首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

2.
Cytoplasmic Ca2+ is a major regulator of exocytosis in secretory cells; however, the Ca(2+)-dependent mechanisms that trigger secretion have not been elucidated. Protein kinase C (PKC) has been proposed to be an important Ca(2+)-dependent component of this regulation; however, the effects of this enzyme on the exocytotic apparatus have not been identified. We developed a PKC-deficient, semi-intact PC12 cell system in which direct stimulatory effects of purified PKC on Ca(2+)-dependent norepinephrine secretion were studied. The reconstitution of optimal Ca(2+)-activated norepinephrine secretion by semi-intact PC12 cells required the addition of MgATP and cytosolic proteins. PKC-deficient cytosol exhibited reduced reconstituting activity that was fully restored by the addition of purified PKC. The restoration of Ca(2+)-dependent norepinephrine secretion by PKC required the presence of other proteins in the cytosol, in particular, a high molecular weight protein. The high molecular weight protein was identified as p145, a recently characterized 145-kDa brain protein. The addition of PKC enhanced phosphorylation of p145 under conditions of fully reconstituted Ca(2+)-activated norepinephrine secretion. The results indicate that 1) PKC is neither necessary nor sufficient for Ca(2+)-activated secretion, whereas other cytosolic proteins are required; and 2) the stimulation of Ca(2+)-activated secretion by PKC is dependent upon cytosolic proteins such as p145 and may be largely mediated through the phosphorylation of p145.  相似文献   

3.
In intact sheep gonadotropes, the protein kinase inhibitor, staurosporine, inhibited the stimulatory effect of phorbol 12-myristate 13-acetate (PMA) on luteinizing hormone (LH) secretion. Under the same conditions staurosporine enhanced gonadotrophin-releasing hormone (GnRH)-stimulated LH exocytosis without altering the EC50 of GnRH and without affecting basal LH exocytosis. These results suggest that PKC does not play a major role in mediating acute GnRH-stimulated LH exocytosis. Furthermore, they demonstrate that staurosporine enhances GnRH stimulus-secretion coupling. Both extracellular Ca2(+)-dependent and Ca2(+)-independent components of GnRH-stimulated LH secretion were enhanced by the drug. Staurosporine had no effect on GnRH stimulation of cAMP and inositol phosphate synthesis. In permeabilized cells staurosporine did not enhance Ca2(+)- and cAMP-stimulated LH exocytosis. Based on these results we hypothesize that staurosporine inhibits a protein kinase which is activated by GnRH and which negatively modulates GnRH stimulus-secretion coupling.  相似文献   

4.
《The Journal of cell biology》1996,133(6):1217-1236
Annexin II is a Ca(2+)-dependent membrane-binding protein present in a wide variety of cells and tissues. Within cells, annexin II is found either as a 36-kD monomer (p36) or as a heterotetrameric complex (p90) coupled with the S-100-related protein, p11. Annexin II has been suggested to be involved in exocytosis as it can restore the secretory responsiveness of permeabilized chromaffin cells. By quantitative confocal immunofluorescence, immunoreplica analysis and immunoprecipitation, we show here the translocation of p36 from the cytosol to a subplasmalemmal Triton X-100 insoluble fraction in chromaffin cells following nicotinic stimulation. A synthetic peptide corresponding to the NH2-terminal domain of p36 which contains the phosphorylation sites was microinjected into individual chromaffin cells and catecholamine secretion was monitored by amperometry. This peptide blocked completely the nicotine-induced recruitment of p36 to the cell periphery and strongly inhibited exocytosis evoked by either nicotine or high K+. The light chain of annexin II, p11, was selectively expressed by adrenergic chromaffin cells, and was only present in the subplasmalemmal Triton X-100 insoluble protein fraction of both resting and stimulated cells. p11 can modify the Ca(2+)- and/or the phospholipid-binding properties of p36. We found that loss Ca2+ was required to stimulate the translocation of p36 and to trigger exocytosis in adrenergic chromaffin cells. Our findings suggest that the translocation of p36 to the subplasmalemmal region is an essential event in regulated exocytosis and support the idea that the presence of p11 in adrenergic cells may confer a higher Ca2+ affinity to the exocytotic pathway in these cells.  相似文献   

