首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have suggested that the long distance movements of some terrestrial mammals are not migratory, but rather nomadic. Moreover, the spatial heterogeneity and temporal predictability of resources were proposed as factors contributing to alternative movement strategies, such as sedentarism (i.e., range residency), migration, and nomadism. Here, we propose that, at the individual level, a dependence on spatial memory is another important parameter for distinguishing among population-level patterns of spatial distribution. For instance, migratory animals would have a long memory of the areas they prefer to revisit, whereas nomadic animals would remember recently visited areas as places to avoid as they search for resources. We develop a computational model in which individuals’ movement decisions are based on the animals’ spatial memory of previously visited areas. Through this approach, we delineate how the interplay between landscape persistence and spatial memory leads to sedentarism, migration, and nomadism.  相似文献   

2.
Understanding wildlife movements and habitat selection are critical to drafting conservation and management plans. We studied a population of eastern Hermann’s tortoise (Testudo hermanni boettgeri) in a traditionally managed rural landscape in Romania, near the northern edge of the species geographic distribution. We used telemetry to radio-track 24 individuals between 2005 and 2008 and performed a Euclidian distance-based habitat selection analysis to investigate habitats preferred by tortoises at both landscapes (second-order order selection) and individual (third-order selection) home range scales. The home range size for tortoises in our study area was 3.79?±?0.62 ha and did not differ by gender or season (pre- and post-nesting seasons). Their movement ecology was characterized by short-distance movements (daily mean?=?31.18?±?1.59 m), apparently unaffected by habitat type. In contrast to other studies, movements of males and females were of similar magnitude. At the landscape (population home range) scale, grasslands and shrubs were preferred, but tortoises also showed affinity to forest edges. At the individual home range scale, tortoises selected grassland and shrub habitats, avoided forests, and used forest edges randomly. Creeks were avoided at both spatial scales. Our results suggest that tortoise home ranges contain well-defined associations of habitats despite a higher selection for grasslands. As such, avoiding land conversion to other uses and maintaining habitat heterogeneity through traditional practices (e.g., manual mowing of grasslands, livestock grazing) are critical for the persistence of tortoise populations.  相似文献   

3.
Animal movement and habitat selection behavior are important considerations in ecology, and remain a major issue for successful animal reintroductions. However, simple rules are often used to model movement or focus only on intrinsic environmental cues, neglecting recent insights in behavioral ecology on habitat selection processes. In particular, social information has been proposed as a widespread source of information for habitat evaluation.
We investigated the role of explicit breeding habitat selection strategies on the establishment pattern of reintroduced populations and their persistence. We considered local movement at the scale of a single population. We constructed a spatially-implicit demographic model that considered five breeding habitat selection rules: 1) random, 2) intrinsic habitat quality, 3) avoidance of conspecifics, 4) presence of conspecifics and 5) reproductive success of conspecifics. The impact of breeding habitat selection was examined for different release methods under various levels of environmental heterogeneity levels, for both long and short-lived monogamous species.
When heterogeneity between intrinsic habitat patch qualities is high, the persistence of reintroduced populations strongly depends on habitat selection strategies. Strategies based on intrinsic quality and conspecific reproductive success lead to a lower reintroduction failure risk than random, conspecific presence or avoidance-based strategies. Conspecific presence or avoidance-based strategies may aggregate individuals in suboptimal habitats. The release of adults seems to be more efficient independent of habitat selection strategy.
We emphasize the crucial role of oriented habitat selection behavior and non ideal habitat selection in movement modeling, particularly for reintroduction.  相似文献   

