position could affect acute ventilatory responses to 4-min periods of moderate hypercapnia (5% CO(2) in O(2)) and poikilocapnic hypoxia (15% O(2) in N(2)) in the urethane-anaesthetised mouse. Respiratory measurements were conducted with mice in the prone and supine positions with a whole-body, single-chamber plethysmograph. During hypoxia, the time course of minute ventilation (V (E)) was similar in the two positions, but the breathing pattern was different. After the response peak, V (E) depended on respiratory frequency (f) and tidal volume (V(T)) in the prone position but mainly on V(T) in the supine position. In the supine position, f declined below the baseline values toward the end of hypoxic exposure. During hypercapnia, there were no ventilatory differences between the prone and supine positions. Brief hypoxic exposure elicited f depression in the supine position in the anaesthetised mouse. The depressive effect on f suggests that the supine position may not be optimal for sustaining ventilation, particularly during hypoxia.  相似文献   

5.
Despite the heterogeneous distribution of pulmonary blood flow, perfusion appears to be spatially ordered, with neighboring regions of lung having similar magnitudes of flow. This premise was tested by determining the spatial correlation of regional flow [rho(d)] as a function of distance (d) between regions. Regional pulmonary perfusion was measured in both supine and prone positions in seven anesthetized mechanically ventilated dogs with radiolabeled microspheres. After excision and drying, the lungs were cubed into pieces 1.2 cm on a side, with a three-dimensional coordinate assigned to each piece. The microsphere-determined flow to each piece was measured by radioactive counts, and rho(d) was calculated for all paired pieces within the same lobe. rho(d) was greatest for adjacent pieces (d = 1.2 cm) and decreased with increasing d, becoming negative at large distances in all dogs and positions. The spatial correlation of flow between adjacent pieces, rho(1.2 cm), was greater in the supine than in the prone position (0.66 vs. 0.72, P less than 0.05). The observations for each dog and position were fit to the equation rho(d) = d(a)+b.d+c, and the coefficients were used to compare rho(d) in the supine and prone positions. rho(d) differed in the two positions (P less than 0.05), with rho(d) falling off more rapidly with distance in the supine position. When trends in flow due to gravity were mathematically removed, differences between supine and prone positions were no longer observed. The spatial correlation of regional pulmonary perfusion was anisotropic in both supine and prone positions. The observation that regional pulmonary perfusion is highly correlated over large spatial distances has important implications for models of flow distribution.  相似文献   

6.
Acute respiratory distress syndrome is characterized by alterations in the ventilation-perfusion ratio. Present techniques for studying regional pulmonary perfusion are difficult to apply in the critically ill. Electron-beam computed tomography was used to study the effects of prone positioning on regional pulmonary perfusion in six healthy subjects. Contrast-enhanced sections were obtained sequentially in the supine, prone, and (original) supine positions at full inspiration. Regions of interest were placed along the nondependent to dependent axis and relative perfusion calculated. When corrected for the redistribution of lung parenchyma, a gravitational gradient of pulmonary perfusion existed in both supine and prone positions. The distribution of perfusion between the supine or prone positions did not differ, but data analysis using smaller regions of interest demonstrated marked heterogeneity of perfusion between anatomically adjacent regions of lung. The distribution of lung parenchyma was more uniform in the prone position. Gravity was estimated to be responsible for 22-34% of perfusion heterogeneity in the supine and 27-41% in the prone positions. These data support the hypothesis that factors other than gravity may be at least as important in determining the distribution of pulmonary perfusion in humans. The influence of nongravitational factors may not be detectable if techniques that sample large tissue volumes are employed.  相似文献   