5.
We have used a digitonin-permeabilized cell system to study the signal transduction pathways responsible for stimulus-secretion coupling in the rat peritoneal mast cell. Conditions were established for permeabilizing the mast cell plasma membrane without disrupting secretory vesicles. Exocytotic release of histamine from digitonin-permeabilized cells required a combination of micromolar concentrations of Ca2+ and the stable guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but was independent of exogenous ATP. In the presence of 40 microM-GTP[S], exocytosis was half-maximal at 1.3 microM-Ca2+ and maximal at 10 microM-Ca2+; GTP[S] alone (100 microM) had no effect on histamine release in the absence of added Ca2+. In the presence of 10 microM free Ca2+, 5 microM-GTP[S] was required for half-maximal exocytosis. To examine the possible role of protein kinase C (PKC) in exocytosis, we utilized 12-O-tetradecanoylphorbol 13-acetate (TPA) to activate PKC and studied its effect on histamine release from permeabilized mast cells. Cells that had been incubated with TPA (25 nM for 5 min) exhibited increased sensitivity to both GTP[S] and Ca2+. The PKC inhibitor staurosporine blocked the effect of TPA without inhibiting normal exocytosis in response to the combination of GTP[S] and Ca2+. In addition, down-regulation of mast-cell PKC by long-term TPA treatment (25 nM for 20 h) blocked the ability of the cells to respond to TPA and inhibited exocytosis in response to Ca2+ and GTP[S] by 40-50%. These results suggest that the sensitivity of the exocytotic machinery of the mast cell can be altered by PKC-catalysed phosphorylation events, but that activation of PKC is not required for exocytosis to occur.  相似文献   

6.
The mechanisms of granule protein secretion have been studied in streptolysin-O-permeabilized guinea pig eosinophils. Secretion of the granule-associated enzyme N-acetyl-beta-D-glucosaminidase was dependent on both Ca2+ and a nonhydrolyzable GTP analogue, guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), suggesting roles for both calcium and GTP binding proteins. Secretion was maximal by 7 min, and varied between 35 and 60% of the total enzyme activity. Other GTP analogues also elicited secretion, with rank order GTP-gamma-S greater than guanylyl-imidophosphate greater than guanylyl (beta-gamma-methylene-diphosphate). Unrelated nucleotide triphosphates showed little or no effect confirming the specificity of the G protein. Transmission electronmicroscopy confirmed that permeabilization alone did not result in loss of granules and that exocytosis was dependent on the addition of the effectors, Ca2+ and GTP-gamma-S. ATP enhanced the magnitude of the secretory response and also enhanced the effective affinities for both Ca2+ and GTP-gamma-S. In the presence of 10(-5) M GTP-gamma-S the ED50 (Ca2+) was pCa 5.57 +/- 0.04 (2.69 microM) in the absence of ATP and declined to pCa 6.16 +/- 0.03 (0.69 microM) in the presence of ATP (p less than 0.0001). Furthermore, ATP served to restore responsiveness in cells that had been rendered refractory by delaying stimulation after permeabilization. Pretreatment with PMA (an activator of PKC) inhibited the induction of a refractory state, whereas inhibition of PKC partially countered the ability of ATP to restore responsiveness, both observations pointing to a requirement for a specific component of the secretory mechanism to be in a phosphorylated state in order to condone the secretion process. These observations show that secretory mechanisms in eosinophils are similar to those in other myeloid cells, in particular neutrophils and mast cells, although the time course of secretion is more protracted.  相似文献   

7.
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.  相似文献   

8.
We have tried to specify a widespread hypothesis on the requirement of ATP for exocytosis (membrane fusion). With Paramecium tetraurelia cells, synchronously (approximately 1 s) exocytosing trichocysts, ATP pools have been measured in different strains, including wild type cells, "non-discharge" (nd), "trichless" (tl), and other mutations. The occurrence of a considerable and rapid ATP consumption also in nd and tl mutations as well as its time course (with a maximum 3-5 s after exocytosis) in exocytosis-competent strains does not match the actual extent of exocytosis performance. However, from in vivo as well as from in vitro experiments, we came to the conclusion that ATP might be required to keep the system in a primed state and its removal might facilitate membrane fusion. (For the study of exocytosis in vitro we have developed a new system, consisting of isolated cortices). In vivo as well as in vitro exocytosis is inhibited by increased levels of ATP or by a nonhydrolyzable ATP analogue. In vitro exocytosis is facilitated in ATP-free media. In vivo-microinjected ATP retards exocytosis in response to chemical triggers, whereas microinjected apyrase triggers exocytosis without exogenous trigger. Experiments with this system also largely exclude any overlaps with other processes that normally accompany exocytosis. Our data also explain why it was frequently assumed that ATP would be required for exocytosis. We conclude that membrane fusion during exocytosis does not require the presence of ATP; the occurrence of membrane fusion might involve the elimination of ATP from primed fusogenic sites; most of the ATP consumption measured in the course of exocytosis may be due to other effects, probably to recovery phenomena.  相似文献   

