首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and reproducible method has been developed for the simultaneous isolation of basolateral and brush-border membranes from the rabbit renal cortex. The basolateral membrane preparation was enriched 25-fold in (Na+ + K+)-ATPase and the brush-border membrane fraction was enriched 12-fold in alkaline phosphatase, whereas the amount of cross-contamination was low. Contamination of these preparations by mitochondria and lysosomes was minimal as indicated by the low specific activities of enzyme markers, i.e., succinate dehydrogenase and acid phosphatase. The basolateral fraction consisted of 35-50% sealed vesicles, as demonstrated by detergent (sodium dodecyl sulfate) activation of (Na+ + K+)-ATPase activity and [3H]ouabain binding. The sidedness of the basolateral membranes was estimated from the latency of ouabain-sensitive (Na+ + K+)-ATPase activity assayed in the presence of gramicidin, which renders the vesicles permeable to Na+ and K+. These studies suggest that nearly 90% of the vesicles are in a right-side-out orientation.  相似文献   

2.
The binding of aminoglycoside antibiotics to, and their effects on, the plasma membrane were studied using isolated rat renal brush-border membrane vesicles. Dibekacin was noted to bind with brush-border membrane vesicles having a single class of many binding sites. 3H-labeled dibekacin binding was inhibited competitively by unlabeled dibekacin, gentamicin or amikacin. The inhibition constants obtained from the Dixon plots followed the order of gentamicin approximately equal to dibekacin greater than amikacin. The alkaline phosphatase activity of brush-border membrane vesicles was inhibited by gentamicin significantly, as was also observed by a histochemical study. Sodium-dependent D-glucose uptake by brush-border membrane vesicles was significantly inhibited by the addition of gentamicin.  相似文献   

3.
Basolateral membrane vesicles from rat jejunal enterocytes, especially purified of brush-border contamination, were used for Na+ uptake. The basolateral membrane vesicles are osmotically active and under our experimental conditions Na+ binding is much lower than transport. An outwardly directed proton gradient stimulates Na+ uptake at both 5 microM and 5 mM concentrations. The proton gradient effect can be inhibited completely by 2 mM amiloride and partially by either FCCP or NH4Cl (NH3 diffusion). Membrane potential effects can be excluded by having valinomycin plus K+ on both sides of the vesicles. These results suggest that there is an Na+/H+ exchanger in the basolateral membrane of rat enterocytes.  相似文献   

4.
A method for the isolation of brush-border membranes from newborn-rat kidney, employing centrifugation and free-flow electrophoresis, is described. The composition and purity of the preparation was assessed by determination of enzyme activities specific for various cellular membranes. Free-flow electrophoresis resolves the newborn-rat renal membrane suspension into two populations of alkaline phosphatase-enriched brush-border membranes, designated 'A' and 'B', with the A peak also showing activity of (Na+ + K+)-stimulated ATPase, the basolateral membrane marker enzyme, whereas those of the B peak were enriched 11-fold in alkaline phosphatase and substantially decreased in (Na+ + K+)-stimulated ATPase activity. Membranes in the A peak showed a 7-fold enrichment of alkaline phosphatase, and (Na+ + K+)-stimulated ATPase activity similar to that of the original homogenate. Proline uptake employed to assess osmotic dependency revealed 7% binding of proline to the B vesicles and 31% to the A vesicles. This contrasts with 60% proline binding to vesicles prepared by centrifugation alone. Unlike vesicles from adult animals, proline uptake by B vesicles did not show an Na+-stimulated overshoot, but did exhibit an Na+-gradient enhanced rate of early proline entry. proline entry.  相似文献   

5.
The effect of the potent anticancer drug cisplatin, cis-diamminedichloroplatinum (II) (CDDP), on H+ -ATPase and Na+/H+ exchanger in rat renal brush-border membrane was examined. To measure H+ transport by vacuolar H+ -ATPase in renal brush-border membrane vesicles, we employed a detergent-dilution procedure, which can reorientate the catalytic domain of H+ -ATPase from an inward-facing configuration to outward-facing one. ATP-driven H+ pump activity decreased markedly in brush-border membrane prepared from rats two days after CDDP administration (5 mg/kg, i.p.). In addition, N-ethylmaleimide and bafilomycin A1 (inhibitors of vacuolar H+ -ATPase)-sensitive ATPase activity also decreased in these rats. The decrease in ATP-driven H+ pump activity was observed even at day 7 after the administration of CDDP. Suppression of ATP-driven H+ pump activity was also observed when brush-border membrane vesicles prepared from normal rats were pretreated with CDDP in vitro. In contrast with H+ -ATPase, the activity of Na+/H+ exchanger, which was determined by measuring acridine orange fluorescence quenching, was not affected by the administration of CDDP. These results provide new insights into CDDP-induced renal tubular dysfunctions, especially such as proximal tubular acidosis and proteinuria.  相似文献   