7.
The effect of the thermal environment on sleep quality has attracted considerable attention, as sleep forms one-third of human lifetime and the occupied space is largely constrained during sleep. With an increasing development of partial space regulation and task air conditioning systems and devices, thermal comfort demand concerning local thermal conditions has attracted more and more attention. In the present study, experiment was conducted and data mining technologies were performed to investigate correlations between local thermal conditions and whole body thermal comfort in sleeping state. The identification of local thermal condition included two steps: the first step was to clarify thermal sensation links between local and covered body, and the second step was to identify local thermal sensation inclination towards different thermal comfort levels. Thermal sensation correlations among local body parts and covered body were obtained. Back, face, and thigh were identified as three dominant linear-correlated local parts with weighting factors 0.488, 0.388, and 0.152, respectively; in addition, chest, arm, leg and foot were found as non-negligible local parts in the estimation of covered body thermal sensation. By dividing the sleeping human body into three parts as head, trunk and extremity, the proper local thermal sensations and their coupling relationships for whole body sleeping thermal comfort have been elaborated by three rules. The present study provides implications in sleeping thermal environment regulation in neutral to cold indoor conditions.  相似文献   

8.
The main purpose of this study was to find out whether the dominant dorsal lung perfusion while supine changes to a dominant ventral lung perfusion while prone. Regional distribution of pulmonary blood flow was determined in 10 healthy volunteers. The subjects were studied in both prone and supine positions with and without lung distension caused by 10 cmH2O of continuous positive airway pressure (CPAP). Radiolabeled macroaggregates of albumin, rapidly trapped by pulmonary capillaries in proportion to blood flow, were injected intravenously. Tomographic gamma camera examinations (single-photon-emission computed tomography) were performed after injections in the different positions. All data acquisitions were made with the subject in the supine position. CPAP enhanced perfusion differences along the gravitational axis, which was more pronounced in the supine than prone position. Diaphragmatic sections of the lung had a more uniform pulmonary blood flow distribution in the prone than supine position during both normal and CPAP breathing. It was concluded that the dominant dorsal lung perfusion observed when the subjects were supine was not changed into a dominant ventral lung perfusion when the subjects were prone. Lung perfusion was more uniformly distributed in the prone compared with in the supine position, a difference that was more marked during total lung distension (CPAP) than during normal breathing.  相似文献   

9.
Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous spinal cord stimulation were recorded using surface-electromyography from quadriceps, hamstrings, tibialis anterior, and triceps surae muscles in 10 individuals with intact nervous systems in the supine, standing and prone positions. Single and paired (30-ms inter-stimulus intervals) biphasic stimulation pulses were applied through surface electrodes placed on the skin between the T11 and T12 inter-spinous processes referenced to electrodes on the abdomen. The paired stimulation was applied to evaluate the origin of the evoked electromyographic response; trans-synaptic responses would be suppressed whereas direct efferent responses would almost retain their amplitude. We found that responses to the second stimulus were decreased to 14%±5% of the amplitude of the response to the initial pulse in the supine position across muscles, to 30%±5% in the standing, and to only 80%±5% in the prone position. Response thresholds were lowest during standing and highest in the prone position and response amplitudes were largest in the supine and smallest in the prone position. The responses obtained in the supine and standing positions likely resulted from selective stimulation of sensory fibers while concomitant motor-fiber stimulation occurred in the prone position. We assume that changes of root-fiber paths within the generated electric field when in the prone position increase the stimulation thresholds of posterior above those of anterior root fibers. Thus, we recommend conducting spinal reflex or neuromodulation studies with subjects lying supine or in an upright position, as in standing or stepping.  相似文献   

10.
Pleural pressure was measured at end expiration in spontaneously breathing anesthetized rabbits. A liquid-filled capsule was implanted into a rib to measure pleural liquid pressure with minimal distortion of the pleural space. Capsule position relative to lung height was measured from thoracic radiographs. Measurements were made when the rabbits were in the prone, supine, right lateral, and left lateral positions. Average lung heights in the prone and supine positions were 4.21 +/- 0.58 and 4.42 +/- 0.51 (SD) cm, respectively (n = 7). Pleural pressure was -2.60 +/- 1.87 (SD) cmH2O at 50.2 +/- 7.75% lung height in the prone position and -3.10 +/- 1.22 cmH2O at 51.4 +/- 6.75% lung height in the supine position. There was no difference between the values recorded in the prone and supine positions. Placement of the capsule into the right or left chest had no effect on the magnitude of the pleural pressure recorded in rabbits in right and left lateral recumbency (n = 12). Measurements over the nondependent lung were repeatable when rabbits were turned between the right and left lateral positions. Lung height in laterally recumbent rabbits averaged 4.55 +/- 0.52 (SD) cm.  相似文献   