9.
The mechanism by which calcium regulates leptin secretion was studied in adipocytes isolated from rat white adipose tissue. Incubation of adipocytes in a medium containing glucose, but no calcium, markedly inhibited insulin-stimulated leptin secretion (ISLS) and synthesis, without affecting basal leptin secretion or lipolysis. However, when pyruvate was used as a substrate, ISLS was insensitive to the absence of calcium. Likewise, the stimulatory effects of insulin were completely prevented by phloretin, cytochalasin B, and W-13 (3 agents that interfere with early steps of glucose metabolism) in the presence of glucose, but not in the presence of pyruvate. Thus calcium appears to be specifically required for glucose utilization. On the other hand, (45)Ca uptake and leptin secretion were not affected by insulin or by inhibitors of L-type calcium channels. However, agents increasing plasma membrane permeability to calcium (high calcium concentrations, A-23187, and ATP) increased (45)Ca uptake and concomitantly inhibited ISLS. Similarly, release of endogenous calcium stores by thapsigargin inhibited ISLS in a dose-dependent manner. ATP, A-23187, calcium, and thapsigargin inhibited ISLS, even in the presence of pyruvate. These results show that 1) extracellular calcium is necessary for ISLS, mainly by affecting glucose uptake, 2) insulin does not affect extracellular calcium uptake, and 3) increasing cytosolic calcium by stimulating its uptake or its release from endogenous stores inhibits ISLS at a level independent of glucose metabolism. Thus calcium regulates leptin secretion from adipocytes in a manner that is markedly different from its role in the exocytosis of many other polypeptidic hormones.  相似文献   

10.
There is evidence that the rab class of low molecular weight GTP-binding proteins is involved in vesicular transfer from endoplasmic reticulum to Golgi and between Golgi cisternae. To determine whether similar proteins play a role in regulated exocytosis, the effects of synthetic peptides derived from low molecular weight GTP-binding proteins on catecholamine secretion from digitonin-permeabilized chromaffin cells were investigated. The synthetic peptides represent the putative effector-binding domains of the rab, ras and ral classes of low molecular weight GTP-binding proteins and correspond to ras(33-48). Two rab peptides but neither a ras nor a ral peptide enhanced Ca(2+)-dependent secretion by approximately 30%. Maximal secretion in response to Ca2+ was increased. The enhancement was not blocked by the pseudosubstrate inhibitor of protein kinase C, PKC(19-31), thus indicating that activation of protein kinase C was not responsible for the enhancement of secretion. Similarly a rab peptide but neither a ras nor a ral peptide enhanced GppNHp-induced secretion 30-70%. The peptides had little or no effect in the absence of Ca2+ or GppNHp. The data are consistent with a protein of the rab class playing a role in regulated exocytosis.  相似文献   

11.
《FEBS letters》1993,320(3):207-210
Calcium-dependent secretion in digitonin-permeabilized adrenal chromaffin cells is stimulated by exogenous annexin II and 14-3-3 proteins. These proteins share a conserved domain that has been suggested to be involved in specific protein-protein interactions. We examined whether this domain was involved in secretion by using a synthetic peptide (P16) of sequence KGDYQKALLYLCGGDD corresponding to the C-terminus of annexin II. P16, but not truncated peptides, prevented the stimulation of secretion by 14-3-3 proteins and produced a partial inhibition of control secretion. These data suggest that the shared annexin/14-3-3 domain is important in the mechanisms controlling Ca2+-dependent secretion and may play a key role in protein-protein interactions during exocytosis.  相似文献   

