首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arbuscular mycorrhizal (AM) fungi interact with bacteria (AM fungi-associated bacteria, AMB) in the mycorrhizosphere. We previously identified a set of AMB that enhance AM fungal colonization, plant growth, and inhibit pathogens. Here, we used transformed carrot root cultures in a two-compartment plate system for further in vitro studies on interactions taking place among Glomus irregulare (syn.Glomus intraradices), AMB, and plant pathogens. We found that exudates of G. irregulare stimulated growth of all ten AMB isolates tested in multi-well plates. AMB growth stimulation was observed also during co-cultivation of three of these AMB with G. irregulare in the hyphal compartment. In addition, co-cultivation stimulated growth of G. irregulare hyphae and spore production, as well as G. irregulare root colonization. GC/MS analysis in a preliminary screening of metabolites revealed differences in concentrations of several identified but also unidentified compounds in G. irregulare hyphal exudates. Exudates in presence of three different AMB isolates co-cultivated with G. irregulare contained several additional compounds that differed in amount compared with G. irregulare alone. The results indicate that G. irregulare exudates contain carbohydrates, amino acids, and unidentified compounds that could serve as a substrate to stimulate AMB growth. With regard to effects on plant pathogens, growth inhibition of Rhizoctonia solani, Verticillium dahliae, and Pectobacterium carotovorum ssp. carotovorum was evident in the presence of the AMB isolates tested together with the G. irregulare exudates. These in vitro studies suggest that G. irregulare and AMB stimulate growth of each other and that they together seem to provide an additive effect against growth of both fungal and bacterial pathogens.  相似文献   

2.
During spore germination, arbuscular mycorrhizal (AM) fungi show limited hyphal development in the absence of a host plant (asymbiotic). In the presence of root exudates, they switch to a new developmental stage (presymbiotic) characterized by extensive hyphal branching. Presymbiotic branching of the AM fungus Gigaspora rosea was induced in liquid medium by a semipurified exudate fraction from carrot (Daucus carota) root organ cultures. Changes in RNA accumulation patterns were monitored by differential display analysis. Differentially appearing cDNA fragments were cloned and further analyzed. Five cDNA fragments could be identified that show induced RNA accumulation 1 h after the addition of root exudate. Sequence similarities of two fragments to mammalian Nco4 and mitochondrial rRNA genes suggested that root exudates could influence fungal respiratory activity. To support this hypothesis, additional putative mitochondrial related-genes were shown to be induced by root exudates. These genes were identified after subtractive hybridization and putatively encode a pyruvate carboxylase and a mitochondrial ADP/ATP translocase. The gene GrosPyc1 for the pyruvate carboxylase was studied in more detail by cloning a cDNA and by quantifying its RNA accumulation. The hypothesis that respiratory activity of AM fungi is stimulated by root exudates was confirmed by physiological and cytological analyses in G. rosea and Glomus intraradices. Oxygen consumption and reducing activity of both fungi was induced after 3 and 2 h of exposition with the root factor, respectively, and the first respiration activation was detected in G. intraradices after approximately 90 min. In addition, changes in mitochondrial morphology, orientation, and overall biomass were detected in G. rosea after 4 h. In summary, the root-exuded factor rapidly induces the expression of certain fungal genes and, in turn, fungal respiratory activity before intense branching. This defines the developmental switch from asymbiosis to presymbiosis, first by gene activation (0.5-1 h), subsequently on the physiological level (1.5-3 h), and finally as a morphological response (after 5 h).  相似文献   

3.
The production of hydrolytic enzymes from external mycelia associated with roots and colonized soybean roots (Glycine max L.) inoculated with different arbuscular-mycorrhizal (AM) fungi of the genus GLOMUS:, and the possible relationship between these activities and the capacity of the AM fungi to colonize plant roots was studied. There were differences in root colonization and plant growth between the GLOMUS: strains, and also between two isolates of G. mosseae. Hydrolytic activities in the root and external mycelia associated with roots differed in the AM fungi tested. Correlations were only found between the endoxyloglucanase activity of the external mycelia associated with roots of the AM fungi tested and the percentage root colonization or plant growth. However, hydrolytic activities of roots colonized by the different endophytes correlated with those of external mycelia. The hydrolytic activities were not qualitatively different because the endoxyloglucanase from AM colonized roots and the external mycelia did not show a high degree of polymorphism in the different species of fungus tested. The possible role of the hydrolytic activity of external hyphae of AM fungi was discussed as a factor affecting fungal ability to colonize the root and influence plant growth.  相似文献   

