首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Escherichia coli, three cysteine desulfurases (IscS, SufS, and CsdA) initiate the delivery of sulfur for various biological processes such as the biogenesis of Fe-S clusters. The sulfur generated as persulfide on a cysteine residue of cysteine desulfurases is further transferred to Fe-S scaffolds (e.g. IscU) or to intermediate cysteine-containing sulfur acceptors (e.g. TusA, SufE, and CsdE) prior to its utilization. Here, we report the structures of CsdA and the CsdA-CsdE complex, which provide insight into the sulfur transfer mediated by the trans-persulfuration reaction. Analysis of the structures indicates that the conformational flexibility of the active cysteine loop in CsdE is essential for accepting the persulfide from the cysteine of CsdA. Additionally, CsdA and CsdE invoke a different binding mode than those of previously reported cysteine desulfurase (IscS) and sulfur acceptors (TusA and IscU). Moreover, the conservation of interaction-mediating residues between CsdA/SufS and CsdE/SufE further suggests that the SufS-SufE interface likely resembles that of CsdA and CsdE.  相似文献   

2.
IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesis in vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s(2)C and ms(2)i(6)A) yet showed wild type levels of Fe-S-independent thionucleosides (s(4)U and mnm(5)s(2)U) that require persulfide formation and transfer. In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesis in vivo without detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.  相似文献   

3.
We have characterized the iron-sulfur (Fe-S) cluster formation in an anaerobic amitochondrial protozoan parasite, Entamoeba histolytica, in which Fe-S proteins play an important role in energy metabolism and electron transfer. A genomewide search showed that E. histolytica apparently possesses a simplified and non-redundant NIF (nitrogen fixation)-like system for the Fe-S cluster formation, composed of only a catalytic component, NifS, and a scaffold component, NifU. Amino acid alignment and phylogenetic analyses revealed that both amebic NifS and NifU (EhNifS and EhNifU, respectively) showed a close kinship to orthologs from epsilon-proteobacteria, suggesting that both of these genes were likely transferred by lateral gene transfer from an ancestor of epsilon-proteobacteria to E. histolytica. The EhNifS protein expressed in E. coli was present as a homodimer, showing cysteine desulfurase activity with a very basic optimum pH compared with NifS from other organisms. Eh-NifU protein existed as a tetramer and contained one stable [2Fe-2S]2+ cluster per monomer, revealed by spectroscopic and iron analyses. Fractionation of the whole parasite lysate by anion exchange chromatography revealed three major cysteine desulfurase activities, one of which corresponded to the EhNifS protein, verified by immunoblot analysis using the specific EhNifS antibody; the other two peaks corresponded to methionine gamma-lyase and cysteine synthase. Finally, ectopic expression of the EhNifS and EhNifU genes successfully complemented, under anaerobic but not aerobic conditions, the growth defect of an Escherichia coli strain, in which both the isc and suf operons were deleted, suggesting that EhNifS and EhNifU are necessary and sufficient for Fe-S clusters of non-nitrogenase Fe-S proteins to form under anaerobic conditions. This is the first demonstration of the presence and biological significance of the NIF-like system in eukaryotes.  相似文献   

4.
The structural biology of proteins mediating iron-sulfur (Fe-S) cluster assembly is central for understanding several important biological processes. Here we present the NMR structure of the 16-kDa protein YgdK from Escherichia coli, which shares 35% sequence identity with the E. coli protein SufE. The SufE X-ray crystal structure was solved in parallel with the YdgK NMR structure in the Northeast Structural Genomics (NESG) consortium. Both proteins are (1) key components for Fe-S metabolism, (2) exhibit the same distinct fold, and (3) belong to a family of at least 70 prokaryotic and eukaryotic sequence homologs. Accurate homology models were calculated for the YgdK/SufE family based on YgdK NMR and SufE crystal structure. Both structural templates contributed equally, exemplifying synergy of NMR and X-ray crystallography. SufE acts as an enhancer of the cysteine desulfurase activity of SufS by SufE-SufS complex formation. A homology model of CsdA, a desulfurase encoded in the same operon as YgdK, was modeled using the X-ray structure of SufS as a template. Protein surface and electrostatic complementarities strongly suggest that YgdK and CsdA likewise form a functional two-component desulfurase complex. Moreover, structural features of YgdK and SufS, which can be linked to their interaction with desulfurases, are conserved in all homology models. It thus appears very likely that all members of the YgdK/SufE family act as enhancers of Suf-S-like desulfurases. The present study exemplifies that "refined" selection of two (or more) targets enables high-quality homology modeling of large protein families.  相似文献   

