首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to identify residues required for the binding of interleukin-8 (IL-8) to its receptor, mutants were constructed in which clusters of charged amino acids were systematically replaced with alanine along the entire IL-8 sequence. The mutants were tested for their ability to induce a receptor-mediated rise in cytosolic free Ca2+, a property of wild-type IL-8 which can readily be detected by flow cytometry using neutrophils loaded with the calcium probe Indo-1. Eleven of the 12 mutants caused neutrophil calcium mobilization at 5 nM; the exception being a triple alanine mutant at positions K3, E4, and R6, which was inactive at all concentrations tested (150 nM maximum). A second set of mutants was generated in which residues 1-15 were individually mutated to alanine. Mutants E4A, L5A, or R6A were all inactive in the Ca2+ assay at 5 nM and competed poorly with 125I-IL-8 for neutrophil receptor binding; I10A, E4A, L5A, and R6A had approximately 30-, 100-, 100-, and 1000-fold reduced affinity, as compared with control IL-8, respectively. The nuclear magnetic resonance structure of IL-8 indicates that, in solution, the side chains of E4, L5, R6, and I10 point away from the core of the protein and do not participate in any intramolecular hydrogen bonds or salt bridges (Clore, G. M., and Gronenborn, A. M. (1991) J. Mol. Biol. 217, 611-620).  相似文献   

2.
Refolding a disulfide dimer of cytochrome c   总被引:1,自引:0,他引:1  
A covalent dimer of Saccharomyces cerevisiae iso-1 cytochrome c is stabilized by an interchain disulfide bond involving the cysteine residue penultimate to the C-terminus. The individual chains in the dimer appear to retain the tertiary structural features characteristic for monomeric cytochrome c albeit with some perturbation. The dimer is reversibly denatured by heat, urea, or guanidine hydrochloride in a single cooperative transition whose midpoint is less than that of the monomeric protein. The kinetic profile observed for the refolding of the denatured dimer is characteristic for monomeric cytochromes except for a markedly enhanced slow-phase amplitude.  相似文献   

3.
Disulfide bonds are required to stabilize the folded conformations of many proteins. The rates and equilibria of processes involved in disulfide bond formation and breakage can be manipulated experimentally and can be used to obtain important information about protein folding and stability. A number of experimental procedures for studying these processes, and approaches to interpreting the resulting data, are described here.  相似文献   

4.
Chemokines elicit their function by binding receptors of the G-protein-coupled receptor class, and the N-terminal domain (N-domain) of the receptor is one of the two critical ligand-binding sites. In this study, the thermodynamic basis for binding of the chemokine interleukin-8 (IL-8) to the N-domain of its receptor CXCR1 was characterized using isothermal titration calorimetry. We have shown previously that only the monomer of IL-8, and not the dimer, functions as a high-affinity ligand, so in this study we used the IL-8(1-66) deletion mutant which exists as a monomer. Calorimetry data indicate that the binding is enthalpically favored and entropically disfavored, and a negative heat capacity change indicates burial of hydrophobic residues in the complex. A characteristic feature of chemokine receptor N-domains is the large number of acidic residues, and experiments using different buffers show no net proton transfer, indicating that the CXCR1 N-domain acidic residues are not protonated in the binding process. CXCR1 N-domain peptide is unstructured in the free form but adopts a more defined structure in the bound form, and so binding is coupled to induction of the structure of the N-domain. Measurements in the presence of the osmolyte, trimethylamine N-oxide, which induces the structure of unfolded proteins, show that formation of the coupled N-domain structure involves only small DeltaH and DeltaS changes. These results together indicate that the binding is driven by packing interactions in the complex that are enthalpically favored, and are consistent with the observation that the N-domain binds in an extended form and interacts with multiple IL-8 N-loop residues over a large surface area.  相似文献   

