首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

2.
Summary The Organum vasculosum laminae terminalis (OVLT) of the duck is lined innerly by specialized ependymal cells (tanycytes) and outwardly by a well-developed superficial vascular network, the capillaries of which often show a fenestrated endothelium. The OVLT also includes glial cells, internal non-fenestrated capillaries, bundles of fine nerve fibers and three groups of axonal swellings. One type contains granulations of 1000–1400 Å in diameter as well as 300–500 Å clear vesicles. The second type exhibits granulations and dense core vesicles of 500–800 Å in diameter along with small electron-lucent vesicles having diameters of 300–400 Å. In the third type, exclusively clear vesicles 300–600 Å in diameter are found. Asymmetrical synapses on dendrites and neuronal perikarya are found at every level of the organ. In the most external zone, the interposition of tanycyte endings sometimes allows neurosecretory axons to reach the parenchymal basement membrane (basal lamina).When tritiated molecules (amino acids or monoamines) are administered either in vitro by incubation or in vivo by intraventricular injections, radioautographic grains are observed over the tanycyte perikarya. Although this labeling is observed at every time point following the administration of the tracers, within three minutes only 3H-GABA appears to be concentrated in the cytoplasmic processes of the tanycytes. 3H-noradrenaline and 3H-serotonin are taken up and retained by some axons of the second type described above. Noradrenergic fibers are primarily localized in the inner zone of the OVLT where they display axodendritic synaptic contacts. Serotonergic fibers appear sparsely distributed in the OVLT but are more numerous in the lateral edges of the organ where synaptic differentiations on dendrites or on dendritic spines are also observed.It is concluded that the duck OVLT probably displays a neuroendocrine activity. Uptake and selective transport of exogenous molecules by tanycytes are also suggested by the present radioautographic observations. Finally, monoaminergic innervation is discussed at the OVLT level with special reference to the occurrence of serotonergic synapses.Supported by the Département de Biologie du C.E.A., and the I.N.S.E.R.M. (C.R.A.T., 74.1.438.45)  相似文献   

3.
The axon terminals of the acoustic nerve contact different part of the cochlear nucleus including granule cell areas. Little is known of the cell composition and neural circuits of granule cell areas present in the fusiform and upper polymorphic layers of the dorsal cochlear nucleus in the guinea pig. The present ultrastructural immunocytochemical study exploits the technique of post-embedding immunogold and silver intensification to reveal the characteristics of small neurons in granule cell areas. Few neurons (Golgi-stellate cells) use glycine as inhibitory neurotransmitter which is present in symmetric synaptic boutons with pleomorphic and flat vesicles. In contrast, most neurons (granule and unipolar brush cells) are not glycine-positive, and presumably not excitatory. Most of the large axons (mossy fibres) in granule areas are probably excitatory (glycine-negative and storing round synaptic vesicles) and contact unipolar brush cells forming large synapses or granule cell dendrites by small synapses. A few large glycinergic boutons (inhibitory) also contact unipolar brush cells. The excitatory circuit of mossy fibre-unipolar brush and granule cells may be inhibited by the glycinergic terminals from the few glycinergic cells (Golgi-stellate neurons) present within the granule cell areas. The latter are not contacted by large mossy-like glycine terminals.  相似文献   

4.
Summary The area postrema of the rabbit, which was perfused with glutaraldehyde and postfixed in osmium tetroxide, was observed under the electron microscope. This area showed neuronal and neuroglial structures similar to those of ordinary cerebral tissue, except for rich blood capillaries, which were surrounded by conspicuous perivascular spaces. Parenchymal cells included a moderate number of small neurons and large numbers of specific astrocyte-like cells. The neuropil consisted of a small number of thin myelinated and many non-myelinated nerve fibers of varying calibers, axo-dendritic synapses, and neuroglial cell processes, leaving no spaces between them. The axons and synaptic terminals contained moderate amounts of granular vesicles, which were similar in size to those found in the hypothalamus and were supposed to contain catecholamine. Glycogen paticles were demonstrated mainly in the cytoplasm of the astrocyte-like cells.  相似文献   