6.
A method for preparation of highly purified basolateral plasma membranes from rat kidney proximal tubular cells is reported. These membranes were assayed for the presence of vesicles as well as for their orientation. (Na+ + K+)-ATPase activity and [3H]ouabain binding studies with membranes treated with or without SDS revealed that the preparation consisted of almost 100% vesicles. The percentage of inside-out vesicles was found to be approx. 70%. This percentage was determined measuring the (Na+ + K+)-ATPase activity in K+-loaded vesicles and in membranes treated with or without trypsin and SDS. These membranes represent a very efficient tool to assay the correlation between active transport and ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells.  相似文献   

7.
Basolateral plasma membranes were prepared from rat parotid gland after centrifugation in a self-orienting Percoll gradient. K+-dependent phosphatase [Na+ + K+)-ATPase), a marker enzyme for basolateral membranes, was enriched 10-fold from tissue homogenates. Using this preparation, the transport of alpha-aminoisobutyrate was studied. The uptake of alpha-aminoisobutyrate was Na+-dependent, osmotically sensitive, and temperature-dependent. In the presence of a Na+ gradient between the extra- and intravesicular solutions, vesicles showed an 'overshoot' accumulation of alpha-aminoisobutyrate. Sodium-dependent alpha-aminoisobutyrate uptake was saturable, exhibiting an apparent Km of 1.28 +/- 0.35 mM and Vmax of 780 +/- 170 pmol/min per mg protein. alpha-Aminoisobutyrate transport was inhibited considerably by monensin, but incubating with ouabain was without effect. These results suggest that basolateral membrane vesicles, which possess an active amino acid transport system (system A), can be prepared from the rat parotid gland.  相似文献   

8.
P L Yeagle  J Young  D Rice 《Biochemistry》1988,27(17):6449-6452
The (Na+,K+)-ATPase ATP hydrolyzing activity from rabbit kidney medulla basolateral membrane vesicles was studied as a function of the cholesterol content of the basolateral membranes. The cholesterol content of the membranes was modified by incubation with phospholipid vesicles. When the cholesterol content was increased above that found in the native membrane, the (Na+,K+)-ATPase ATP hydrolyzing activity was inhibited. When the cholesterol content was decreased from that found in the native membranes, the (Na+,K+)-ATPase ATP hydrolyzing activity was inhibited. Analogous effects were found with the K+-activated phosphatase activity of the same membrane vesicles. Therefore, at low cholesterol contents, cholesterol was stimulatory, and at high cholesterol contents, cholesterol was inhibitory. The structural specificity of this effect was tested by introducing lanosterol and ergosterol as 50% of the membrane sterol. Ergosterol was the least effective at supporting (Na+,K+)-ATPase ATP hydrolyzing activity, while lanosterol was more effective, but still not as effective as cholesterol.  相似文献   

9.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. The vesicle preparation contained high, digitalis-sensitive (Na+ + K+)-ATPase activities indicating its origin from the basolateral portion of plasma membrane. The operation of a Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

10.
The subcellular distribution of adenyl cyclase was investigated in small intestinal epithelial cells. Enterocytes were isolated, disrupted and the resulting membranes fractionated by differential and sucrose gradient centrifugation. Separation of luminal (brush border) and contra-luminal (basolateral) plasma membrane was achieved on a discontinuous sucrose gradient. The activity of adenyl cyclase was followed during fractionation in relation to other enzymes, notably those considered as markers for luminal and contraluminal plasma membrane. The luminal membrane was identified by the membrane-bound enzymes sucrase and alkaline phosphatase and the basolateral region by (Na+ + K+)-ATPase. Enrichment of the former two enzymes in purified luminal plasma membrane was 8-fold over cells and that of (Na+ + K+)-ATPase in purified bisolateral plasma membranes was 13-fold. F--activated adenyl cyclase co-purified with (Na+ + K+)-ATPase, suggesting a common localization on the plasma membrane. The distribution of K+-stimulated phosphatase and 5'-nucleotidase also followed (Na+ + K+)-ATPase during fractionation.  相似文献   