4.
Interest in the diversity of arbuscular mycorrhizal (AM) fungal communities has been stimulated by recent data that demonstrate that fungal communities influence the competitive hierarchies, productivity, diversity, and successional patterns of plant communities. Although natural communities of AM fungi are diverse, we have a poor understanding of the mechanisms that promote and maintain that diversity. Plants may coexist by inhabiting disparate temporal niches; plants of many grasslands are either warm or cool season specialists. We hypothesized that AM fungi might be similarly seasonal. To test our hypothesis, we tracked the sporulation of individual AM fungal species growing within a North Carolina grassland. Data were collected in 1996 and 1997; in 1997, sampling focused on two common species. We found that AM fungi, especially Acaulospora colossica and Gigaspora gigantea, maintained different and contrasting seasonalities. Acaulospora colossica sporulated more frequently in the warm season, but Gi. gigantea sporulated more frequently in the cool season. Moreover, AM fungal species were spatially aggregated at a fine scale. Contrasting seasonal and spatial niches may facilitate the maintenance of a diverse community of AM fungi. Furthermore, these data may illuminate our understanding of the AM fungal influence on plant communities: various fungal species may preferentially associate with different plant species and thereby promote diversity in the plant community.  相似文献   

5.
Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.  相似文献   

6.
We developed an experimental model system to monitor the impact of generically modified (GM) plants on arbuscular mycorrhizal (AM) fungi, a group of non-target soil microorganisms, fundamental for soil fertility and plant nutrition. The system allowed us to study the effects of root exudates of both commercial Bt corn and aubergine plants expressing Dm-AMP1 defensin on different stages of the life cycle of the AM fungal species G. mosseae. Root exudates of Bt 176 corn significantly reduced pre-symbiotic hyphal growth, compared to Bt 11 and non-transgenic plants. No differences were found in mycelial growth in the presence of Dm-AMP1 and control plant root exudates. Differential hyphal morphogenesis occurred irrespective of the plant line, suggesting that both exuded Bt toxin and defensin do not interfere with fungal host recognition mechanisms. Bt 176 affected the regular development of appressoria, 36% of which failed to produce viable infection pegs. Our experimental model system represents an easy assay for testing the impact of GM plants on non-target soil-borne AM fungi.  相似文献   

7.
The effect of flavonoids isolated from arbuscular mycorrhizal (AM) colonized and noncolonized clover roots on the number of entry points and percentage of root colonization of tomato (Lycopersicum esculentum L.) by Gigaspora rosea, Gi margarita, Glomus mosseae and G. intrarradices symbionts was determined. With fungi of both genera, a correlation between the number of entry points and the percentage of root colonization was found in the presence of some of the tested flavonoids. The flavonoids acacetin and rhamnetin, present in AM clover roots, inhibited the formation of AM penetration structures and the AM colonization of tomato roots, whereas the flavonoid 5,6,7,8,9-hydroxy chalcone, which could not be detected in AM clover root, inhibited both parameters. The flavonoid quercetin, which was present in AM clover roots, stimulated the penetration and root colonization of tomato by Gigaspora. However, the flavonoids 5,6,7,8-hydroxy-4'-methoxy flavone and 3,5,6,7,4'-hydroxy flavone, which was not found in AM clover root, increased the number of entry points and the AM colonization of tomato roots by Gigaspora. These results indicated that flavonoids could be imnplicated in the process of regulation of AM colonization in plant root, but its role is highly complex and depend not only on flavonoids, but also on AM fungal genus or even species.  相似文献   

8.
Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discussed.  相似文献   

9.
Strigolactones (SLs) trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (−)−orobanchol and ent-2''-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants) present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi.  相似文献   