5.
The fine structure of intraganglionic blood vessels of rat superior cervical sympathetic ganglia is studied with the light microscope and with both conventional and ultrastructural histochemical methods. Two sets of small capillaries together with larger sinusoidal ones are identified. One set of capillaries is associated with the clustered (type II) small catecholamine-containing (CC) cells and exhibits features suggestive of fluid transport function (multiple wide fenestrae and active pinocytosis). The second set of capillaries is in direct relation to the sympathetic neurons (SN) and shows characteristics suggestive of absorptive function (microvilli and pinocytotic vesicles). The larger sinusoidal capillaries are observed in the vicinity of type II CC cells, extend parallel to the long axes of the perikarya of the neurons and occasionally form loops around them. The latter are assumed to be larger blood spaces connecting the two capillary sets and serve to slow the circulation around the neurons. A pattern of portal-like intraganglionic microcirculation through which type II CC cells participate in modulating the SN is postulated. Type II CC cells secrete a catecholamine modulator which, driven by concentration gradient, gains access to the circulation through the fenestrated capillaries. The sinusoidal capillaries serve to perfuse the SN with a slow stream of blood rich in the catecholamine modulator. The latter can be filtered through the microvilli and pinocytotic vesicles of the second set of capillaries to induce slow inhibitory postsynaptic potential on the SN.  相似文献   

6.
Little is known about gastrodermal neurons and synapses in the tentacles of sea anemones. Using transmission electron microscopy of serial thin sections of Calliactis parasitica, we have identified both a sensory cell and a ganglion cell with granular vesicles originating from the Golgi complex and have identified four types of synapses in the tentacular gastrodermal nerve plexus. The sensory cell has a recessed apical cilium with a basal body and a perpendicularly oriented centriole, below which are several strands of striated rootlets surrounded by mitochondria. The ganglion cell lacks a cilium and resembles a bipolar neuron, with oppositely directed processes lying parallel to the basally located circular smooth muscle. Both one-way and two-way interneuronal synapses are present with 60- to 90-nm granular vesicles of various densities aligned at the paired electron-dense membranes and fine cross filaments in the intervening 13-nm cleft. Two types of neuroeffector synapses have been located. Dense granular vesicles are present at neuromuscular synapses, whereas less dense vesicles are present at neuroglandular synapses. Most of the synaptic vesicles range from 60 to 120 nm in diameter. Two types of nerve cells and a variety of synaptic loci provide morphological substrates for the spontaneous SS2 conduction pulses in the tentacular gastrodermis of C. parasitica. J Morphol 231:217–223, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Baŀuk  P.  Fujiwara  T.  Matsuda  S. 《Cell and tissue research》1985,239(1):51-60
Summary The parasympathetic ganglia of the guinea-pig trachea have been investigated by scanning and transmission electron microscopy. They are covered by a continuous perineurium and connective tissue is found between the neural elements. Blood vessels inside the ganglia have continuous endothelia and are sometimes accompanied by pericytes and a sheath of perineurial cells. Individual neuronal cell bodies and large processes are almost completely covered by a thin layer of satellite cells, except for very small areas that directly face the basal lamina and connective tissue space. Nerve fibres are also completely and individually ensheathed by Schwann cell processes; naked fibres are not found. In some regions of the nerve cell body, there are complex interdigitations between short neuronal processes and satellite cells. Large differences in the size of neurons may indicate the presence of different neuronal populations. Nerve endings containing mainly small clear vesicles are the most common type, and these form synapses on dendrites, but some profiles have many large granular vesicles. These ganglia resemble other parasympathetic, sympathetic and sensory ganglia and not the enteric ganglia. However, an unusual feature of the cytoplasm of the satellite and Schwann cells is the abundance of 10 nm intermediate filaments.  相似文献   