5.
Chemokines play a fundamental role in trafficking of immune cells and in host defense against infection. The role of chemokines in the recruitment process is highly regulated spatially and temporally and involves interactions with G protein-coupled receptors and cell surface glycosaminoglycans. The dynamic equilibrium between chemokine monomers and dimers, both free in solution and in cell surface-bound forms, regulates different components of recruitment such as chemotaxis and receptor signaling. The binding and activity of the chemokine interleukin-8 (IL-8) for its receptors, previously studied using "trapped" non-associating monomers and non-dissociating dimers, show that the monomer has a native-like function but support conflicting roles for the dimer. We have measured the binding of native IL-8 to the CXCR1 N-domain, using isothermal titration calorimetry and sedimentation equilibrium techniques. The N-domain constitutes a critical binding site, and IL-8 binding affinity to the receptor N-domain is in the same concentration range as the IL-8 monomerdimer equilibrium. We observed that only the IL-8 monomer, and not the dimer, is competent in binding the receptor N-domain. Based on our results, we propose that IL-8 dimerization functions as a negative regulator for the receptor function and as a positive regulator for binding to glycosaminoglycans and that both play a role in the neutrophil recruitment process.  相似文献   

6.
In an effort to determine the role of the acidic group in the receptor binding of N-(2-hydroxy-4-nitrophenyl)-N-(phenyl) urea, an interleukin-8B receptor antagonist, its binding and that of several analogs was measured as a function of pH. These titrations indicate that these ureas bind most strongly in their anionic form. Studies of antagonists, with different acidities, demonstrated that the greatest change in binding of each urea occurred around the pKa of the compound being examined. The studies suggest that the increase in binding of the antagonists at higher pH is a result of the increased negative charge on the compounds rather than the effects of pH on the receptor or radioligand.  相似文献   

7.
Summary In an effort to determine the role of the acidic group in the receptor binding ofN-(2-hydroxy-4-nitrophenyl)-N′-(phenyl) urea, an interleukin-8B receptor antagonist, its binding and that of several analogs was measured as a function of pH. These titrations indicate that these ureas bind most strongly in their anionic form. Studies of antagonists, with different acidities, demonstrated that the greatest change in binding of each urea occurred around the pK a of the compound being examined. The studies suggest that the increase in binding of the antagonists at higher pH is a result of the increased negative charge on the compounds rather than the effects of pH on the receptor or radioligand.  相似文献   

8.
9.
Three analogs of unmodified yeast tRNAPhe, each possessing a single disulfide cross-link, have been designed and synthesized. One cross-link is between G1 and C72 in the amino acid acceptor stem, a second cross-link is in the central D region of yeast tRNAPhe between C11 and C25 and the third cross-link bridges U16 and C60 at the D loop/T loop interface. Air oxidation to form the cross-links is quantitative and analysis of the cross-linked products by native and denaturing PAGE, RNase T1 mapping, Pb(II) cleavage, UV cross-linking and thermal denaturation demonstrates that the disulfide bridges do not alter folding of the modified tRNAs relative to the parent sequence. The finding that cross-link formation between thiol-derivatized residues correlates with the position of these groups in the crystal structure of native yeast tRNAPhe and that the modifications do not significantly perturb native structure suggests that this methodology should be applicable to the study of RNA structure, conformational dynamics and folding pathways.  相似文献   