10.
根腐病是一类危害严重的土传病害,常常导致作物产量和品质降低。丛枝菌根(AM)真菌是一类重要的土壤微生物,通过与植物根系建立共生体而发挥重要的生理生态功能。研究表明,AM真菌通过调节宿主植物一系列生理生化响应,诱导植物增强根腐病抗性。当前,利用AM真菌开展根腐病等土传病害的生物防治是植物与微生物互作领域的研究热点。本文全面梳理了AM真菌对宿主植物根腐病病原物的抑制效应,系统总结了AM真菌改变宿主植物根系形态结构、改善植物营养水平、与病原物竞争生态位点、激活植物防御体系、调节根系分泌物等方面的研究结果,分析了AM真菌抑制根腐病危害的作用机制,展望了AM真菌抑制根腐病危害的潜在机制和AM真菌高效利用面临的现实问题,旨在为利用AM真菌开展植物根腐病的生物防治提供理论依据。  相似文献   

11.
Many invasive plants have enhanced mutualistic arbuscular mycorrhizal (AM) fungal associations, however, mechanisms underlying differences in AM fungal associations between introduced and native populations of invasive plants have not been explored. Here we test the hypothesis that variation in root exudate chemicals in invasive populations affects AM fungal colonization and then impacts plant performance. We examined flavonoids (quercetin and quercitrin) in root exudates of native and introduced populations of the invasive plant Triadica sebifera and tested their effects on AM fungi and plant performance. We found that plants from introduced populations had higher concentrations of quercetin in root exudates, greater AM fungal colonization and higher biomass. Applying root exudates more strongly increased AM fungal colonization of target plants and AM fungal spore germination when exudate donors were from introduced populations. The role of root exudate chemicals was further confirmed by decreased AM fungal colonization when activated charcoal was added into soil. Moreover, addition of quercetin into soil increased AM fungal colonization, indicating quercetin might be a key chemical signal stimulating AM fungal associations. Together these results suggest genetic differences in root exudate flavonoids play an important role in enhancing AM fungal associations and invasive plants’ performance, thus considering root exudate chemicals is critical to unveiling mechanisms governing shifting plant-soil microbe interactions during plant invasions.Subject terms: Population dynamics, Community ecology, Plant ecology  相似文献   

12.
van de Staaij  J.  Rozema  J.  van Beem  A.  Aerts  R. 《Plant Ecology》2001,154(1-2):169-177
An area of coastal dune grassland, dominated by the gramineous species Calamagrostis epigeios and Carex arenaria, was exposed to enhanced levels of UV-B radiation during a five year period. These species showed reduced AM-fungal infection percentages in their roots. In C. epigeios AM infection was reduced by 18%, C. arenaria showed a reduction by 20%. The major effect of enhanced UV-B on AM associations was a reduction of the number of arbuscules. This indicates a reduction in the exchange of nutrients between the symbionts. Since the effect of UV-B on AM associations may result from altered flavonoid levels in the root exudates of the host plants, flavonoid levels in the roots were investigated. No detectable flavonoid concentrations were found in the roots of C. epigeios and C. arenaria. Less effective AM associations can have pronounced negative effects on biodiversity and nutrient dynamics of the dune grassland ecosystem. The possible mechanisms causing these indirect effects of elevated UV-B on below ground AM associations are discussed. We conclude that UV-B induced changes in plant hormone levels are more likely to be the mechanism reducing AMF infection than UV-B induced alterations in flavonoid concentrations in the root exudates of the host plant.  相似文献   

13.
It is currently accepted that, along with nutrients, arbuscular mycorrhizal (AM) fungi also transport water to their host plant. However, the quantity of water supplied and its significance for plant water relations remain controversial. The objective of this work was to evaluate and compare the ability of six AM fungi to alter rates of root water uptake under drought stress conditions. Soil drying rates of uninoculated control plants of comparable size and nutritional status and mycorrhizal plants were recorded daily. Lactuca sativa plants colonized by Glomus coronatum , G. intraradices , G. claroideum and G. mosseae depleted soil water to a higher extent than comparably sized uninoculated control plants or plants colonized by G. constrictum or G. geosporum . The differences ranged from 0.6% volumetric soil moisture for G. mosseae -colonized plants to 0.95% volumetric soil moisture for G. intraradices -colonized plants. These differences in soil moisture were equivalent to 3–4.75 ml plant−1 day−1, respectively, and could not be ascribed to differences in plant size, but to the activity of AM fungi. The AM fungi tested in this study differed in their effectiveness to enhance plant water uptake from soil. This ability seems to be related to the amount of external mycelium produced by each AM fungus and to the frequency of root colonization in terms of live and active fungal structures.  相似文献   