8.
神经垂体主要由神经分泌纤维、脑垂体细胞和微血管组成。神经分泌纤维主要是无髓鞘神经纤维,也有一些是有髓鞘神经纤维。神经垂体中还有一些多层体构造。神经分泌纤维有两个基本类型:A型纤维含有直径为1250—1750Å的神经分泌颗粒;B型纤维含有直径为450—1000Å的颗粒状囊泡。腺垂体的分泌细胞按其超显微构造的特点和所含的分泌颗粒大小不同可以区分为六个类型:催乳激素分泌细胞、促甲状腺激素分泌细胞,促肾上腺皮质激素分泌细胞、促生长激素分泌细胞、促性腺激素分泌细胞和后腺垂体的分泌细胞。    相似文献   

9.
The ultrastructure of the pineal organ was studied in the tropical megachiropteran Rousettus leschenaulti. The pineal lies deep beneath the hemispheres adjacent to the third ventricle and is traversed by the habenular commissure anteriorly. Its parenchyma consists of a uniform population of light and occasional dark pinealocytes which appear to differ only in the degree of cytoplasmic staining. Pinealocytes are characterized by well developed Golgi bodies associated with numerous small vesicles, many mitochondria and polyribosomes, and frequent subsurface cisternae. Lipid droplets and elements of smooth endoplasmic reticulum are scant. Cisternae of granular endoplasmic reticulum are occasionally dilated. A distinct feature is the abundance of clear vesicles in the pinealocyte pericapillary terminals, which also frequently contain granular vesicles and a very large vacuole. The pineal is further characterized by the presence of a small number of glial cells and myelinated nerve fibers. A broad perivascular space investing numerous capillaries contains glial-cell and pinealocyte processes, collagen fibrils and abundant unmyelinated nerve fibers. Tortuous extensions of the perivascular space enter the pineal parenchyma where they come in close proximity to branched intercellular channels or canaliculi characterized by specialized junctions and microvilli. Differences between the pineal of the non-hibernating megachiropteran Rousettus and that of the hibernating microchiropteran bats, and structural similarities to the pineal of tropical rodents are discussed.  相似文献   

10.
Josephson  E.M.  Morest  D.K. 《Brain Cell Biology》1998,27(11):841-864
Summary. One of the most numerous neurons in the cochlear nucleus is the type I stellate cell. Previous attempts to understand the structural basis for its signal coding assumed that integration of synaptic potentials arising from axodendritic synapses should account for the generation of its response properties. However, the present study documents the importance of excitatory and inhibitory types of synapses on the soma and axon. Retrograde transport of cholera toxin B subunit, injected in the inferior colliculus of chinchillas, was used to label exclusively type I stellate cells in the anteroventral cochlear nucleus. The relative distribution of terminal types by vesicle morphology was pleomorphic < large spherical < flattened < smaller spherical. The somatic perimeter covered by endings ranged from almost none to nearly half. More flattened-vesicle terminals contacted somata in the high-frequency than in the low-frequency region. Eight of twenty axons received endings that contained large spherical vesicles and made asymmetric junctions; half of these extensively apposed the initial segment, forming a collar of presumed excitatory input. Thus, type I stellate cells are a heterogeneous group. Inhibitory synapses probably compose the majority of terminals. Some cells receive mostly inhibitory synapses near the presumed site of the spike generator, but others also have a prominent excitatory input. These findings call for a new look at the mechanisms for signal coding in stellate cells in the auditory system in particular and raise issues concerning the stochastic nature of information processing in sensory systems in general.  相似文献   

11.
Summary Nerve fibres of the neurosecretory hypothalamo-hypophyseal tract were studied in embryonic C3H mouse neural lobes; at least four glands at each gestational day 15–19 were examined.Single axons and small bundles of fibres are visible at gestational days 15 and 16. By day 17 large fibre bundles penetrate between glial cells. They increase in number during the next two days.Electron-lucent and electron-dense vesicles are seen in the fibres of the 15th and 16th gestational days. In the 17–19 day-old embryos development is characterized by a successive rise in the number of the two types of vesicles. The mean diameter of the electron-lucent vesicles is approximately unchanged in all the stages examined (50 nm). The electron-dense vesicles increase in size from approximately 80–90 nm at days 15–16 to 140 nm at the 19th gestational day.By day 19 contacts between neurosecretory fibre terminals and the outer basement membrane of internal and peripheral capillaries are occasionally observed. The possibly adrenergic nature of a few terminals contacting peripheral vascular structures in 17 and 18 day-old embryos is suggested.This investigation was supported by grant No. 2180-020 from the Swedish Natural Science Research Council. The skilful technical assistance of Mrs. Ulla Wennerberg is gratefully acknowledged.  相似文献   