5.
Biosynthesis of iron-sulfur clusters (Fe-S) depends on multiprotein systems. Recently, we described the SUF system of Escherichia coli and Erwinia chrysanthemi as being important for Fe-S biogenesis under stressful conditions. The SUF system is made of six proteins: SufC is an atypical cytoplasmic ABC-ATPase, which forms a complex with SufB and SufD; SufA plays the role of a scaffold protein for assembly of iron-sulfur clusters and delivery to target proteins; SufS is a cysteine desulfurase which mobilizes the sulfur atom from cysteine and provides it to the cluster; SufE has no associated function yet. Here we demonstrate that: (i) SufE and SufS are both cystosolic as all members of the SUF system; (ii) SufE is a homodimeric protein; (iii) SufE forms a complex with SufS as shown by the yeast two-hybrid system and by affinity chromatography; (iv) binding of SufE to SufS is responsible for a 50-fold stimulation of the cysteine desulfurase activity of SufS. This is the first example of a two-component cysteine desulfurase enzyme.  相似文献   

6.
7.
The iron-sulfur (Fe-S) cluster, the nonheme-iron cofactor essential for the activity of many proteins, is incorporated into target proteins with the aid of complex machinery. In bacteria, several proteins encoded by the iscRSUA-hscBA-fdx-ORF3 cluster (isc operon) have been proposed to execute crucial tasks in the assembly of Fe-S clusters. To elucidate the in vivo function, we have undertaken a systematic mutational analysis of the genes in the Escherichia coli isc operon. In all functional tests, i.e. growth rate, nutritional requirements and activities of Fe-S enzymes, the inactivation of the iscS gene elicited the most drastic alteration. Strains with mutations in the iscU, hscB, hscA, and fdx genes also exhibited conspicuous phenotypical consequences almost identical to one another. The effect of the inactivation of iscA was small but appreciable on Fe-S enzymes. In contrast, mutants with inactivated iscR or ORF3 showed virtually no differences from wild-type cells. The requirement of iscSUA-hscBA-fdx for the assembly of Fe-S clusters was further confirmed by complementation experiments using a mutant strain in which the entire isc operon was deleted. Our findings support the conclusion that IscS, via cysteine desulfurase activity, provides the sulfur that is subsequently incorporated into Fe-S clusters by assembler machinery comprising of the iscUA-hscBA-fdx gene products. The results presented here indicate crucial roles for IscU, HscB, HscA, and Fdx as central components of the assembler machinery and also provide evidence for interactions among them.  相似文献   

8.
Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups that play essential roles in all living organisms. In vivo [Fe-S] cluster biogenesis requires enzymes involved in iron and sulfur mobilization, assembly of clusters, and delivery to their final acceptor. In these systems, a cysteine desulfurase is responsible for the release of sulfide ions, which are incorporated into a scaffold protein for subsequent [Fe-S] cluster assembly. Although three machineries have been shown to be present in Proteobacteria for [Fe-S] cluster biogenesis (NIF, ISC, and SUF), only the SUF machinery has been found in Firmicutes. We have recently described the structural similarities and differences between Enterococcus faecalis and Escherichia coli SufU proteins, which prompted the proposal that SufU is the scaffold protein of the E. faecalis sufCDSUB system. The present work aims at elucidating the biological roles of E. faecalis SufS and SufU proteins in [Fe-S] cluster assembly. We show that SufS has cysteine desulfurase activity and cysteine-365 plays an essential role in catalysis. SufS requires SufU as activator to [4Fe-4S] cluster assembly, as its ortholog, IscU, in which the conserved cysteine-153 acts as a proximal sulfur acceptor for transpersulfurization reaction.  相似文献   