11.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

12.
Basolateral plasma membrane vesicles of rat small intestinal epithelium accumulate calcium through an ATP-dependent pumping system. The activity of this system is highest in duodenum and decreases towards the ileum. This distribution along the intestinal tract is similar as the active calcium absorption capacity of intact intestinal epithelial segments. ATP-dependent calcium uptake in basolateral membrane vesicles from duodenum and ileum increased significantly after repletion of young vitamin D-3-deficient rats with 1 alpha,25-dihydroxy-vitamin D-3. Ca2+ -ATPase activity in duodenal basolateral membranes increased to the same extend as ATP-dependent calcium transport, but (Na+ + K+)-ATPase activity remained unaltered.  相似文献   

13.
Monoclonal antibodies against horse kidney outer medulla (Na+ + K+)-ATPase were prepared. One of these antibodies (M45-80), was identified as an IgM, recognized the alpha subunit of the enzyme. M45-80 had the following effects on horse kidney (Na+ + K+)-ATPase: (1) it inhibited the enzyme activity by 50% in 140 mM Na+ and by 80% in 8.3 mM Na+; (2) it increased the Na+ concentration necessary for half-maximal activation (K0.5 for Na+) from 12.0 to 57.6 mM, but did not affect K0.5 for K+; (3) it slightly increased the K+-dependent p-nitrophenylphosphatase (K-pNPPase) activity; (4) it inhibited phosphorylation of the enzyme with ATP by 30%, but did not affect the step of dephosphorylation; and (5) it enhanced the ouabain binding rate. These data are compatible with a stabilizing effect on the E2 form of (Na+ + K+)-ATPase. M45-80 was concluded to bind to the extracellular surface of the plasmamembrane, based on the following evidence: (1) M45-80 inhibited by 50% the ouabain-sensitive 86Rb+ uptake in human intact erythrocytes from outside of the cells; (2) the inhibition of (Na+ + K+)-ATPase activity in right-side-out vesicles of human erythrocytes was greater than that in inside-out vesicles; and (3) the fluorescence intensity due to FITC-labeled rabbit anti-mouse IgM that reacted with M45-80 bound to the right-side-out vesicles was much greater than that in the case of the inside-out vesicles.  相似文献   

14.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient overshoot phenomenon was observed, indicating active transport. Kinetic analysis of the saturable Na+-dependent component of uridine flux indicated that it was consistent with Michaelis-Menten kinetics (Km 12 +/- 3 microM, Vmax. 3.9 +/- 0.9 pmol/s per mg of protein). The sodium:uridine coupling stoichiometry was found to be consistent with 1:1 and involved the net transfer of positive charge. In contrast, uridine influx by basolateral membrane vesicles was not dependent on the cation present and was inhibited by nitrobenzylthioinosine (NBMPR). NBMPR-sensitive uridine transport was saturable (Km 137 +/- 20 microM, Vmax. 5.2 +/- 0.6 pmol/s per mg of protein). Inhibition of uridine flux by NBMPR was associated with high-affinity binding of NBMPR to the basolateral membrane (Kd 0.74 +/- 0.46 nM). Binding of NBMPR to these sites was competitively blocked by adenosine and uridine. These results indicate that uridine crosses the brush-border surface of rabbit proximal renal tubule cells by Na+-dependent pathways, but permeates the basolateral surface by NBMPR-sensitive facilitated-diffusion carriers.  相似文献   