12.
Sea anemones feed by discharging nematocysts into their prey, but the pathway for control of nematocyst discharge is unknown. The purpose of this study was to investigate the ultrastructural evidence of neuro-nematocyte synapses and to determine the types of synaptic vesicles present at different kinds of nematocyst-containing cells. The tip and middle of tentacles from small specimens of Aiptasia pallida were prepared for electron microscopy and serial micrographs were examined. We found clear vesicles in synapses on mastigophore-containing nematocytes and dense-cored vesicles in synapses on basitrich-containing nematocytes and on one cnidoblast with a developing nematocyst. In addition, we found reciprocal neuro-neuronal and sequential neuro-neuro-nematocyte synapses in which dense-cored vesicles were present. It was concluded that : (1) neuro-nematocyte synapses are present in sea anemones, (2) different kinds of synaptic vesicles are present at cells containing different types of nematocysts, (3) synapses are present on cnidoblasts before the developing nematocyst can be identified and these synapses may have a trophic influence on nematocyst differentiation, and (4) both reciprocal and sequential synapses are present at the nematocyte, suggesting a complex pathway for neural control of nematocyst discharge. J. Morphol. 238:53–62, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Synapsins are abundant nerve terminal proteins present at all synapses except for ribbon synapses, e.g. photoreceptor cell synapses. Multiple functions have been proposed for synapsins, including clustering of synaptic vesicles and regulation of synaptic vesicle exocytosis. To investigate the physiological functions of synapsin and to ascertain which domains of synapsin are involved in synaptic targeting in vivo, we expressed synapsin Ib and its N- and C-terminal domains in the photoreceptor cells of transgenic mice. In these cells synapsin Ib is targeted efficiently to synaptic vesicles but has no significant effect on the development, structure or physiology of the synapses. This suggests that synapsin I does not have dominant physiological or morphoregulatory functions at these synapses. Full-length synapsin Ib and the N-terminal domains of synapsin Ib but not its C-terminal domains are transported to synapses, revealing that the molecular apparatus for synaptic targeting of synapsins is also present in cells which form ribbon synapses that normally lack synapsins. This apparatus appears to utilize the conserved N-terminal domains that are shared between all synapsins.  相似文献   

14.
The pineal organ of Ensatina eschscholtzi, a terrestrial and secretive species of salamander of the family Plethodontidae, is a photoreceptive structure lying on the dorsal surface of the diencephalon. The pineal is flattened with a broad lumen and consists of three cell types: photoreceptors, supportive cells, and neurons. Pineal photoreceptors are typical vertebrate photoreceptors and possess outer segment formations which, however, are frequently contorted and disorganized. Sloughing of apical portions of outer segments and vesiculation along the lateral edges of outer segment membrane disks are consistently observed and presumed to represent mechanisms of outer segment membrane recycling. Photoreceptors have basal processes which synapse with neural dendrites. Synapses between photoreceptor basal processes are occasionally observed. All synapses are characterized by synaptic ribbon structures of variable number, size, and configuration. Dense-core vesicles are occasionally observed mingled with clear synaptic vesicles within photoreceptor basal processes. Supportive cells within the pineal function in phagocytosis and recycling of shed outer segment membrane material, and neurons are localized at the lateral margins of the organ. The latter send axons into the ipsilateral side of the dorsal diencephalon. The pineal organ of Ensatina shows marked variation in overall size (cell total), cell type proportions, absolute neuron number, and ratio of photoreceptor number to neuron number for individual pineals. None of these morphological parameters is correlated with body size, sex, or season, and it is assumed that such variability represents significant variation in photosensory capabilities. It is suggested that the pineal organ of Ensatina is a partially degenerate photoreceptive structure.  相似文献   