11.
Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.  相似文献   

12.
Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.  相似文献   

13.
The arterial blood PO(2) is increased in the prone position in animals and humans because of an improvement in ventilation (VA) and perfusion (Q) matching. However, the mechanism of improved VA/Q is unknown. This experiment measured regional VA/Q heterogeneity and the correlation between VA and Q in supine and prone positions in pigs. Eight ketamine-diazepam-anesthetized, mechanically ventilated pigs were studied in supine and prone positions in random order. Regional VA and Q were measured using fluorescent-labeled aerosols and radioactive-labeled microspheres, respectively. The lungs were dried at total lung capacity and cubed into 603-967 small ( approximately 1.7-cm(3)) pieces. In the prone position the homogeneity of the ventilation distribution increased (P = 0.030) and the correlation between VA and Q increased (correlation coefficient = 0.72 +/- 0.08 and 0.82 +/- 0.06 in supine and prone positions, respectively, P = 0.03). The homogeneity of the VA/Q distribution increased in the prone position (P = 0.028). We conclude that the improvement in VA/Q matching in the prone position is secondary to increased homogeneity of the VA distribution and increased correlation of regional VA and Q.  相似文献   

14.
The concept that a specific level of central venous pressure (CVP) limits man's adjustment to heat stress has been debated. Evidence was presented that identifies a true limit of adjustment as being more related to factors affecting evaporative cooling, such as level of hydration, release of active vasodilation substance (AVS), and sweat gland fatigue. However, it was conceded that decreases in CVP and subsequent low-pressure baroreceptor activation modify cutaneous blood flow and subsequently reduce conductance of heat from the core to the periphery. It was suggested that CVP merely reflects a downstream pressure, which must be allowed to reach a pressure lower than that observed in the peripheral venous bed during active cutaneous vasodilation, to insure adequate venous return. However, a loss of evaporative cooling has been observed during prolonged progressive dehydration of subjects in the supine position, resulting in 3 to 4 percent loss of total body weight. This loss of evaporative cooling was not apparent when euhydration was maintained. As it was unlikely that CVP was reduced in these experiments in the supine position, it was concluded that CVP was not the limiting factor in man's adjustment to heat stress.  相似文献   

15.
The shape of the passive chest wall of six anesthetized dogs was determined at total lung capacity (TLC) and functional residual capacity (FRC) in the prone and supine body positions by use of volumetric-computed tomographic images. The transverse cross-sectional areas of the rib cage, mediastinum, and diaphragm were calculated every 1.6 mm along the length of the thorax. The changes in the volume and the axial distribution of transverse area of the three chest wall components with lung volume and body position were evaluated. The decrease of the transverse area within the rib cage between TLC and FRC, as a fraction of the area at TLC, was uniform from the apex of the thorax to the base. The volume of the mediastinum increased slightly between TLC and FRC (14% of its TLC volume supine and 20% prone), squeezing the lung between it and the rib cage. In the transverse plane, the heart was positioned in the midthorax and moved little between TLC and FRC. The shape, position, and displacement of the diaphragm were described by contour plots. In both postures, the diaphragm was flatter at FRC than at TLC, because of larger displacements in the dorsal than in the ventral region of the diaphragm. Rotation from the prone to supine body position produced a lever motion of the diaphragm, displacing the dorsal portion of the diaphragm cephalad and the ventral portion caudad. In five of the six dogs, bilateral isovolume pneumothorax was induced in the supine body position while intrathoracic gas volume was held constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Experimental research has demonstrated that changes in body position influence auditory function and, specifically, supine position produces a sensorineural hearing loss at low frequencies. The hypotheses to interpret these phenomena are principally referred to an increase of hydrostatic pressure of labyrinthine fluids. In order to evaluate the effects of head position on the cochlear performance a modern test battery has been performed to study cochlear function in 11 normal subjects ranged in age from 22 to 34 years. The tests (Remote Masking:RM; Brief Tone Audiometry:BTA; Critical Ratio:RC) have been evaluated in two positions: sitting upright and supine with the head at a 20 backward angle. The results of our research have shown that in all the cases, the supine position produces a significant shift of the auditory threshold at 250 and 500 Hz, and a decrease of RM values in about all of the cases. We have estimated non statistically significant differences for the RC and BTA values, in more than half of the ears tested. On the basis of the significance given to RM, BTA, RC: we can deduce that the modifications of the auditory performance related to an increase in perilymphatic hydrostatic pressure, induced by the head position are produced by an increase in rigidity of the mechanical vibratory structures of the cochlea rather than the expression of sensorineural damage.  相似文献   