15.
A method has been developed for the isolation of sealed plasma membrane vesicles from rabbit white skeletal muscle. The final preparation was highly purified as indicated by enrichment of plasma membrane marker enzymes (i.e. ouabain-sensitive (Na+,K+)-ATPase, adenylate cyclase, and acetylcholinesterase). The absence of sarcoplasmic reticulum and mitochondria as contaminants was indicated by the low specific activity of marker enzymes, i.e. Ca2+-ATPase, succinate-cytochrome c reductase, and monoamine oxidase. Thin section and negative staining electron microscopy confirmed the absence of sarcoplasmic reticulum and mitochondrial contamination. The plasma membrane preparation consisted largely of sealed vesicles as observed by electron microscopy and as also demonstrated by latency of enzymic activities, which were unmasked by preincubation with detergent (sodium dodecyl sulfate). Membrane sidedness was estimated from latency of ouabain-sensitive (Na+,K+)-ATPase activity and acetylcholinesterase activity. The latency studies suggest that most of the vesicles are oriented inside out with respect to the orientation of the sarcolemma membrane in the muscle fiber. The inside-out plasma membrane vesicles actively accumulated sodium ions upon addition of ATP. The sodium ions were concentrated greater than 8-fold inside the vesicles and were released upon addition of the ionophore monensin. The sodium ions were taken up in the presence of K+ or NH4+ but not of choline. Uptake was inhibited by low concentrations of vanadate or digitoxin. The Na+ uptake was concomitant with Rb+ efflux. Therefore, the sodium ion transport and the resulting gradients formed appear to have been generated by the ouabain-sensitive (Na+,K+)-ATPase. Batrachotoxin, which opens Na+ channels in excitable tissues, prevents most of the Na+ uptake, suggesting the presence of toxin-activated Na+ channels in these plasma membrane vesicles.  相似文献   

16.
We have applied free flow electrophoresis to separate the canalicular and basolateral (sinusoidal and lateral) domains of rat hepatocyte plasma membranes. Hepatocyte plasma membranes were prepurified by rat zonal and discontinous sucrose gradient centrifugation. In electrophoretic separation, the canalicular membranes were more deflected toward the anode than the basolateral membranes. Na+-dependent taurocholate uptake could be measured in both membrane fractions, transport activity being highest in fractions containing the highest specific activity in the basolateral marker enzyme Na+-K+-ATPase. Thus, differences in electrophoretic mobility permit the separation of functional intact plasma membrane vesicles derived from basolateral and canalicular plasma membrane domains of rat hepatocyte.  相似文献   

17.
In this work, we present evidence in agreement with the hypothesis that there exist two Na+-stimulated ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells: (1) (Na+ + K+)-ATPase activity, which is inhibited by ouabain and by treating the membranes with trypsin, is insensitive to furosemide and reaches maximal activity upon treatment with SDS at an SDS/protein ratio of 1.6; (2) the Na+-ATPase activity, which is insensitive to ouabain and to trypsin treatment, is inhibited by furosemide and reaches maximal activity upon treatment with SDS at an SDS/protein ratio of 0.4.  相似文献   

18.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

19.
Inside-out membrane vesicles from human red cells were used to investigate the side specificity of K+ interactions with the K+-activated phosphatase, a partial reaction of the (Na, K)-ATPase. In the absence of Na+ and ATP, K+ at moderate affinity sites at the extravesicular surface (cytoplasmic K+) stimulates activity, whereas intravesicular K+ (K+ normally at the extracellular surface) is without effect. In contrast, under conditions of phosphorylation of (Na, K)-ATPase (Na+ and ATP present), K+ ions acting at high affinity sites at both surfaces are required. It is concluded that an enzyme x K complex is involved in K+-activated phosphatase activity and that it is formed either by interaction of cytoplasmic K+ with the dephosphoenzyme, or as a consequence of extracellular K+ binding and dephosphorylation of the phosphoenzyme formed in the presence of Na+ plus ATP.  相似文献   

20.
Studies were made on the direct effects of glycyrrhizin and its aglycone, glycyrrhetinic acid on the activities of (Na+ + K+)-ATPase and (Ca2+ + Mg2+)-ATPase, a membrane bound Na+ and Ca2+-extrusion pump enzyme of the basolateral membranes (BLM) of canine kidney. Glycyrrhetinic acid inhibited the activity of the Na+-pump enzyme dose-dependently (IC50 = 1.5 x 10(-4) M), but had no effect on that of the Ca2+-pump enzyme of kidney BLM and homogenates. Glycyrrhizin also inhibited the Na+-pump enzyme activity but had less effect (IC50 = 2 x 10(-3) M). The effects of these compounds were due to competitive inhibition with ATP binding to the enzyme (Ki = 12 microM) and so were different from that of ouabain, which inhibits the Na+-pump by binding to its extracellular K+-binding site. The direct effect of glycyrrhetinic acid on the membrane may be important role in the multiple actions of licorice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号