4.
Population consequences of movement decisions in a patchy landscape   总被引:2,自引:0,他引:2  
Complex, human‐dominated landscapes provide unique challenges to animals. In landscapes fragmented by human activity, species whose home ranges ordinarily consist of continuous habitat in pristine environments may be forced to forage among multiple smaller habitat patches embedded in an inhospitable environment. Furthermore, foragers often must decide whether to traverse a heterogeneous suite of landscape elements that differ in risk of predation or energetic costs. We modeled population consequences of foraging decisions for animals occupying patches embedded in a heterogeneous landscape. In our simulations, animals were allowed to use three different rules for moving between patches: a) optimal selection resulting from always choosing the least‐cost path; b) random selection of a movement path; and c) probabilistic selection in which path choice was proportional to an animal's probability of survival while traversing the path. The resulting distribution of the population throughout the landscape was dependent on the movement rule used. Least‐cost movement rules (a) produced landscapes that contained the highest average density of consumers per patch. However, optimal movement resulted in an all‐or‐none pattern of occupancy and a coupling of occupied patches into pairs that effectively reduced the population to a set of sub‐populations. Random and probabilistic rules, (b and c), in relatively safe landscapes produced similar average densities and 100% occupancy of patches. However, as the level of risk associated with travel between patches increased, random movement resulted in an all‐or‐none occupancy pattern while occupied patches in probabilistic populations went extinct independently of the other patches. Our results demonstrate strong effects of inter‐patch heterogeneity and movement decisions on population dynamics, and suggest that models investigating the persistence of species in complex landscapes should take into account the effects of the intervening landscape on behavioral decisions affecting animal movements between patches.  相似文献   

5.
Kenneth A. Schmidt 《Oikos》2017,126(5):651-659
The combination of spatial structure and non‐linear population dynamics can promote the persistence of coupled populations, even when the average population growth rate of the patches seen in isolation would predict otherwise. This phenomenon has generally been conceptualized and investigated through the movement of individuals among patches that each holds many individuals, as in metapopulation models. However, population persistence can likewise increase as the result of individuals moving among sites (e.g. breeding territories) within in a single patch. Here I examine the latter: individuals making small‐scale informed decisions with respect to where to breed can promote population persistence in poor environments. Based on a simple algebraic model, I demonstrate information thresholds, and predict that greater information use is required for population persistence under lower spatial heterogeneity in habitat quality, all else equal. Second, I implement an individual‐based model to explore prior experience and prospecting on conspecific success within a more complex, and spatially heterogeneous environment. Uniquely, I jointly examine the effects of simulated habitat loss, spatial heterogeneity prior to habitat, and variation in information gathering on population persistence. I find that habitat loss accelerates population quasi‐extinction risk; however, information use reduces extinction probabilities in proportion to the level of information gathering. Per capita reproductive success declines with number of breeding sites, suggesting that information‐mediated Allee effects may contribute to extinction risk. In conclusion, my study suggests that populations in a changing world may be increasingly vulnerable to extinction where patch size and spatial heterogeneity constrain the effectiveness of information‐use strategies.  相似文献   

6.
It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993–2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy’s Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken’s distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as static points, but rather as sites that shift around the landscape in response to shifting vegetation structure. Acknowledging shifting lek locations in these landscapes will help ensure conservation efforts are successful by targeting the appropriate areas for protection and management.  相似文献   

7.
Habitat quality is one of the important factors determining population dynamics and persistence, yet few studies have examined the effects of spatial heterogeneity in within-patch habitat quality. In this paper, we use a spatially explicit agent-based model to investigate how habitat fragmentation and spatial pattern of within-patch habitat quality affect population dynamics and long-term persistence. We simulate three levels of habitat fragmentation (ranges from continuous to highly fragmented) and three types of spatial patterns in habitat quality within patches (i.e., negatively autocorrelated, randomly distributed, and positively autocorrelated). Hypothetical species differ in their niche specialization. The results demonstrate explicitly that the spatial pattern of within-patch habitat quality plays an important role in modulating the effects of habitat fragmentation on populations. Populations become less variable in size, and experience lower probability of extinction in landscapes with positively autocorrelated within-patch habitat quality. Specifically, specialized species are more vulnerable to habitat fragmentation, but this vulnerability is greatly mitigated by positively autocorrelated habitat quality within patches, in other words, exhibiting higher resistance to habitat fragmentation. The findings of this study suggest that managing habitat quality in existing habitat remnants is important to preserve species in habitats undergoing fragmentation, particularly for those with specialized habitat requirements.  相似文献   