10.
A conserved feature of all nicotinic receptors is the presence of a readily reducible disulfide bond adjacent to the acetylcholine binding site. Previously we showed that in intact receptor from Torpedo californica electric tissue reduction of this disulfide followed by affinity alkylation with 4-(N-maleimido)benzyltri[3H] methylammonium iodide specifically and uniquely labels the alpha subunit residues Cys-192 and Cys-193. To identify all of the half-cystinyl residues contributing to the binding site disulfide(s), we have now reduced receptor under mild conditions and alkylated with a mixture of 4-(N-maleimido)benzyltri[3H]methylammonium iodide and N-[1-14C]ethylmaleimide and find that Cys-192 and Cys-193 are labeled exclusively. Furthermore, from unreduced receptor we have isolated two cyanogen bromide peptides of alpha, one containing Cys-192 and Cys-193, and the other containing Cys-128 and Cys-142 (which are the other potential contributors to the binding site disulfide(s]. These isolated peptides incorporate iodo[1-14C]acetamide only following reduction by dithiothreitol. Our results demonstrate that: 1) the binding site disulfide is between Cys-192 and Cys-193; 2) Cys-128 is disulfide-cross-linked to Cys-142; and 3) under conditions that reduce Cys-192 and Cys-193 completely, Cys-128 and Cys-142 remain cross-linked. At the acetylcholine binding site, agonists induce a local conformational change that stabilizes the binding site disulfide against reduction. We suggest that a transition between two stable conformations of the vicinal disulfide, both involving a nonplanar cis peptide bond between Cys-192 and Cys-193, is associated with receptor activation by agonists.  相似文献   

11.
Molecular characterization of the interleukin-8 receptor   总被引:1,自引:0,他引:1  
Recently a rabbit cDNA (F3R) was characterized as binding and causing calcium mobilization induced by the formyl-methionine-leucine-phenylalanine peptide (fMLP). In the study reported here, cloned DNAs were isolated from rabbit genomic DNA by PCR based on the sequence of F3R. The cloned DNAs have several differences in the DNA sequence compared to the reported F3R sequence that alter the predicted protein sequence. COS-7 cells transfected with these clones in a mammalian expression vector bind human IL-8 with high affinity, but do not bind fMLP. We therefore believe that the cDNAs isolated encode the rabbit IL-8 receptor.  相似文献   

12.
Interleukin-1 proteins elicit a number of biological activities, but the molecular events following formation of a cell surface receptor-ligand complex have not been well defined. Conversion of Arg127 to Gly127 in the mature human interleukin-1 beta protein reduces bioactivity by 100-fold while the receptor binding affinity decreases by only 25%. The results suggest that the mutant IL-1 beta protein is defective in activating signal transduction events and indicate that binding of interleukin-1 beta protein to receptor is necessary but insufficient for biological activity. The finding that the features of the IL-1 beta protein responsible for receptor binding and biological activity are at least in part distinct may be clinically relevant to the design of interleukin-1 antagonists.  相似文献   

13.
The human multidrug resistance transporter P-glycoprotein (P-gp) prevents the entry of compounds into the brain by an active efflux mechanism at the blood-brain barrier (BBB). Treatment of neurodegenerative diseases, therefore, has become a challenge and the development of new reversible inhibitors of P-gp is pertinent to overcome this problem. We report the design and synthesis of a crosslinked agent based on the Alzheimer’s disease treatment galantamine (Gal-2) that inhibits P-gp-mediated efflux from cultured cells. Gal-2 was found to inhibit the efflux of the fluorescent P-gp substrate rhodamine 123 in cancer cells that over-express P-gp with an IC50 value of approximately 0.6 μM. In addition, Gal-2 was found to inhibit the efflux of therapeutic substrates of P-gp, such as doxorubicin, daunomycin and verapamil with IC50 values ranging from 0.3 to 1.6 μM. Through competition experiments, it was determined that Gal-2 modulates P-gp mediated efflux by competing for the substrate binding sites. These findings support a potential role of agents, such as Gal-2, as inhibitors of P-gp at the BBB to augment treatment of neurodegenerative diseases.  相似文献   

