首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water-soluble chlorophyll-proteins were prepared from leaves of Lepidium virginicum, by means of ammonium sulfate fractionation followed by column chromatography on DEAE-cellulose and Sephacryl S-200. After intensive purification the chlorophyll-proteins were crystallized by dialysis against an ammonium sulfate solution.  相似文献   

2.
The protein moiety of the two major chlorophyll-protein complexes associated with chloroplast membranes of outer, dark green leaves of a romaine lettuce shoot (Lactuca sativa L. var. Romana) has been analyzed by discontinuous sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Complex II, also termed light-harvesting chlorophyll-protein complex, is shown to consist of a major polypeptide of 25 kilodaltons (kD) and two minor ones of 27.5 and 23 kD. The 25 kD subunit is the single largest polypeptide component of the chloroplast membranes, accounting for about 25% of their total protein. Complex I contains only high molecular weight subunits, the major one being at 67 kD, these subunits representing only a small percentage of the chloroplast membrane total protein.  相似文献   

3.
Two types of water-soluble chlorophyll proteins were isolatedfrom Lepidium virginicum L. grown in Japan. The protein isolatedfrom the leaves (CP663L) had a low chlorophyll a/b ratio (1.5–1.7),and that from the stems (CP663S) had a high ratio (3.4–3.5).CP663S showed the same crystal forms and almost the same molecularweight and subunit composition as CP663I. (Received October 26, 1981; Accepted February 4, 1982)  相似文献   

4.
5.
6.
7.
Circular dichroism (c.d.) was measured for four chlorophyll-protein complexes, resolved from sodium dodecyl sulphate extracts of chloroplasts by electrophoresis in polyacrylamide gel containing Deriphat 160 (disodium N-dodecyl beta-imidopropionate), a zwitterionic detergent. The slowest-band (1) complex was found to be identical with the complex CP1 as found on electrophoresis in the presence of anion detergent, but it was in a much higher yield (30% of the chlorophyll a). In band-2 and -3 protein complexes a c.d. pattern described for the complex CP2 could be recognized. Another c.d. component of a split-exciton type with extrema at 680 (-) and 669 (+)nm, together with evidence of disorganized chlorophyll, was found in band-2, -3 and -4 complexes. When a barley (Hordeum vulgare) mutant lacking chlorophyll b was examined, only bands 1 and 4 were obtained, and the c.d. of the band-4 complex was much less affected by disorganized chlorophyll. C.D. spectra resembling that of this band-4 complex could be generated by subtracting the c.d. of complex CP1 from the c.d. of photochemically active mutant chloroplast fragments, or by subtracting the c.d. of complexes CP1 and CP2 from pea (Pisum sativum) chloroplast fragments. The Deriphat appears to have preserved at least to some extent a new type of chlorophyll a-protein complex.  相似文献   

8.
The relationship between structure and spectroscopic characteristicsof the watersoluble chlorophyll protein complex isolated fromstems of Lepidium virginicum (CP663S) was studied. Additionof 0.08% SDS induced a red shift of the 663 nm absorption maximum.At the same time, under excitation at 435 nm, the maximum offluorescence emission shifted from 672 nm to 675 nm and thefluorescence yield increased. When CP663S was excited at 480nm, the 660 nm emission band of chlorophyll b became more prominent.Fluorescence lifetime of emission from chlorophyll a increasedon addition of SDS. The energy transfer from chlorophyll b tochlorophyll a was decreased by the SDS addition, as judged bythe fluorescence spectra and lifetime measurement. Symmetricalpositive and negative peaks of the circular dichroism (CD) spectrumaround 669 nm, which indicate the interaction between chlorophylla molecules at short distances, disappeared after addition ofSDS. These SDS-induced changes of spectroscopic characteristicsoccurred in similar SDS concentration ranges and were reversible.SDS polyacrylamide gel electrophoresis cleaved CP663S into subunits.Chlorophyll molecules moved with protein moieties. Glutaraldehydetreatment suppressed the effects of SDS on absorption, fluorescenceand CD characteristics. We conclude that chlorophyll moleculesin CP663S are in the hydrophobic region of the protein and theinteraction between chlorophyll a molecules occurs at shortdistances. Changes of spectroscopic characteristics are a resultof cleavage of CP663S. 1Present address: National Institute for Basic Biology, Okazaki444, Japan. (Received November 22, 1982; Accepted May 31, 1983)  相似文献   