17.
The cardiovascular function in space seems to be normal. However, abnormalities of cardiovascular responses have been found during lower body negative pressure suction in space. The etiology of the cardiovascular deconditioning in space is still unknown. A previous study showed, that short periods of head down tilt (HDT-6 degrees) induce changes in the spectral pattern of heart rate variabilty (HRV) and an increase in the sympathethic activation caused by orthostatic stress. The aim of this study was to test following hypotheses: 1. The dynamic of heart rate variability is different in the head down tilt and supine positions. 2. The application of lower body negative pressure (LBNP) during head down tilt induces similar heart rate variability patterns like the standing position. 3. After short term head down tilt the cardiovascular response to lower body negative pressure stressor is altered.  相似文献   

18.
For the purpose of determining the most reasonable lying posture for pregnant women, we investigated the lying positions of both 247 non-pregnant women and 302 pregnant women during sleep. As for the rate of each position during the entire period of observation, 33.2% of the non-pregnant women were in the supine position, 41.2% in the lateral position, 18.4% in Sims' position and 7.1% in the prone position. In the pregnant group, the rate of supine position, simple lateral position and Sims' position was 34.2%, 52.2% and 12.7%, respectively, but the rate of the prone position was limited to 0.8%. All of the gravidas assuming the prone position were at less than 16 weeks of gestation. Non-pregnant women could sleep in a variety of positions, but pregnant women could assume the prone position during sleep only in the stage when the abdomen is not yet prominent or distended. Pregnant women were restricted significantly, either consciously or unconsciously, with progress in gestation.  相似文献   

19.
The objective of this study is to develop a mathematical model for simulating the thermal physiological responses of clothed infants. By modifying and integrating Gagge's two-node model and Stolwijk's multi-node model, and coupled with the model of dynamic couple heat and moisture transfer in functional clothing, a new seven-node thermoregulation model for closed infants was developed. A series of preliminary numerical test were carried out for naked and clothed infant. The prediction of the new model was compared with the published data, the comparison results demonstrate that the model has good potential predictability.  相似文献   

20.
To determine the cause of the difference in gas exchange between the prone and supine postures in dogs, gas exchange was assessed by the multiple inert gas elimination technique (MIGET) and distribution of pulmonary blood flow was determined using radioactively labeled microspheres in seven anesthetized paralyzed dogs. Each animal was studied in the prone and supine positions in random order while tidal volume and respiratory frequency were kept constant with mechanical ventilation. Mean arterial PO2 was significantly lower (P less than 0.01) in the supine [96 +/- 10 (SD) Torr] than in the prone (107 +/- 6 Torr) position, whereas arterial PCO2 was constant (38 Torr). The distribution of blood flow (Q) vs. ventilation-to-perfusion ratio obtained from MIGET was significantly wider (P less than 0.01) in the supine [ln SD(Q) = 0.75 +/- 0.26] than in the prone position [ln SD (Q) = 0.34 +/- 0.05]. Right-to-left pulmonary shunting was not significantly altered. The distribution of microspheres was more heterogeneous in the supine than in the prone position. The larger heterogeneity was due in part to dorsal-to-ventral gradients in Q in the supine position that were not present in the prone position (P less than 0.01). The decreased efficiency of oxygenation in the supine posture is caused by an increased ventilation-to-perfusion mismatch that accompanies an increase in the heterogeneity of Q distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号