首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To isolate the peripheral adaptations to training, five normal subjects exercised the nondominant (ND) wrist flexors for 41 +/- 11 days, maintaining an exercise intensity below the threshold required for cardiovascular adaptations. Before and after training, intracellular pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) were measured by 31P magnetic resonance spectroscopy. Also maximal O2 consumption (VO2 max), muscle mass, and forearm blood flow were determined by graded systemic exercise, magnetic resonance imaging, and venous occlusion plethysmography, respectively. Blood flow, Pi/PCr, and pH were measured in both forearms at rest and during submaximal wrist flexion at 5, 23, and 46 J/min. Training did not affect VO2 max, exercise blood flow, or muscle mass. Resting pH, Pi/PCr, and blood flow were also unchanged. After training, the ND forearm demonstrated significantly lower Pi/PCr at 23 and 46 J/min. Endurance, measured as the number of contractions to exhaustion, also was increased significantly (63%) after training in the ND forearm. We conclude that 1) forearm training results in a lower Pi/PCr at identical submaximal work loads; 2) this improvement is independent of changes in VO2 max, muscle mass, or limb blood flow; and 3) these differences are associated with improved endurance and may reflect improved oxidative capacity of skeletal muscle.  相似文献   

2.
3.
4.
5.
Skeletal muscle has been shown to generate a complex set of reactive oxygen and nitrogen species (ROS) both at rest and during contractile activity. The primary ROS generated are superoxide and nitric oxide and the pattern and magnitude of their generation is influenced by the nature of the contractile activity. It is increasingly clear that the ROS generated by skeletal muscle play an important role in influencing redox-regulated processes that control, at least some of, the adaptive responses to contractile activity. These processes are also recognized to be modified during ageing and in some disease states, providing the potential that interventions affecting ROS activity may influence muscle function or viability in these situations.  相似文献   

6.
To evaluate the effects of endurance training in rats on fatty acid metabolism, we measured the uptake and oxidation of palmitate in isolated rat hindquarters as well as the content of fatty acid-binding proteins in the plasma membranes (FABP(PM)) of red and white muscles from 16 trained (T) and 18 untrained (UT) rats. Hindquarters were perfused with 6 mM glucose, 1,800 microM palmitate, and [1-(14)C]palmitate at rest and during electrical stimulation (ES) for 25 min. FABP(PM) content was 43-226% higher in red than in white muscles and was increased by 55% in red muscles after training. A positive correlation was found to exist between succinate dehydrogenase activity and FABP(PM) content in muscle. Palmitate uptake increased by 64-73% from rest to ES in both T and UT and was 48-57% higher in T than UT both at rest (39.8 +/- 3.5 vs. 26.9 +/- 4. 4 nmol. min(-1). g(-1), T and UT, respectively) and during ES (69.0 +/- 6.1 vs. 43.9 +/- 4.4 nmol. min(-1). g(-1), T and UT, respectively). While the rats were resting, palmitate oxidation was not affected by training; palmitate oxidation during ES was higher in T than UT rats (14.8 +/- 1.3 vs. 9.3 +/- 1.9 nmol. min(-1). g(-1), T and UT, respectively). In conclusion, endurance training increases 1) plasma free fatty acid (FFA) uptake in resting and contracting perfused muscle, 2) plasma FFA oxidation in contracting perfused muscle, and 3) FABP(PM) content in red muscles. These results suggest that an increased number of these putative plasma membrane fatty acid transporters may be available in the trained muscle and may be implicated in the regulation of plasma FFA metabolism in skeletal muscle.  相似文献   

7.
8.
Routine oxygen consumption ( M o 2) was 35% higher in 1 day starved and 21% higher in 4 day starved adult transgenic coho salmon Oncorhynchus kisutch relative to end of migration ocean-ranched coho salmon. Critical swimming speed ( U crit) and M o 2 at U crit ( M o 2max) were significantly lower in 4 day starved transgenic coho salmon (1·25 BL s−1; 8·79 mg O2 kg−1 min−1) compared to ocean-ranched coho salmon (1·60 BL s−1; 9·87 mg O2 kg−1 min−1). Transgenic fish swam energetically less efficiently than ocean-ranched fish, as indicated by a poorer swimming economy at U crit ( M o 2max     ). Although M o 2max was lower in transgenic coho salmon, the excess post-exercise oxygen consumption (EPOC) measured during the first 20 min of recovery was significantly larger in transgenic coho salmon (44·1 mg O2 kg−1) compared with ocean-ranched coho salmon (34·2 mg O2 kg−1), which had a faster rate of recovery.  相似文献   

9.
Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O(2).kg(-1).min(-1)) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O(2).kg(-1).min(-1)). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.  相似文献   