14.
Human nerve growth factor-induced B (NGFI-B) is a member of the NR4A subfamily of orphan nuclear receptors (NRs). Lacking identified ligands, orphan NRs show particular co-regulator proteins binding properties, different from other NRs, and they might have a non-classical quaternary organization. A body of evidence suggests that NRs recognition of and binding to ligands, DNA, homo- and heterodimerization partners and co-regulator proteins involve significant conformational changes of the NR ligand-binding domains (LBDs). To shed light on largely unknown biophysical properties of NGFI-B, here we studied structural organization and unfolding properties of NGFI-B ligand (like)-binding domain induced by chemical perturbation. Our results show that NGFI-B LBD undergoes a two-state guanidine hydrochloride (GndHCl) induced denaturation, as judged by changes in the alpha-helical content of the protein monitored by circular dichroism spectroscopy (CD). In contrast, changes in the tertiary structure of NGFI-B LBD, reported by intrinsic fluorescence, reveal a clear intermediate state. Additionally, SAXS results demonstrate that the intermediate observed by intrinsic fluorescence is a partially folded homodimeric structure, which further unfolds without dissociation at higher GndHCl concentrations. This partially unfolded dimeric assembly of NGFI-B LBD might resemble an intermediate that this domain access momentarily in the native state upon interactions with functional partners.  相似文献   

15.
Conformational dynamics play a crucial role in biological function. Dynein light chain protein (DLC8) acts as a cargo adaptor, and exists as a dimer under physiological conditions and dissociates into monomer below pH 4. In the present NMR study, we identified some dynamic residues in the dimer using chemical shift perturbation approach by applying small pH change. As evidenced by gel filtration and CD studies, this small pH change does not alter the globular structural features of the protein. In fact, these changes result in small local stability perturbations as monitored using temperature dependence of amide proton chemical shifts, and influence the dynamics of the dimer substantially. Further, interaction studies of the protein with a peptide containing the recognition motif of cargo indicated that the efficacy of peptide binding decreases when the pH is reduced from 7 to 6. These observations taken together support the conception that dynamics can regulate cargo binding/trafficking by the DLC8 dimer.  相似文献   

16.
The structural and functional roles of the two disulfide bridges in interleukin-8 (IL-8) were addressed using IL-8 analogues with covalently modified disulfide bridges. The analogues were prepared using chemical synthesis by replacement of a cysteine for either homocysteine, penicillamine, or selenocysteine and on folding resulted in a covalently modified disulfide. Deletion of either of the two disulfide bridges by replacement of either cysteine pair with alanine resulted in loss of both structure and function. In contrast, all of the analogues with modified disulfide bridges had native tertiary fold as determined by nuclear magnetic resonance spectroscopic methods. Their structural similarity provided a rational basis for assessing the functional effects of the changes to the disulfide. Modification to the disulfide bridge between cysteines 9 and 50 had only a modest effect on IL-8 function. In contrast, alterations to the 7-34 disulfide bridge resulted in a dramatic reduction in biological potency. Thus, although both disulfide bridges are required for maintenance of the native tertiary fold, their role in determining IL-8 activity is distinct. We propose that 7-34 disulfide has a direct role in determining receptor binding and activation, whereas the 9-50 was not directly involved. The synthesis of non-natural disulfide analogues is a novel general approach to structure-activity relationships of disulfide bridges. The demonstration that the participation of disulfide bridges in function can be dissociated from their effects on the stability of the tertiary structure suggests that this method will lead to increased understanding of the roles of disulfide bridges in proteins.  相似文献   

17.
We have examined the functional importance of the two disulfide bonds formed by the four conserved cysteines of human interleukin (IL-6). Using a bacterial expression system, we have synthesized a series of recombinant IL-6 mutants in which the constituent cysteines of the first (Cys45-Cys51), second (Cys74-Cys84), or both disulfide bonds of recombinant human interleukin-6 were replaced by other amino acids. Each mutant was partially purified and tested in four representative bioassays. While mutants lacking Cys45 and Cys51 retained activity similar to nonmutated recombinant IL-6, the activity of mutants lacking Cys74 and Cys84 was significantly reduced, especially in assays involving human cell lines. These results indicate that the first disulfide bond of human interleukin-6 is not required for maintenance of normal biologic activity. However, the fact that mutants lacking Cys45 and Cys51 were more active than corresponding cysteine-free mutants indicates that the disulfide bond formed by these residues contributes to biologic activity in the absence of the second disulfide bond. Competition binding studies with representative mutants indicate that their affinity for the human IL-6 receptor parallels their biologic activities on human cells.  相似文献   