12.
《The Journal of cell biology》1987,105(6):2745-2750
Provision of GTP (or other nucleotides capable of acting as ligands for activation of G-proteins) together with Ca2+ (at micromolar concentrations) is both necessary and sufficient to stimulate exocytotic secretion from mast cells permeabilized with streptolysin-O. GTP and its analogues, through their interactions with Gp, also activate polyphosphoinositide-phosphodiesterase (PPI-pde generating inositol 1,4,5-trisphosphate and diglyceride [DG]). We have used mast cells labeled with [3H]inositol to test whether the requirement for GTP in exocytosis is an expression of Gp activity through the generation of DG and consequent activation of protein kinase C, or whether GTP is required at a later stage in the stimulus secretion sequence. Neomycin (0.3 mM) inhibits activation of PPI-pde, but maximal secretion due to optimal concentrations of guanosine 5'-O-(3-thiotriphosphate) (GTP- gamma-S) can still be evoked in its presence. When ATP is also provided the concentration requirement for GTP-gamma-S in support of exocytosis is reduced. This sparing effect of ATP is nullified when the PPI-pde reaction is inhibited by neomycin. We argue that the sparing effect of ATP occurs as a result of enhancement of DG production and through its action as a phosphoryl donor in the reactions catalyzed by protein kinase C.  相似文献   

13.
Although CAPS1 was originally identified as a soluble factor that reconstitutes Ca(2+)-dependent secretion from permeabilized neuroendocrine cells, its exact function in intact mammalian cells remains controversial. Here we investigate the role for CAPS1 by generating stable cell lines in which CAPS1 is strongly down-regulated. In these cells, Ca(2+)-dependent secretion was strongly reduced not only of catecholamine but also of a transfected neuropeptide. These secretion defects were rescued by infusion of CAPS1-containing brain cytosol or by transfection-mediated expression of CAPS1. Whole cell patch clamp recording revealed significant reductions in slow burst and sustained release components of exocytosis in the knockdown cells. Unexpectedly, they also accumulated higher amounts of endogenous and exogenous transmitters, which were attributable to reductions in constitutive secretion. Electron microscopy did not reveal abnormalities in the number or docking of dense core vesicles. Our results indicate that CAPS1 plays critical roles not only in Ca(2+)-dependent, regulated exocytosis but also in constitutive exocytosis downstream of vesicle docking. However, they do not support the role for CAPS1 in loading transmitters into dense core vesicles.  相似文献   

14.
Human Cdc34 is an ubiquitin conjugating enzyme or E2 that ubiquitinates substrates including p27Kip1, I?B?, Wee1, and MyoD. Cdc34 possesses a core catalytic domain encoding the active site cysteine and an acidic tail domain within the carboxyl terminal 36 amino acids. Studies suggest that Cdc34 is phosphorylated in mammalian cells at 5 potential residues within the tail domain. In order to study the biological significance of the Cdc34 acidic tail domain and the possible significance of phosphorylation within this region, we tested the ability of human Cdc34 mutants to complement the cdc34-2 temperature sensitive (ts) strain of Saccharomyces cerevisiae. Our studies indicated that complementation of the cdc34-2 ts strain was critically dependent upon the carboxyl-terminal 36 amino acids of human Cdc34, but did not require phosphorylation of human Cdc34 residues S203, S222, S231, T233, and S236. Further studies demonstrated that although a Cdc34 mutant bearing a deletion of the C-terminal 36 amino acids (Cdc34 1-200) was efficiently charged with ubiquitin by E1, it was severely reduced for the ability to ubiquitinate p27Kip1 in vitro compared to wildtype Cdc34. Both in vivo and in vitro binding studies indicated that Cdc34 1-200 bound to the E3-SCF components, Cul1 and Roc1, at levels comparable to the wildtype Cdc34. These studies suggest that the 36 amino acid acidic tail domain of human Cdc34 is critical for its ability to transfer ubiquitin to a substrate and is dispensable for the association of Cdc34 with Cul1 and Roc1. We postulate that the tail domain of Cdc34 may be important for its efficient dissociation from Cul1 and Roc1, an essential requirement for ubiquitination by the budding yeast Cdc34p, or it may be required more directly for ubiquitin transfer to the substrate.  相似文献   