10.
11.
  • 1.1. Oxygen consumption in six crustacean species from the continental shelf of the NW Gulf of Mexico was related to the ash free weight per dry weight (afdw) gram of the tissue excluding the exoskeleton, suggesting a close relationship to their life strategies.
  • 2.2. Dry weight exoskeleton proportion varied among species, with highest values recorded in callapid brachyuran crab species (46.8–52.5%) against the values recorded in portunid crab (45.8–48%) and the shrimp species (26.7–35.7%).
  • 3.3. Oxygen consumption was related to afdw in each species according to the expression y = axb, with b values ranging from 0.68 to 2.92.
  • 4.4. Rates of oxygen consumption per afdw/dw were larger in shrimps than in portunids and callapids, and was related to the morphophysiology and lifestyle of six species described; the former as the morphological design of the exoskeleton versus the muscle content in the species and the latter as the activity rate in the environment.
  • 5.5. The oxygen extraction efficiency, calculated from oxygen consumption, was higher in the eurytopic species Penaeus aztecus and Callinecies similis than in species restricted to the marine environment, hence considered as a response to environmental fluctuations.
  相似文献   

12.
13.
There was 21% isomyosin V1 in the 12 month SHR (Spontaneous Hypertensive Rat) and 70% isomyosin V1 in the 6 month WKY (Wystar-Kyoto), nevertheless there was no difference in maximum developed pressure nor maximum dP/dt in the isovolumically beating hearts of the two sets of animals. [Hearts were perfused with hypercalcemic perfusate in the presence of isoproterenol (10(-7)M)]. There was, however, a a 32% reduction in oxygen consumption per gram of dry weight per beat in the 12 month SHR as compared to the 6 mo WKY. Associated with a shift towards isomyosins V2 and V3 in the 6 and 12 month WKY and SHR there was no corresponding change in maximum dP/dt nor developed pressure, but there was a conservation in oxygen consumption.  相似文献   

14.
15.
Adaptations of the method of Takahashi et al. (1966. J. Gen. Physiol. 50:317-333) were used to test the validity of the one-dimensional diffusion equation for O2 in the resting excised frog sartorius muscle. This equation is: (formula: see text) where x is the distance perpendicular to the muscle surface. t is time, P(x, t) is the partial pressure of O2,D and alpha are the diffusion coefficient and solubility for O2 in the tissue, and Q is the rate of O2 consumption. P(O, t), the time-course of PO2 at one muscle surface, was measured by a micro-oxygen electrode. Transients in the PO2 profile of the muscle were induced by two methods: (a) after an equilibration period, one surface was sealed off by a disc in which the O2 electrode was embedded; (b) when PO2 at this surface reached a steady state, a step change was made in the PO2 at the other surface. With either method, the agreement between the measured P(O, t) and that predicted by the diffusion equation was excellent, making possible the calculation of D and Q. These two methods yielded statistically indistinguishable results, with the following pooled means (+/- SEM): (formula: see text) At each temperature, D was independent of muscle thickness (range, 0.67-1.34 mm). The activation energy (EA) for diffusion of oxygen in muscle was -3.85 kcal/mol, which closely matches the corresponding value in water. Together with absolute values of D in water taken from the literature, the present data imply that (Dmuscle/DH2O) is in the range 0.59-0.69. This value, and that of EA, are in agreement with the theory of Wang (1954, J. Am. Chem. Soc. 76:4755-4763), suggesting that with respects to the diffusion of O2, to a useful approximation, frog skeletal muscle may be considered simply as a homogeneous protein solution.  相似文献   

16.
17.
The current study sought to examine the effects of chronic endurance treadmill running on oxidative capacity and capillary density in specific diaphragm muscle fiber types in young (5 mo) and senescent (greater than or equal to 23 mo) female Fischer 344 rats. Both young and senescent animals trained at approximately 75% of maximal O2 consumption for 1 h/day 5 days/wk for 10 wk. Plantaris citrate synthase activity was significantly increased (P less than 0.01) in both young and old trained groups. Densitometric analysis of succinate dehydrogenase (SDH) activity in diaphragm type I, IIa, and IIb muscle fibers was done using a computerized image-processing system. There were no age-related differences in SDH activity between the young and old groups for any of the fiber types. In addition, SDH activity was found to be significantly increased (P less than 0.05) in all three fiber types in both the young and senescent trained animals compared with their sedentary counterparts. Fiber size and capillary density did not differ between young and senescent rats, nor did exercise affect this measure. Each fiber, irrespective of type, had an average of approximately four capillaries in contact with it. However, type IIb fibers had a significantly lower capillary density per unit area than type I or IIa muscle fibers. The results indicate that the senescent costal diaphragm maintains its ability to adapt to an increased metabolic demand brought about by locomotor exercise. Of further interest is the finding that training adaptations occurred in all three fiber types, suggesting that increased work of breathing from moderate exercise leads to recruitment of all three fiber types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Summary An important role of myoglobin in red muscle is to facilitate the diffusion of oxygen for metabolism. We consider a model for muscle respiration in which the oxygen consumption is of a MichaelisMenten form. The resulting mathematical model is solved in two different ways with two different boundary conditions. The first uses the singular perturbation method of Murray (1974), while the second, which gives another justication of the simpler procedure, is a direct numerical computation of the full problem.The oxygen tension and saturation are often small. For realistic values of the Michaelis-Menten constant the oxygen tension, the saturation and the radius of the region in which the oxygen tension is negligibly small can be calculated using the constant consumption model of Murray (1974), with corrected boundary conditions (those for a Stefan problem), which in certain circumstances markedly affect the solution.B. A. T. would like to thank the Science Research Council of the United Kingdom for their financial support.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号