15.
In the first optic neuropile of the housefly Musca, photoreceptor terminals innervate fixed clusters of interneurons, one of which is the monopolar cell L2; L2's synapses in turn feed back upon the terminals. We examined the ultrastructure of these feedback synapses following degeneration of their normal targets, the receptor terminals; this was accomplished by photo-ablating the receptor cells after intraretinal injections of sulforhodamine. Even when all the terminals degenerated, their deafferentated target cells, including L2, remained structurally intact for at least 14 d. Despite this lack of obvious trans-synaptic degeneration, L2's synaptic connections did alter. Presynaptic organelles of the feedback synapses, synaptic ribbons and associated synaptic vesicles, soon appeared in L2's cytoplasm, separating from their site of attachment at the presynaptic membrane by invagination. Similar free-floating organelles and vesicles also occurred in another monopolar cell, L4. They were also occasionally encountered in L2, in normal, newly emerged flies at a time when a naturally occurring loss of feedback synapses is greatest. We interpret the process of internalization that forms these floating ribbons to be the first step in synaptic loss which occurs spontaneously, and that the rate is enhanced in L2 when its main synaptic targets, the receptor terminals, degenerate.  相似文献   

16.
Summary A monoclonal antibody that recognises the C-terminal part of substance P was used to study immunoreactive structures in the substantia nigra by the unlabeled antibody, peroxidase-antiperoxidase procedure. Immunoreactivity was present in nerve fibres in all parts of the substantia nigra, particularly in the pars reticulata and pars lateralis. Electron microscopically two types of bouton immunoreactive for substance P were found: Type 1 contained large electron-lucent vesicles, occasional large granulated vesicles and formed symmetrical synapses with dendrites. Type 2 boutons contained smaller, round electron-lucent vesicles, many large granular vesicles and formed asymmetrical synapses (having prominent postjunctional dense bodies) with dendrites and perikarya.Immunoreactive fibres with varicosities that had been identified light microscopically were studied in serial sections in the electron microscope. Each identified varicosity contained synaptic vesicles and formed a single synapse. An individual fibre formed boutons of only one kind (type 1 or type 2) and could form multiple synapses with the same neuron. Thus, an identified fibre in the pars compacta had eight varicosities, each of which was in synaptic contacts (type 2) with the dendrites or soma of the same neuron.The results are consistent with the concept that substance P is a synaptic transmitter in the substantia nigra and indicate that neurons in this region may receive a significant input from substance P-containing afferents, and that there are at least two types of such afferent fibres.  相似文献   

17.
Summary The synaptic contacts made by carp retinal neurons were studied with electron microscopic techniques. Three kinds of contacts are described: (1) a conventional synapse in which an accumulation of agranular vesicles is found on the presynaptic side along with membrane densification of both pre- and postsynaptic elements; (2) a ribbon synapse in which a presynaptic ribbon surrounded by a halo of agranular vesicles faces two postsynaptic elements; and (3) close apposition of plasma membranes without any vesicle accumulation or membrane densification.In the external plexiform layer, conventional synapses between horizontal cells are described. Horizontal cells possess dense-core vesicles about 1,000 Å in diameter. Membranes of adjacent horizontal cells of the same type (external, intermediate or internal) are found closely apposed over broad regions.In the inner plexiform layer ribbon synapses occur only in bipolar cell terminals. The postsynaptic elements opposite the ribbon may be two amacrine processes or one amacrine process and one ganglion cell dendrite. Amacrine processes make conventional synaptic contacts onto bipolar terminals, other amacrine processes, amacrine cell bodies, ganglion cell dendrites and bodies. Amacrine cells possess dense-core vesicles. Ganglion cells are never presynaptic elements. Serial synapses between amacrine processes and reciprocal synapses between amacrine processes and bipolar terminals are described. The inner plexiform layer contains a large number of myelinated fibers which terminate near the layer of amacrine cells.This work was supported by an N.I.H. grant NB 05404-05 and a Fight for Sight grant G-396 to P.W. and N.I.H. grant NB 05336 to J.E.D. The authors wish to thank Mrs. P. Sheppard and Miss B. Hecker for able technical assistance. P.W. is grateful to Dr. G. K. Smelser, Department of Ophthalmology, Columbia University, for the use of his electron microscope facilities.  相似文献   