15.
Macrophage-specific apolipoprotein E (apoE) secretion plays an important protective role in atherosclerosis. However, the precise signaling mechanisms regulating apoE secretion from primary human monocyte-derived macrophages (HMDMs) remain unclear. Here we investigate the role of protein kinase C (PKC) in regulating basal and stimulated apoE secretion from HMDMs. Treatment of HMDMs with structurally distinct pan-PKC inhibitors (calphostin C, Ro-31-8220, Go6976) and a PKC inhibitory peptide all significantly decreased apoE secretion without significantly affecting apoE mRNA or apoE protein levels. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated apoE secretion, and both PMA-induced and apoAI-induced apoE secretion were inhibited by PKC inhibitors. PKC regulation of apoE secretion was found to be independent of the ATP binding cassette transporter ABCA1. Live cell imaging demonstrated that PKC inhibitors inhibited vesicular transport of apoE to the plasma membrane. Pharmacological or peptide inhibitor and knockdown studies indicate that classical isoforms PKCα/β and not PKCδ, -ϵ, -θ, or -ι/ζ isoforms regulate apoE secretion from HMDMs. The activity of myristoylated alanine-rich protein kinase C substrate (MARCKS) correlated with modulation of PKC activity in these cells, and direct peptide inhibition of MARCKS inhibited apoE secretion, implicating MARCKS as a downstream effector of PKC in apoE secretion. Comparison with other secreted proteins indicated that PKC similarly regulated secretion of matrix metalloproteinase 9 and chitinase-3-like-1 protein but differentially affected the secretion of other proteins. In conclusion, PKC regulates the secretion of apoE from primary human macrophages.  相似文献   

16.
Studies of stimulus-response coupling have benefitted from the availability of permeabilization techniques, whereby putative second messengers and intracellular modulators can be introduced into the cell interior. Electropermeabilization, which uses high-intensity electric fields to breach the plasma membrane, creates small pores, permitting access of solutes with molecular masses below 700 KDa. Neutrophils permeabilized by this technique, but not intact cells, discharged lysosomal constituents when exposed to micromolar levels of Ca2+. Secretion by electroporated neutrophils was significantly enhanced by the presence of Mg-ATP (0.3-1.0 mM). Contrary to expectations, it was determined that ATP was not the only nucleotide which enhanced Ca2(+)-induced secretion in the presence of Mg2+. Not only could GTP, XTP, ITP, UTP or ADP partially or completely replace ATP, but even non-hydrolyzable nucleotides such as ADP beta S ATP gamma S, and App[NH]p were effective. GTP gamma S and GDP beta S were inhibitory, while Gpp[NH]p was inactive. None of these nucleotides induced secretion on its own. In contrast, neutrophils which were permeabilized and then washed, were only slightly activated by Mg-ATP and other nucleotides; even the response to Ca2+ alone was less. This hyporesponsiveness of washed cells proved to be due to a time-dependent deactivation of the permeabilized neutrophils taking place at 4 degrees C. In an effort to assess the role for protein kinase C (PKC) in secretion in this system, we examined the effects of phorbol myristate acetate (PMA), a PKC agonist. PMA enhanced degranulation induced by Ca2+ by lowering the requirement for this divalent cation; enhancement by PMA was not dependent upon exogenous ATP. Three inhibitors of PKC with varying specificity, namely H-7, K-252a, and staurosporine, all abrogated PMA-enhanced secretion. These agents also inhibited secretion stimulated by Ca2+ plus ATP in parallel with that induced by Ca2+ plus PMA, strongly suggesting a role for PKC in modulation of degranulation by ATP. Our results show that electropermeabilized neutrophils provide a convenient, useful model for stimulus-secretion coupling. These data also suggest that the 'requirement' for Mg-ATP, which has been observed in other permeabilized cell systems, is not simply for metabolic energy or as a substrate for kinases. It is possible that these nucleotides all interact with a recently described neutrophil receptor for adenine nucleotides or with a recently postulated exocytosis-linked G-protein.  相似文献   

17.
Synaptogyrins constitute a family of synaptic vesicle proteins of unknown function. With the full-length structure of a new brain synaptogyrin isoform, we now show that the synaptogyrin family in vertebrates includes two neuronal and one ubiquitous isoform. All of these synaptogyrins are composed of a short conserved N-terminal cytoplasmic sequence, four homologous transmembrane regions, and a variable cytoplasmic C-terminal tail that is tyrosine-phosphorylated. The localization, abundance, and conservation of synaptogyrins suggest a function in exocytosis. To test this, we employed a secretion assay in PC12 cells expressing transfected human growth hormone (hGH) as a reporter protein. When Ca2+-dependent hGH secretion from PC12 cells was triggered by high K+ or alpha-latrotoxin, co-transfection of all synaptogyrins with hGH inhibited hGH exocytosis as strongly as co-transfection of tetanus toxin light chain. Synaptophysin I, which is distantly related to synaptogyrins, was also inhibitory but less active. Inhibition was independent of the amount of hGH expressed but correlated with the amount of synaptogyrin transfected. Inhibition of exocytosis was not observed with several other synaptic proteins, suggesting specificity. Analysis of the regions of synaptogyrin required for inhibition revealed that the conserved N-terminal domain of synaptogyrin is essential for inhibition, whereas the long C-terminal cytoplasmic tail is largely dispensable. Our results suggest that synaptogyrins are conserved components of the exocytotic apparatus, which function as regulators of Ca2+-dependent exocytosis.  相似文献   