8.
Integrodifference models of growth and dispersal are analyzed on finite domains to investigate the effects of emigration, local growth dynamics and habitat heterogeneity on population persistence. We derive the bifurcation structure for a range of population dynamics and present an approximation that allows straighforward calculation of the equilibrium populations in terms of local growth dynamics and dispersal success rates. We show how population persistence in a heterogeneous environment depends on the scale of the heterogeneity relative to the organism's characteristic dispersal distance. When organisms tend to disperse only a short distance, population persistence is dominated by local conditions in high quality patches, but when dispersal distance is relatively large, poor quality habitat exerts a greater influence.  相似文献   

9.
Theoretical studies indicate that a single population under an Allee effect will decline to extinction if reduced below a particular threshold, but the existence of multiple local populations connected by random dispersal improves persistence of the global population. An additional process that can facilitate persistence is the existence of habitat selection by dispersers. Using analytic and simulation models of population change, I found that when habitat patches exhibiting Allee effects are connected by dispersing individuals, habitat selection by these dispersers increases the likelihood that patches persist at high densities, relative to results expected by random settlement. Populations exhibiting habitat selection also attain equilibrium more quickly than randomly dispersing populations. These effects are particularly important when Allee effects are large and more than two patches exist. Integrating habitat selection into population dynamics may help address why some studies have failed to find extinction thresholds in populations, despite well-known Allee effects in many species.  相似文献   

10.
Seed dispersal by animals drives persistence and colonization of the majority of fleshy‐fruited plants. Different factors have been identified as important in shaping patterns of seed deposition. These factors include habitat heterogeneity, movement patterns of frugivore species, and their feeding behavior. Most studies, however, have analysed the effect of one factor at the time, either with a modelling approach or from field observations. Here, we combine empirical data with spatially‐explicit models to explore the contribution of habitat availability and patterns of frugivore post‐feeding flight distances to the spatial patterns of seed dispersal. We found that both factors, distance from the mother tree and microhabitat identity, were shaping those patterns. Our results show that seed dispersal is tremendously heterogeneous and complex in space. The observed seed shadow is not the result of a single process but instead an intricate combination of distance and habitat selection. We suggest that the apparent combination of processes results from the simultaneous effects of distinct functional groups of frugivores.  相似文献   

11.
Unraveling the patterns of animals’ movements is crucial to understanding the basics of biogeography, tracking range shifts resulting from climate change, and predicting and preventing biological invasions. Many researchers have modeled animals’ dispersal under the assumptions of various movement strategies, either predetermined or directed by external factors, but none have compared the effects of different movement strategies on population survival and fitness. In this paper, using an agent-based model with a landscape divided into cells of varying quality, we compare the ecological success of three movement and habitat selection strategies (MHSSs): (i) Smart, in which animals choose the locally optimal cell; (ii) Random, in which animals move randomly between cells without taking into account their quality; (iii) Dreamer, in which animals attempt to find a habitat of dream whose quality is much higher than that of the habitat available on the map. We compare the short-term success of these MHSSs in good, medium and bad environments. We also assess the effect of temporal variation of habitat quality (specifically, winter harshness) on the success of each MHSS. Success is measured in terms of survival rate, dispersal distance, accumulated energy and quality of settled habitat. The most general conclusion is that while survival rate, accumulated energy and quality of settled habitat are affected primarily by overall habitat composition (proportions of different habitat types in the landscape), dispersal distance depends mainly on the MHSS. In medium and good environments, the Dreamer strategy is highly successful: it simultaneously outperforms the Smart strategy in dispersal distance and the Random strategy in terms of the other metrics.  相似文献   

12.
We present a new method of collective marking (rhodamine B) of small mammals that can be used under natural conditions. We examine the acceptance of marked baits, detection and persistence of the signal on the different kinds of hairs of two small species of rodents. Rhodamine B was ingested by captive animals and their hairs were dyed a fluorescent red coloration and observed over more than 150 days. Preliminary results obtained under field conditions tend to demonstrate that winter and summer movements could be detected by this technique. This new collective marking technique may be of great interest to study population turnover and movements of small mammals between habitat patches; it may represent an important method of assessing connectivity and permeability of landscapes by small mammals.  相似文献   