9.
Eight chlorophyll-proteins were resolved from the thylakoid membranes, or digitonin particles, of a thermophilic cyanobacterium Synechococcus sp. by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Six chlorophyll-proteins with slower electrophoretic mobilities were shown to be P700-chlorophyll a-protein complexes (CP1), whereas faster-moving proteins (CP2) were related to photosystem 2. Extraction of CP1 complexes from the membranes with different detergent/chlorophyll ratios and reelectrophoresis of extracted CP1 complexes indicated that the chlorophyll-proteins are closely interrelated with each other; any CP1 complex could be transformed to other CP1 complexes with faster electrophoretic mobilities. This, together with the Ferguson plot and the polypeptide composition, showed that six CP1 complexes are different in terms of polypeptide composition, oligomerization, SDS-binding, or conformation of the proteins but represent, in the order of increasing electrophoretic mobility, increasing degree of modification of the native P700-chlorophyll a-protein.  相似文献   

10.
Sally Reinman  J.Philip Thornber 《BBA》1979,547(2):188-197
Three chlorophyll-protein complexes have been resolved from blue-green algae using an improved procedure for membrane solubilization and electrophoretic fractionation. One complex has a red absorbance maximum of 676 nm and a molecular weight equivalency of 255 000 ± 15 000. A second complex has an absorbance maximum of 676 nm, a molecular weight equivalency of 118 000 ± 8000, and resembles the previously described P-700-chlorophylla-protein (CPI) of higher plants and algae. The third chlorophyll-protein has a red absorbance maximum of 671 nm and a molecular weight equivalency of 58 000 ± 5000. Blue-green algal membrane fractions enriched in Photosystem I and heterocyst cells do not contain this third chlorophyll-protein, whereas Photosystem II-enriched membrane fractions and vegetative cells do. A component of the same spectral characteristics and molecular weight equivalency was also observed in chlorophyll b-deficient mutants of barley and maize. It is hypothesized that this third complex is involved in some manner with Photosystem II.  相似文献   

11.
Solubilization of barley (Hordeum vulgare L.) thylakoid membranes with sodium dodecylsulphate plus sodium deoxycholate with or without Triton X-100 and subsequent fractionation in the polyacrylamide gel electrophoresis system described in this paper resulted: (1) in the resolution of the chlorophyll-proteins and chlorophyll-protein complexes commonly known as CP1a, CP1, LHCP1, LHCP2, CPa and LHCP3; (2) in the highly increased stability of CP1 and CP1a, as judged by their chlorophyll content, (3) at the expense of the free pigment concentration (4) which could be reduced to a negligible amount. Some 40% of the total chlorophyll contained in the mature higher plant thylakoid membrane is associated with CP1 and CP1a and as already suggested before [19] no significant amount of free chlorophyll occurs in vivo.  相似文献   

12.
Physico-chemical properties of model immune complexes from normal and myeloma immunoglobulins were compared, and complement-binding activity of these aggregates was studied. No considerable differences were observed between aggregates from normal and myeloma Ig. Myeloma complexes have a higher complement-binding activity, as compared to normal ones, and are structurally more stable. Complement-binding activity of both types of complexes depends on the complex molecular mass and is maximal in complexes of medium molecular mass.  相似文献   

13.
Solubilization of barley (Hordeum vulgare L.) thylakoid membranes with sodium dodecylsulphate plus sodium deoxycholate with or without Triton X-100 and subsequent fractionation in the polyacrylamide gel electrophoresis system described in this paper resulted: (1) in the resolution of the chlorophyll-proteins and chlorophyll-protein complexes commonly known as CP1a, CP1, LHCP1, LHCP2, CPa and LHCP3; (2) in the highly increased stability of CP1 and CP1a, as judged by their chlorophyll content, (3) at the expense of the free pigment concentration (4) which could be reduced to a negligible amount. Some 40% of the total chlorophyll contained in the mature higher plant thylakoid membrane is associated with CP1 and CP1 a and as already suggested before [19] no significant amount of free chlorophyll occurs in vivo.Abbreviations chl chlorophyll - CP1 P700-chla-protein - CPa P680-chla-protein - DOC sodium deoxychlolate - FC free chlorophyll - LHCP light-harvesting chlorophyll a/b-protein - PAGE(S) polyacrylamide gel electrophoresis (system) - SDS sodium dodecylsulphate - TX-100 Triton X-100  相似文献   