9.
Cysteine desulphurases are primary sources of sulphur that can eventually be used for Fe/S biogenesis or thiolation of various cofactors and tRNA. Escherichia coli contains three such enzymes, IscS, SufS and CsdA. The importance of IscS and SufS in Fe/S biogenesis is well established. The physiological role of CsdA in contrast remains uncertain. We provide here additional evidences for a functional redundancy between the three cysteine desulphurases in vivo. In particular, we show that a deficiency in isoprenoid biosynthesis is the unique cause of the lethality of the iscS sufS mutant. Moreover, we show that CsdA is engaged in two separate sulphur transfer pathways. In one pathway, CsdA interacts functionally with SufE–SufBCD proteins to assist Fe/S biogenesis. In another pathway, CsdA interacts with CsdE and a newly discovered protein, which we called CsdL, resembling E1‐like proteins found in ubiquitin‐like modification systems. We propose this new pathway to allow synthesis of an as yet to be discovered thiolated compound.  相似文献   

10.
11.
Iron-sulfur (Fe-S) clusters are key metal cofactors of metabolic, regulatory, and stress response proteins in most organisms. The unique properties of these clusters make them susceptible to disruption by iron starvation or oxidative stress. Both iron and sulfur can be perturbed under stress conditions, leading to Fe-S cluster defects. Bacteria and higher plants contain a specialized system for Fe-S cluster biosynthesis under stress, namely the Suf pathway. In Escherichia coli the Suf pathway consists of six proteins with functions that are only partially characterized. Here we describe how the SufS and SufE proteins interact with the SufBCD protein complex to facilitate sulfur liberation from cysteine and donation for Fe-S cluster assembly. It was previously shown that the cysteine desulfurase SufS donates sulfur to the sulfur transfer protein SufE. We have found here that SufE in turn interacts with the SufB protein for sulfur transfer to that protein. The interaction occurs only if SufC is present. Furthermore, SufB can act as a site for Fe-S cluster assembly in the Suf system. This provides the first evidence of a novel site for Fe-S cluster assembly in the SufBCD complex.  相似文献   

12.
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins.  相似文献   

13.
The contribution of cysteine desulfurase, the NifS protein of Klebsiella pneumoniae and the IscS protein of Escherichia coli, to the biotin synthase reaction was investigated in in vitro and in vivo reaction systems with E. coli. When the nifS and nifU genes of K. pneumoniae were coexpressed in E. coli, NifS and NifU proteins in complex (NifU/S complex) and NifU monomer forms were observed. Both the NifU/S complex and the NifU monomer stimulated the biotin synthase reaction in the presence of L-cysteine in an in vitro reaction system. The NifU/S complex enhanced the production of biotin from dethiobiotin by the cells growing in an in vivo reaction system. Moreover, the IscS protein of E. coli stimulated the biotin synthase reaction in the presence of L-cysteine in the cell-free system. These results strongly suggest that cysteine desulfurase participates in the biotin synthase reaction, probably by supplying sulfur to the iron-sulfur cluster of biotin synthase.  相似文献   

14.
The biogenesis of iron-sulfur [Fe-S] clusters requires the coordinated delivery of both iron and sulfide. Sulfide is provided by cysteine desulfurases that use L-cysteine as sulfur source. So far, the physiological iron donor has not been clearly identified. CyaY, the bacterial ortholog of frataxin, an iron binding protein thought to be involved in iron-sulfur cluster formation in eukaryotes, is a good candidate because it was shown to bind iron. Nevertheless, no functional in vitro studies showing an involvement of CyaY in [Fe-S] cluster biosynthesis have been reported so far. In this paper we demonstrate for the first time a specific interaction between CyaY and IscS, a cysteine desulfurase participating in iron-sulfur cluster assembly. Analysis of the iron-loaded CyaY protein demonstrated a strong binding of Fe(3+) and a weak binding of Fe(2+) by CyaY. Biochemical analysis showed that the CyaY-Fe(3+) protein corresponds to a mixture of monomer, intermediate forms (dimer-pentamers), and oligomers with the intermediate one corresponding to the only stable and soluble iron-containing form of CyaY. Using spectroscopic methods, this form was further demonstrated to be functional in vitro as an iron donor during [Fe-S] cluster assembly on the scaffold protein IscU in the presence of IscS and cysteine. All of these results point toward a link between CyaY and [Fe-S] cluster biosynthesis, and a possible mechanism for the process is discussed.  相似文献   