13.
Diseased animals may exhibit behavioral shifts that increase or decrease their probability of being randomly sampled. In harvest-based sampling approaches, animal movements, changes in habitat utilization, changes in breeding behaviors during harvest periods, or differential susceptibility to harvest via behaviors like hiding or decreased sensitivity to stimuli may result in a non-random sample that biases prevalence estimates. We present a method that can be used to determine whether bias exists in prevalence estimates from harvest samples. Using data from harvested mule deer (Odocoileus hemionus) sampled in northcentral Colorado (USA) during fall hunting seasons 1996-98 and Akaike's information criterion (AIC) model selection, we detected within-yr trends indicating potential bias in harvest-based prevalence estimates for chronic wasting disease (CWD). The proportion of CWD-positive deer harvested slightly increased through time within a yr. We speculate that differential susceptibility to harvest or breeding season movements may explain the positive trend in proportion of CWD-positive deer harvested during fall hunting seasons. Detection of bias may provide information about temporal patterns of a disease, suggest biological hypotheses that could further understanding of a disease, or provide wildlife managers with information about when diseased animals are more or less likely to be harvested. Although AIC model selection can be useful for detecting bias in data, it has limited utility in determining underlying causes of bias. In cases where bias is detected in data using such model selection methods, then design-based methods (i.e., experimental manipulation) may be necessary to assign causality.  相似文献   

14.
The study of butterfly movements has focused on dispersal behaviour in the framework of population persistence in heterogeneous landscapes. The ecological significance of routine movements has received less attention. These movements may be influenced by structural attributes of habitat patches or may reflect the distribution of food, mates, host plants or ecological interactions. The relative influence of structural and functional factors on flight patterns is poorly understood, partly because butterfly movements are often described by simplified representations of actual trajectories. Using high-resolution GPS tracking we obtained accurate trajectories of routine movements of Plebejus argus in a heterogeneous natural landscape. Habitat quality in patches was ranked according to the abundance of host and nectar plants as well as the abundance of nests of its mutualistic ant Lasius niger. Movements were slow and winding in high quality habitats whereas faster, straighter flights were observed in poor habitats. At edges, butterflies often crossed without any exploratory behaviour towards patches of better quality, suggesting they may use cues to detect resources at some distance. Conversely, individuals usually stayed in the patch after exploring edges with other patches of lower quality. However, scanning also preceded exits towards clearly unsuitable habitat, compatible with transfers to distant high-quality patches. We conclude that patterns of movement in P. argus were explained by spatial heterogeneity defined by functional rather than structural criteria. We also show that inexpensive handheld GPS receivers allow depicting detailed flying trajectories in open flat terrain revealing complex behavioural patterns.  相似文献   

15.
Species responses are influenced by processes operating at multiple scales, yet many conservation studies and management actions are focused on a single scale. Although landscape-level habitat conditions (i.e., habitat amount, fragmentation and landscape quality) are likely to drive the regional persistence of spatially structured populations, patch-level factors (i.e., patch size, isolation, and quality) may also be important. To determine the spatial scales at which habitat factors influence the regional persistence of endangered Ord's kangaroo rats (Dipodomys ordii) in Alberta, Canada, we simulated population dynamics under a range of habitat conditions. Using a spatially-explicit population model, we removed groups of habitat patches based on their characteristics and measured the resulting time to extinction. We used proportional hazards models to rank the influence of landscape and interacting patch-level variables. Landscape quality was the most influential variable followed by patch quality, with both outweighing landscape- and patch-level measures of habitat quantity and fragmentation/proximity. Although habitat conservation and restoration priorities for this population should be in maximizing the overall quality of the landscape, population persistence depends on how this goal is achieved. Patch quality exerted a significant influence on regional persistence, with the removal of low quality road margin patches (sinks) reducing the risk of regional extinction. Strategies for maximizing overall landscape quality that omit patch-level considerations may produce suboptimal or detrimental results for regional population persistence, particularly where complex local population dynamics (e.g., source-sink dynamics) exist. This study contributes to a growing body literature that suggests that the prediction of species responses and future conservation actions may best be assessed with a multi-scale approach that considers habitat quality and that the success of conservation actions may depend on assessing the influences of habitat factors at multiple scales.  相似文献   