18.
A soluble receptor binding assay has been developed for measuring human interleukin-1 alpha (IL-1 alpha), human IL-1 beta, and mouse IL-1 alpha. The assay is based on a competition between unlabeled IL-1 and 125I-labeled mouse recombinant IL-1 alpha for binding to soluble IL-1 receptor prepared from mouse EL-4 cells. The assay measures only biologically active IL-1 folded in its native conformation. The ratio of human IL-1 alpha to human IL-1 beta can be measured in the same sample by a pretreatment step which removes human IL-1 beta from samples prior to assay. This technique has been used to monitor the purification of recombinant IL-1, and may be utilized to specifically and accurately measure bioactive IL-1 in human serum and cell culture supernatants.  相似文献   

19.
Radioiodinated photoactivatable photoprobes can provide valuable insights regarding protein structure. Previous work in our laboratory showed that the cocaine derivative and photoprobe 3-[ (125)I]iodo-4-azidococaine ([ (125)I]IACoc) binds to the sigma-1 receptor with 2-3 orders of magnitude higher affinity than cocaine [Kahoun, J. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1393-1397]. Using this photoprobe, we demonstrated the insertion site for [ (125)I]IACoc to be Asp188 [Chen, Y. (2007) Biochemistry 46, 3532-3542], which resides in the proposed steroid binding domain-like II (SBDLII) region (amino acids 176-194) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. An additional photoprobe based on the sigma-1 receptor ligand fenpropimorph, 1- N-(2-3-[ (125)I]iodophenyl)propane ([ (125)I]IAF), was found to label a peptide in both the SBDLII and steroid binding domain-like I (SBDLI) (amino acids 91-109) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. In this report, we describe two novel strategically positioned carrier-free, radioiodinated photoaffinity labels specifically designed to probe the putative "nitrogen interacting region" of sigma-1 receptor ligands. These two novel photoprobes are (-)-methyl 3-(benzoyloxy)-8-2-(4-azido-3-[ (125)I]iodobenzene)-1-ethyl-8-azabicyclo[3.2.1]octane-2-carboxylate ([ (125)I]-N-IACoc) and N-propyl- N-(4-azido-3-iodophenylethyl)-3-(4-fluorophenyl)propylamine ([ (125)I]IAC44). In addition to reporting their binding affinities to the sigma-1 and sigma-2 receptors, we show that both photoaffinity labels specifically and covalently derivatized the pure guinea pig sigma-1 receptor (26.1 kDa) [Ramachandran, S. (2007) Protein Expression Purif. 51, 283-292]. Cleavage of the photolabeled sigma-1 receptor using Endo Lys C and cyanogen bromide (CNBr) revealed that the [ (125)I]-N-IACoc label was located primarily in the N-terminus and SBDLI-containing peptides of the sigma-1 receptor, while [ (125)I]IAC44 was found in peptide fragments consistent with labeling of both SBDLI and SBDLII.  相似文献   

20.
Summary Thioredoxin, a redox active disulfide protein, has been specifically immobilized at a modified gold electrode. The thioredoxin is uniquely oriented relative to the electrode surface via a histidine tag thereby enabling the redox mechanism of protein to be examined. When scanning the applied potential in the negative direction (cathodic), two one-electron reduction waves can be observed. The first of these redox waves occurs at −90 mV and is electrochemically reversible at all scan rates whereas the second wave occurs at −433 mV is irreversible. These two processes are interpreted as the initial reduction of the disulfide form of the protein to a stable (reversible) semi-reduced radical anion intermediate, followed by an electrochemically irreversible process to form a fully reduced thioredoxin. These electron transfer characteristics suggest that a radical intermediate retaining the sulfur-sulfur bond is thermodynamically stable but the addition of a second electron results in bond scission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号