15.
NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation and a location of Fe-S cluster formation. The goal of these studies was to identify and characterize chloroplast NifS-like proteins. Using seleno-Cys as a substrate, it was found that 25% to 30% of the NifS activity in green tissue in Arabidopsis is present in chloroplasts. A cDNA encoding a putative chloroplast NifS-like protein, AtCpNifS, was cloned, and its chloroplast localization was confirmed using immunoblot analysis and in vitro import. AtCpNIFS is expressed in all major tissue types. The protein was expressed in Escherichia coli and purified. The enzyme contains a pyridoxal 5' phosphate cofactor and is a dimer. It is a type II NifS-like protein, more similar to bacterial seleno-Cys lyases than to Cys desulfurases. The enzyme is active on both seleno-Cys and Cys but has a much higher activity toward the Se substrate. The possible role of AtCpNifS in plastidic Fe-S cluster formation or in Se metabolism is discussed.  相似文献   

16.
Fe-S clusters are critical metallocofactors required for cell function. Fe-S cluster biogenesis is carried out by assembly machinery consisting of multiple proteins. Fe-S cluster biogenesis proteins work together to mobilize sulfide and iron, form the nascent cluster, traffic the cluster to target metalloproteins, and regulate the assembly machinery in response to cellular Fe-S cluster demand. A complex series of protein-protein interactions is required for the assembly machinery to function properly. Despite considerable progress in obtaining static three-dimensional structures of the assembly proteins, little is known about transient protein-protein interactions during cluster assembly or the role of protein dynamics in the cluster assembly process. The Escherichia coli cysteine desulfurase SufS (EC 2.8.1.7) and its accessory protein SufE work together to mobilize persulfide from l-cysteine, which is then donated to the SufB Fe-S cluster scaffold. Here we use amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize SufS-SufE interactions and protein dynamics in solution. HDX-MS analysis shows that SufE binds near the SufS active site to accept persulfide from Cys-364. Furthermore, SufE binding initiates allosteric changes in other parts of the SufS structure that likely affect SufS catalysis and alter SufS monomer-monomer interactions. SufE enhances the initial l-cysteine substrate binding to SufS and formation of the external aldimine with pyridoxal phosphate required for early steps in SufS catalysis. Together, these results provide a new picture of the SufS-SufE sulfur transferase pathway and suggest a more active role for SufE in promoting the SufS cysteine desulfurase reaction for Fe-S cluster assembly.  相似文献   

17.
Human frataxin (FXN) has been intensively studied since the discovery that the FXN gene is associated with the neurodegenerative disease Friedreich's ataxia. Human FXN is a component of the NFS1-ISD11-ISCU2-FXN (SDUF) core Fe-S assembly complex and activates the cysteine desulfurase and Fe-S cluster biosynthesis reactions. In contrast, the Escherichia coli FXN homologue CyaY inhibits Fe-S cluster biosynthesis. To resolve this discrepancy, enzyme kinetic experiments were performed for the human and E. coli systems in which analogous cysteine desulfurase, Fe-S assembly scaffold, and frataxin components were interchanged. Surprisingly, our results reveal that activation or inhibition by the frataxin homologue is determined by which cysteine desulfurase is present and not by the identity of the frataxin homologue. These data are consistent with a model in which the frataxin-less Fe-S assembly complex exists as a mixture of functional and nonfunctional states, which are stabilized by binding of frataxin homologues. Intriguingly, this appears to be an unusual example in which modifications to an enzyme during evolution inverts or reverses the mode of control imparted by a regulatory molecule.  相似文献   