16.
It has often been observed that population heterogeneities can lead to outbreaks of infection being less frequent and less severe than homogeneous population models would suggest. We address this issue by comparing a model incorporating various forms of heterogeneity with a homogenised model matched according to the value of the basic reproduction number $R_0$ . We mainly focus upon heterogeneity in individuals’ infectivity and susceptibility, though with some allowance also for heterogeneous patterns of mixing. The measures of infectious spread we consider are (i) the probability of a major outbreak; (ii) the mean outbreak size; (iii) the mean endemic prevalence level; and (iv) the persistence time. For each measure, we establish conditions under which heterogeneity leads to a reduction in infectious spread. We also demonstrate that if such conditions are not satisfied, the reverse may occur. As well as comparison with a homogeneous population, we investigate comparisons between two heterogeneous populations of differing degrees of heterogeneity. All of our results are derived under the assumption that the susceptible population is sufficiently large.  相似文献   

17.
Abstract Understanding the movement of animals is critical to many aspects of conservation such as spread of emerging disease, proliferation of invasive species, changes in land-use patterns, and responses to global climate change. Movement processes are especially important for amphibian management and conservation as species declines and extinctions worldwide become ever more apparent. To better integrate behavioral and ecological data on amphibian movements with our use of spatially explicit demographic models and guide effective conservation solutions, I present 1) a synopsis of the literature regarding behavior, ecology, and evolution of movement in pond-breeding amphibians possessing biphasic life cycles to distinguish between migration and dispersal processes, 2) a working hypothesis of juvenile-based dispersal, and 3) a discussion of conservation issues that follow from distinguishing the spatial and temporal movements of amphibians at different scales. I define amphibian migration as intrapopulational, round-trip movements toward and away from aquatic breeding sites. Population-level management, in general, can be focused on spatial scales of <1.0 km with attention focused on adult population and juveniles that remain near the natal wetland. I define amphibian dispersal as interpopulational, unidirectional movements from natal sites to other breeding sites. Metapopulation- or landscape-level management can be focused on movements among populations at spatial scales >1.0–10.0 km and on importance of terrestrial connectivity. The ultimate goal of conservation for amphibians should be long-term regional persistence by addressing management issues at both local and metapopulation scales.  相似文献   

18.
Habitat selection of animals is influenced by spatial heterogeneity as well as temporal environmental dynamics. In addition, human activities potentially have severe influences on the habitat selection of animals, often resulting in more nocturnal behavior. We investigated seasonal and circadian habitat selection patterns of red deer (Cervus elaphus) on a military training area in Bavaria (Germany). Individual deer ranged on two neighboring, but non-overlapping sites differing in landscape composition and human activity. Using GPS telemetry data, we visually investigated selection patterns and then fitted step-selection functions to assess multiple approaches to account for temporal (i.e., diel and seasonal) effects and for the impact of habitat conditions on selection. We first showed that the way in which time of day is considered in step-selection functions is essential for obtaining ecologically meaningful results, and that the usual ways of including time (i.e., either based on clock-time or based on night vs. day categories) can lead to incomplete or misleading conclusions. Furthermore, we found that individuals followed either circadian or seasonal habitat selection patterns, depending on the site they inhabited. This can be explained by differences in disturbance between the two sites. Except in winter, individuals selected for open habitats during the night irrespective of human activity level, but only individuals from the more disturbed site selected for covered habitats during the day. Our results highlight the importance of carefully considering the appropriate temporal scale for habitat selection analyses. Our findings also indicate that red deer are not a crepuscular or nocturnal species per se, as is often observed in human-dominated landscapes. Instead, our results imply that nocturnality in red deer is an effect of adaption to human activities.  相似文献   