18.
Scanning and transmission electron microscopy of the pharynx of the sea anemone Aiptasia pallida revealed a heavily ciliated epidermis and two types of gland cells not known previously to be innervated. By tracing serial cross sections of the pharynx, we located and characterized two types of neuroglandular synapses (i.e., those having clear vesicles and those with dense-cored vesicles). The diameters of the vesicles at each synapse were averaged; clear vesicles ranged from 70 to 103 nm in diameter and were observed at synapses to both mucous and zymogenic gland cells. Dense-cored vesicles ranged from 53 to 85 nm in diameter and were observed at synapses to two mucous gland cells. One mucous gland cell had three neuroglandular synapses, one with clear vesicles and two with dense-cored vesicles. The occurrence of either clear or dense-cored vesicles at neuroglandular synapses suggests that at least two types of neurotransmitter substances control the secretion of mucus in the sea anemone pharynx. To date, only clear vesicles have been observed at a neurozymogenic gland cell synapse in the pharynx. No evidence of immunoreactivity to phenylethanolamine-N-methyl transferase was observed at neuroglandular synapses, suggesting that adrenaline is not a transmitter in the pharynx of A. pallida.  相似文献   

19.
Yokota  R.  Burnstock  G. 《Cell and tissue research》1983,232(2):379-397
Summary A semi-quantitative electron-microscopic study of neuronal cell bodies, nerve profiles and synapses in the anterior pelvic ganglia of the guinea-pig has been carried out following in vivo labelling of adrenergic nerve endings with 5-hydroxydopamine. Ganglion cells of three main types have been distinguished: 1) the majority (about 70%) not containing granular vesicles, probably cholinergic elements; 2) those containing large granular vesicles of uniform size (80–110 nm), with granules of medium density and prominent halos; and 3) those containing vesicles of variable size (60–150 nm), with very dense eccentrically placed granular cores. Some non-neuronal granule-containing cells were present, mainly near small blood vessels. Some 95% of the total axon profiles within the ganglia were cholinergic, the remaining 5% were adrenergic. However, 99% of synapses (i.e. axons within 50 nm of nerve cell membrane with pre-and post-synaptic specialisations) were cholinergic, and 1 % were adrenergic. Only three examples of nerve cell bodies exhibiting both cholinergic and adrenergic synapses were observed. Unlike the para-and prevertebral ganglia, the pelvic ganglia contained large numbers of axo-somatic synapses. As many as 20% of the nucleated neuronal cell profiles displayed two distinct nuclei.  相似文献   

20.
Summary Ultrathin serial sectioning and labeling with tannic acid have demonstrated that most plasmalemmal vesicles of rat vascular endothelial cells are not free, but rather are conjoined in three dimensions to form racemose invaginations from the cell surfaces. To elucidate the distribution of vesicles in these microvascular endothelial cells, we have examined terminal arterioles, capillaries and post-capillary venules of rat skeletal muscle and brain cortex, using tannic acid labeling and stereological methods, and have determined the proportions of free vesicles and the vesicles of luminal and abluminal invaginations, as well as the numerical density of vesicles. In the case of capillaries, regional differences in distribution have also been studied. The ratio of free vesicles is 6–7% and is constant throughout the muscle microvasculature. The distribution (proportions and numerical densities) of vesicles in the brain and muscle microvascular endothelial cells shows regionally distinctive patterns. In rapid-frozen, freeze-substituted endothelial cells, there are almost as many fused vesicles as seen in chemically fixed cells. Therefore, aldehydes do not seem to induce membrane fusion, and the distribution of vesicles seems to be preserved by chemical fixation. The structure and function of plasmalemmal vesicles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号