14.
Using dual cultures of arbuscular mycorrhizal (AM) fungi and Medicago truncatula separated by a physical barrier, we demonstrate that hyphae from germinating spores produce a diffusible factor that is perceived by roots in the absence of direct physical contact. This AM factor elicits expression of the Nod factor-inducible gene MtENOD11, visualized using a pMtENOD11-gusA reporter. Transgene induction occurs primarily in the root cortex, with expression stretching from the zone of root hair emergence to the region of mature root hairs. All AM fungi tested (Gigaspora rosea, Gigaspora gigantea, Gigaspora margarita, and Glomus intraradices) elicit a similar response, whereas pathogenic fungi such as Phythophthora medicaginis, Phoma medicaginis var pinodella and Fusarium solani f.sp. phaseoli do not, suggesting that the observed root response is specific to AM fungi. Finally, pMtENOD11-gusA induction in response to the diffusible AM fungal factor is also observed with all three M. truncatula Nod(-)/Myc(-) mutants (dmi1, dmi2, and dmi3), whereas the same mutants are blocked in their response to Nod factor. This positive response of the Nod(-)/Myc(-) mutants to the diffusible AM fungal factor and the different cellular localization of pMtENOD11-gusA expression in response to Nod factor versus AM factor suggest that signal transduction occurs via different pathways and that expression of MtENOD11 is differently regulated by the two diffusible factors.  相似文献   

15.
Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that participate in a highly beneficial root symbiosis with 80% of land plants. Strigolactones are trace molecules in plant root exudates that are perceived by AM fungi at subnanomolar concentrations. Within just a few hours, they were shown to stimulate fungal mitochondria, spore germination, and branching of germinating hyphae. In this study we show that treatment of Gigaspora rosea with a strigolactone analog (GR24) causes a rapid increase in the NADH concentration, the NADH dehydrogenase activity, and the ATP content of the fungal cell. This fully and rapidly (within minutes) activated oxidative metabolism does not require new gene expression. Up-regulation of the genes involved in mitochondrial metabolism and hyphal growth, and stimulation of the fungal mitotic activity, take place several days after this initial boost to the cellular energy of the fungus. Such a rapid and powerful action of GR24 on G. rosea cells suggests that strigolactones are important plant signals involved in switching AM fungi toward full germination and a presymbiotic state.  相似文献   

16.
Symbiotic and parasitic relationships can alter the degree of endoreduplication in plant cells, and a limited number of studies have documented this occurrence in root cells colonized by arbuscular mycorrhizal (AM) fungi. However, this phenomenon has not been tested in a wide range of plant species, including species that are non-endopolyploid and those that do not associate with AM fungi. We grew 37 species belonging to 16 plant families, with a range of genome sizes and a range in the degree of endopolyploidy. The endoreduplication index (EI) was compared between plants that were inoculated with Glomus irregulare and plants that were not inoculated. Of the species colonized with AM fungi, 22 of the 25 species had a significant increase in endopolyploid root nuclei over non-mycorrhizal plants, including species that do not normally exhibit endopolyploidy. Changes in the EI were strongly correlated (R(2) = 0.619) with the proportion of root length colonized by arbuscules. No change was detected in the EI for the 12 non-mycorrhizal species. This work indicates that colonization by symbiotic fungi involves a mechanism to increase nuclear DNA content in roots across many angiosperm groups and is likely linked to increased metabolism and protein production.  相似文献   