19.
Because of its crucial importance for the persistence of the endangered Tehuantepec jackrabbit (Lepus flavigularis), we identified structural characteristics of native vegetation (1) selected by Tehuantepec jackrabbits to establish home ranges, (2) used within home ranges, and (3) in relation to activity and inactivity periods. A neotropical savanna in the Isthmus of Tehuantepec, Oaxaca, México, offered diversity in native flora and heterogeneity in vegetation structure to the studied population of Tehuantepec jackrabbit. Adults and juveniles differed in habitat use patterns. No effect on habitat selection was detected for sex or season. Jackrabbits established home ranges on grassy habitat with discontinuous overstory of nanche (Byrsonima crassifolia) shrubbery and morro (Crescentia) trees. Adults underused dense vegetation where predators may ambush them; juveniles avoided dense vegetation and grassland without overstory. Within adults’ home ranges, habitat selection favoring grassy habitats with nanche and morro was relatively stronger during the activity period (nocturnal and crepuscular hours) and during one of 2 years which had more rainfall. Scattered trees and open shrubbery likely allowed foraging jackrabbits with both visibility and escape routes used to detect and outrun predators. Moreover, during the inactivity period (diurnal hours) adults and juveniles favored nanche shrubbery that provided resting jackrabbits with shelter to hide from predators. Clearly, structure and diversity of native vegetation in the savanna needs to be preserved for conservation of Tehuantepec jackrabbits because deteriorated habitat may pose higher predation rates for a jackrabbit population in risk of extirpation.  相似文献   

20.
Many wetlands harbour highly diverse biological communities and provide extensive ecosystem services; however, these important ecological features are being altered, degraded and destroyed around the world. Despite a wealth of research on how animals respond to anthropogenic changes to natural wetlands and how they use created wetlands, we lack a broad synthesis of these data. While some altered wetlands may provide vital habitat, others could pose a considerable risk to wildlife. This risk will be heightened if such wetlands are ecological traps – preferred habitats that confer lower fitness than another available habitat. Wetlands functioning as ecological traps could decrease both local and regional population persistence, and ultimately lead to extinctions. Most studies have examined how animals respond to changes in environmental conditions by measuring responses at the community and population levels, but studying ecological traps requires information on fitness and habitat preferences. Our current lack of knowledge of individual‐level responses may therefore limit our capacity to manage wetland ecosystems effectively since ecological traps require different management practices to mitigate potential consequences. We conducted a global meta‐analysis to characterise how animals respond to four key drivers of wetland alteration: agriculture, mining, restoration and urbanisation. Our overarching goal was to evaluate the ecological impacts of human alterations to wetland ecosystems, as well as identify current knowledge gaps that limit both the current understanding of these responses and effective wetland management. We extracted 1799 taxon‐specific response ratios from 271 studies across 29 countries. Community‐ (e.g. richness) and population‐level (e.g. density) measures within altered wetlands were largely comparable to those within reference wetlands. By contrast, individual fitness measures (e.g. survival) were often lower, highlighting the potential limitations of using only community‐ and population‐level measures to assess habitat quality. Only four studies provided habitat‐preference data, preventing investigation of the potential for altered wetlands to function as ecological traps. This is concerning because attempts to identify ecological traps may detect previously unidentified conservation risks. Although there was considerable variability amongst taxa, amphibians were typically the most sensitive taxon, and thus, may be a valuable bio‐indicator of wetland quality. Despite suffering reduced survival and reproduction, measures such as time to and mass at metamorphosis were similar between altered and reference wetlands, suggesting that quantifying metamorphosis‐related measures in isolation may not provide accurate information on habitat quality. Our review provides the most detailed evaluation to date of the ecological impacts of human alterations to wetland ecosystems. We emphasise that the role of wetlands in human‐altered ecosystems can be complex, as they may represent important habitat but also pose potential risks to animals. Reduced availability of natural wetlands is increasing the importance of altered wetlands for aquatic animals. Consequently, we need to define what represents habitat quality from the perspective of animals, and gain a greater understanding of the underlying mechanisms of habitat selection and how these factors could be manipulated. Furthermore, strategies to enhance the quality of these wetlands should be implemented to maximise their conservation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号