18.
The present study was performed to examine whether residues 36-62 of TNFalpha contain the chemotactic domain of TNFalpha, and whether the p55 and p75 TNF receptors are involved in TNFalpha induced chemotaxis. The chemotactic effect of TNFalpha on PMN was inhibited by the mAbs Hrt-7b and Utr-1, against the p55 and p75 TNF receptors, respectively. Both receptors may therefore be required for mediating the chemotactic effect of TNFcz. The synthetic TNFalpha 36-62, similar to TNFalpha, had chemotactic effects on both PMN and monocytes. The chemotactic activity of the TNFalpha 36-62 peptide on PMN, was inhibited by Htr-7b, Utr-1 and soluble p55 receptor, which shows that the peptide possessed the ability to induce chemotaxis through the TNF receptors. In contrast to TNFalpha, the peptide did not show a cytotoxic activity against WEHI 164 flbrosarcoma cells. It is suggested that different domains of the TNFalpha molecule induce distinct biological effects.  相似文献   

19.
We have characterized a digitonin-permeabilized cell system for the ATP-dependent degradation of endogenous long-lived proteins. Proteolysis requires Mg2+ and ATP hydrolysis. Other nucleotide triphosphates (CTP, UTP) can partially replace the ATP requirement. The enhanced rate of degradation of long-lived proteins in response to serum starvation is maintained in the permeabilized cell system and can be partially inhibited by lysosomal inhibitors. The maintenance of intracellular architecture and ease of manipulation of soluble components make the permeabilized cell system ideal for studying the proteolysis of both endogenous and exogenous substrates.  相似文献   

20.
We have used primary gonadotropes permeabilized with the pore-forming protein Staphylococcus aureus alpha-toxin to investigate luteinizing hormone (lutropin, LH) exocytosis. The diameter of the alpha-toxin pores (2-3 nm) allows the exchange of small molecules, whereas larger cytosolic proteins are retained. Because of the slow exchange of small molecules through the pores, we have developed a protocol which combines prolonged pre-equilibration of the permeabilized cells at 0 degrees C before stimulation with strong Ca2+ buffering. Under these conditions, increasing the free Ca2+ concentration from 0.1 microM to 10 microM [EC50 (concentration effecting half-maximal response) 2-3 microM] resulted in a 15-20-fold increase in LH exocytosis. LH exocytosis was maximal in the first 3 min and completed by 12 min. When permeabilized cells were equilibrated for prolonged periods in the absence of MgATP, Ca2(+)-stimulated LH secretion gradually declined (greater than 90% decrease by 60 min). Addition of MgATP (5 mM) rapidly restored full Ca2(+)-stimulated LH secretion. MgATP supported Ca2(+)-stimulated LH secretion at a half-maximal concentration of 1.5 mM. UTP and adenosine 5'-[gamma-thio]triphosphate were 40 and 31% as effective as MgATP, whereas other nucleotide triphosphates were ineffective. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA; 50 nM) stimulated LH exocytosis at free Ca2+ concentrations as low as 1 nM and was additive with Ca2+ at higher free Ca2+ concentrations. PMA-stimulated exocytosis required MgATP at concentrations similar to those required for Ca2(+)-stimulated LH exocytosis. These results demonstrate that LH exocytosis can be triggered both by micromolar Ca2+ concentrations or, in the virtual absence of Ca2+, by PKC activation. Both mechanisms of stimulated exocytosis have an absolute requirement for millimolar ATP. Because they retain cytosolic proteins, alpha-toxin-permeabilized cells may have advantages over alternative permeabilization methods provided that conditions are used that compensate for slow diffusion through alpha-toxin pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号