17.
乌日罕  刘慧  吴曼  任安芝  高玉葆 《生态学杂志》2018,29(12):4145-4151
内生真菌与丛枝菌根(AM)真菌是构成草原生态系统的重要组成部分.内生真菌会抑制其宿主植物的AM真菌侵染率.本研究以感染2种香柱菌属内生真菌[Epichloё gansuensis(Eg)和E. sibirica(Es)]的天然禾草羽茅为供试材料,进行体外纯培养的内生真菌培养滤液、感染内生真菌的羽茅叶片(包括鲜叶和枯叶)浸提液,以及根系分泌物对摩西球囊霉(Gm)和幼套球囊霉(Ge)2种AM真菌孢子萌发影响试验.结果表明: 香柱菌属内生真菌的培养滤液会显著抑制2种AM真菌孢子的萌发,而感染香柱菌属内生真菌的羽茅根系分泌物只对Ge孢子萌发有显著抑制作用,且上述抑制作用与内生真菌种类无关;鲜叶浸提液对Gm和Ge的孢子萌发率均无显著影响,而枯叶浸提液对Ge的孢子萌发有显著抑制作用.在自然生态系统中,香柱菌属内生真菌通常存在于宿主植物体内,可能通过影响宿主植物的根系分泌物来影响AM真菌孢子的萌发.  相似文献   

18.
In this study we tested for trade-offs between the benefit arbuscular mycorrhizal (AM) fungi provide for hosts and their competitive ability in host roots, and whether this potential trade-off shifts in the presence of a plant stress (herbivory). We used three species of AM fungi previously determined to vary in host growth promotion and spore production in association with host plants. We found that these AM fungal species competed for root space, and the best competitor, Scutellospora calospora, was the worst mutualist. In addition, the worst competitor, Glomus white, was the best mutualist. Competition proved to have stronger effects on fungal infection patterns than herbivory, and competitive dominance was not altered by herbivory. We found a similar pattern in a previous test of competition among AM fungi, and we discuss the implications of these results for the persistence of the mutualism and feedbacks between AM fungi and their plant hosts.  相似文献   

19.
The role of arbuscular mycorrhizal (AM) fungi in aquatic and semi-aquatic environments is poorly understood, although they may play a significant role in the establishment and maintenance of wetland plant communities. We tested the hypothesis that AM fungi have little effect on plant response to phosphorus (P) supply in inundated soils as evidenced by an absence of increased plant performance in inoculated (AM+) versus non-inoculated (AM-) Lythrum salicaria plants grown under a range of P availabilities (0-40 mg/l P). We also assessed the relationship between P supply and levels of AM colonization under inundated conditions. The presence of AM fungi had no detectable benefit for any measures of plant performance (total shoot height, shoot dry weight, shoot fresh weight, root fresh weight, total root length or total root surface area). AM+ plants displayed reduced shoot height at 10 mg/l P. Overall, shoot fresh to dry weight ratios were higher in AM+ plants although the biological significance of this was not determined. AM colonization levels were significantly reduced at P concentrations of 5 mg/l and higher. The results support the hypothesis that AM fungi have little effect on plant response to P supply in inundated conditions and suggest that the AM association can become uncoupled at relatively high levels of P supply.  相似文献   

20.
Two sorghum cultivars: the Striga-tolerant S-35 and the Striga-sensitive CK60-B were grown with or without arbuscular mycorrhizal (AM) fungi, and with or without phosphorus addition. At 24 and 45 days after sowing (DAS) of sorghum, root exudates were collected and tested for effects on germination of preconditioned Striga hermonthica seeds. Root exudates from AM sorghum plants induced lower germination of S. hermonthica seeds than exudates from non-mycorrhizal sorghum. The magnitude of this effect depended on the cultivar and harvest time. A significantly (88–97%) lower germination of S. hermonthica seeds upon exposure to root exudates from AM S-35 plants was observed at both harvest times whereas for AM inoculated CK60-B plants a significantly (41%) lower germination was observed only at 45 DAS. The number of S. hermonthica seedlings attached to and emerged on both sorghum cultivars were also lower in mycorrhizal than in non-mycorrhizal plants. Again, this reduction was more pronounced with S-35 than with CK60-B plants. There was no effect of phosphorus addition on Striga seed germination, attachment or emergence. We hypothesize that the negative effect of mycorrhizal colonization on Striga germination and on subsequent attachment and emergence is mediated through the production of signaling molecules (strigolactones) for AM fungi and parasitic plants.Key Words: arbuscular mycorrhiza, root exudate, sorghum, striga, strigolactones, germination  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号