14.
The reaction of [(H2O)(NH3)5RuII]2+ with bleomycin forms at least two stable products following oxidation to the Ru(III) analog. Spectroscopic and electrochemical measurements indicate monodentate binding of [(NH3)5RuIII] to the imidazole and pyrimidine moieties, with coordination to the latter involving the exocyclic amine nitrogen. DNA cleavage studies show the complexes to be ineffective in DNA strand scission. In vitro biological studies reveal these adducts to be cytotoxic.  相似文献   

15.
Three chlorophyll-protein complexes have been resolved from blue-green algae using an improved procedure for membrane solubilization and electrophoretic fractionation. One complex has a red absorbance maximum of 676 nm and a molecular weight equivalency of 255 000 +/- 15 000. A second complex has an absorbance maximum of 676 nm, a molecular weight equivalency of 118 000 +/- 8000, and resembles the previously described P-700-chlorophyll a-protein (CPI) of higher plants and algae. The third chlorophyll-protein has a red absorbance maximum of 671 nm and a molecular weight equivalency of 58 000 +/- 5000. Blue-green algal membrane fractions enriched in Photosystem I and heterocyst cells do not contain this third chlorophyll-protein, whereas Photosystem II-enriched membrane fractions and vegetative cells do. A component of the same spectral characteristics and molecular weight equivalency was also observed in chlorophyll b-deficient mutants of barley and maize. It is hypothesized that this third complex is involved in some manner with Photosystem II.  相似文献   

16.
17.
采用气质联用技术对宽叶独行菜中脂肪酸成分进行了分析,从其乙醇提取物的石油醚萃取部分共分离得到20个组分,采用面积归一化法测定了各组分的含量,其中棕榈酸(hexadecanoic acid)53.980%,硬脂酸(oc-tadecanoic acid)17.063%,二十二烷酸(docosanoic acid)4.769%,二十四烷酸(tetracosanoic acid)3.363%,二十八烷酸(octacosanoic acid)2.773%,花生酸(eicosanoic acid)2.719%,十五烷酸(pentadecanoic acid)2.476%,十七烷酸(heptadecanoic acid)2.291%。此外,三十烷酸(triacontanoic acid,十四烷酸(tetradecanoic acid),二十三烷酸(tricosanoic acid)和二十六烷酸(hexacosanoic acid)的含量均已超过了1%。  相似文献   

18.
19.
H. M. Behrens  D. Gradmann 《Planta》1985,163(4):453-462
Electrical transmembrane potential differences and resistances in different tissues of intact root tips of Lepidium sativum L. were investigated in a humid atmosphere by conventional glass-microelectrode techniques with the reference electrode at the surface (apoplast) of the root. The resting potential (inside negative) in cells of the root cap rose from-80 mV in external cell layers (secretion cells) to approx.-140 mV in central cells (statocytes). Measurements of the electric input resistance within the apoplast of the root tip (calyptra, meristem and elongation zone) yielded a preference for longitudinal contact (resistance per length of tissue approx. 3.4 GOhm m-1) compared with transversal contact (approx. 14 GOhm m-1). Similarly, the symplastic coupling expressed as the characteristic length (L) where a signal is reduced to 1/c compared with the origin yielded L y =390 m in the longitudinal (y) direction and L x =140 m in the transversal (x) direction. Cable analytical treatment of the symplastic input resistances (approx. 10 MOhm) resulted in low membrane resistances in the y-direction at the ends of cells compared with the membrane resistances in the x-direction (approx. 0.2 Ohm m2) of the lateral membranes in the approximately cylindrical cells. This anisotropy is discussed in terms of model calculations. The resistivity of the symplast was calculated to be about 2.5 Ohm m. The input current-voltage relationship displayed a slight curvature with increasing slope for the more negative membrane potential typical of membranes with electrogenic pumps. Even after massive electrical stimulation in the range from-50 to-150mV carried out to trace current-voltage curves, electrical excitations (action potentials) were not detected in the cells investigated.Abbreviations el voltage recording electrodes - R resistance - V r resting potential  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号