首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Phenylalanine hydroxylase catalyzes the stereospecific hydroxylation of L-phenylalanine, the committed step in the degradation of this amino acid. We have solved the crystal structure of the ternary complex (hPheOH-Fe(II).BH(4).THA) of the catalytically active Fe(II) form of a truncated form (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH), using the catalytically active reduced cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and 3-(2-thienyl)-L-alanine (THA) as a substrate analogue. The analogue is bound in the second coordination sphere of the catalytic iron atom with the thiophene ring stacking against the imidazole group of His285 (average interplanar distance 3.8A) and with a network of hydrogen bonds and hydrophobic contacts. Binding of the analogue to the binary complex hPheOH-Fe(II).BH(4) triggers structural changes throughout the entire molecule, which adopts a slightly more compact structure. The largest change occurs in the loop region comprising residues 131-155, where the maximum r.m.s. displacement (9.6A) is at Tyr138. This loop is refolded, bringing the hydroxyl oxygen atom of Tyr138 18.5A closer to the iron atom and into the active site. The iron geometry is highly distorted square pyramidal, and Glu330 adopts a conformation different from that observed in the hPheOH-Fe(II).BH(4) structure, with bidentate iron coordination. BH(4) binds in the second coordination sphere of the catalytic iron atom, and is displaced 2.6A in the direction of Glu286 and the iron atom, relative to the hPheOH-Fe(II).BH(4) structure, thus changing its hydrogen bonding network. The active-site structure of the ternary complex gives new insight into the substrate specificity of the enzyme, notably the low affinity for L-tyrosine. Furthermore, the structure has implications both for the catalytic mechanism and the molecular basis for the activation of the full-length tetrameric enzyme by its substrate. The large conformational change, moving Tyr138 from a surface position into the active site, may reflect a possible functional role for this residue.  相似文献   

2.
The crystal structures of the catalytic domain (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH) in its catalytically competent Fe(II) form and binary complex with the reduced pterin cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) have been determined to 1.7 and 1.5 A, respectively. When compared with the structures reported for various catalytically inactive Fe(III) forms, several important differences have been observed, notably at the active site. Thus, the non-liganded hPheOH-Fe(II) structure revealed well defined electron density for only one of the three water molecules reported to be coordinated to the iron in the high-spin Fe(III) form, as well as poor electron density for parts of the coordinating side-chain of Glu330. The reduced cofactor (BH4), which adopts the expected half-semi chair conformation, is bound in the second coordination sphere of the catalytic iron with a C4a-iron distance of 5.9 A. BH4 binds at the same site as L-erythro-7,8-dihydrobiopterin (BH2) in the binary hPheOH-Fe(III)-BH2 complex forming an aromatic pi-stacking interaction with Phe254 and a network of hydrogen bonds. However, compared to that structure the pterin ring is displaced about 0.5 A and rotated about 10 degrees, and the torsion angle between the hydroxyl groups of the cofactor in the dihydroxypropyl side-chain has changed by approximately 120 degrees enabling O2' to make a strong hydrogen bond (2.4 A) with the side-chain oxygen of Ser251. Carbon atoms in the dihydroxypropyl side-chain make several hydrophobic contacts with the protein. The iron is six-coordinated in the binary complex, but the overall coordination geometry is slightly different from that of the Fe(III) form. Most important was the finding that the binding of BH4 causes the Glu330 ligand to change its coordination to the iron when comparing with non-liganded hPheOH-Fe(III) and the binary hPheOH-Fe(III)-BH2 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号