18.
In photosynthetic eukaryotes assembly components of iron-sulfur (Fe-S) cofactors have been studied in plastids and mitochondria, but how cytosolic and nuclear Fe-S cluster proteins are assembled is not known. We have characterized a plant P loop NTPase with sequence similarity to Nbp35 of yeast and mammals, a protein of the cytosolic Cfd1-Nbp35 complex mediating Fe-S cluster assembly. Genome analysis revealed that NBP35 is conserved in the green lineage but that CFD1 is absent. Moreover, plant and algal NBP35 proteins lack the characteristic CXXC motif in the C terminus, thought to be required for Fe-S cluster binding. Nevertheless, chemical reconstitution and spectroscopy showed that Arabidopsis (At) NBP35 bound a [4Fe-4S] cluster in the C terminus as well as a stable [4Fe-4S] cluster in the N terminus. Holo-AtNBP35 was able to transfer an Fe-S cluster to an apoprotein in vitro. When expressed in yeast, AtNBP35 bound 55Fe dependent on the cysteine desulfurase Nfs1 and was able to partially rescue the growth of a cfd1 mutant but not of an nbp35 mutant. The AtNBP35 gene is constitutively expressed in planta, and its disruption was associated with an arrest of embryo development. These results show that despite considerable divergence from the yeast Cfd1-Nbp35 Fe-S scaffold complex, AtNBP35 has retained similar Fe-S cluster binding and transfer properties and performs an essential function.  相似文献   

19.
The cofactor content of in vivo, as-isolated, and reconstituted forms of recombinant Escherichia coli biotin synthase (BioB) has been investigated using the combination of UV-visible absorption, resonance Raman, and M?ssbauer spectroscopies along with parallel analytical and activity assays. In contrast to the recent report that E. coli BioB is a pyridoxal phosphate (PLP)-dependent enzyme with intrinsic cysteine desulfurase activity (Ollagnier-deChoudens, S., Mulliez, E., Hewitson, K. S., and Fontecave, M. (2002) Biochemistry 41, 9145-9152), no evidence for PLP binding or for PLP-induced cysteine desulfurase or biotin synthase activity was observed with any of the forms of BioB investigated in this work. The results confirm that BioB contains two distinct Fe-S cluster binding sites. One site accommodates a [2Fe-2S](2+) cluster with partial noncysteinyl ligation that can only be reconstituted in vitro in the presence of O(2). The other site accommodates a [4Fe-4S](2+,+) cluster that binds S-adenosylmethionine (SAM) at a unique Fe site of the [4Fe-4S](2+) cluster and undergoes O(2)-induced degradation via a distinct type of [2Fe-2S](2+) cluster intermediate. In vivo M?ssbauer studies show that recombinant BioB in anaerobically grown cells is expressed exclusively in an inactive form containing only the as-isolated [2Fe-2S](2+) cluster and demonstrate that the [2Fe-2S](2+) cluster is not a consequence of overexpressing the recombinant enzyme under aerobic growth conditions. Overall the results clarify the confusion in the literature concerning the Fe-S cluster composition and the in vitro reconstitution and O(2)-induced cluster transformations that are possible for recombinant BioB. In addition, they provide a firm foundation for assessing cluster transformations that occur during turnover and the catalytic competence of the [2Fe-2S](2+) cluster as the immediate S-donor for biotin biosynthesis.  相似文献   

20.
Tong WH  Rouault T 《The EMBO journal》2000,19(21):5692-5700
Iron-sulfur (Fe-S) clusters are cofactors found in many proteins that have important redox, catalytic or regulatory functions. In mammalian cells, almost all known Fe-S proteins are found in the mitochondria, but at least one is found in the cytosol. Here we report cloning of the human homologs to IscU and NifU, iron-binding proteins that play a critical role in Fe-S cluster assembly in bacteria. In human cells, alternative splicing of a common pre-mRNA results in synthesis of two proteins that differ at the N-terminus and localize either to the cytosol (IscU1) or to the mitochondria (IscU2). Biochemical analyses demonstrate that IscU proteins specifically associate with IscS, a cysteine desulfurase that is proposed to sequester inorganic sulfur for Fe-S cluster assembly. Protein complexes containing IscU and IscS can be found in the mitochondria as well as in the cytosol, implying that Fe-S cluster assembly takes place in multiple subcellular compartments in mammalian cells. The possible roles of the IscU proteins in mammalian cells and the potential implications of compartmentalization of Fe-S cluster assembly are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号