首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Real-time polymerase chain reaction (PCR) is a highly sensitive method that can be used for the detection and quantification of microbial populations without cultivating them in anaerobic processes and environmental samples. This work was conducted to design primer and probe sets for the detection of methanogens using a real-time PCR with the TaqMan system. Six group-specific methanogenic primer and probe sets were designed. These sets separately detect four orders (Methanococcales, Methanobacteriales, Methanomicrobiales, and Methanosarcinales) along with two families (Methanosarcinaceae and Methanosaetaceae) of the order Methanosarcinales. We also designed the universal primer and probe sets that specifically detect the 16S rDNA of prokaryotes and of the domain Bacteria and Archaea, and which are fully compatible with the TaqMan real-time PCR system. Target-group specificity of each primer and probe set was empirically verified by testing DNA isolated from 28 archaeal cultures and by analyzing potential false results. In general, each primer and probe set was very specific to the target group. The primer and probe sets designed in this study can be used to detect and quantify the order-level (family-level in the case of Methanosarcinales) methanogenic groups in anaerobic biological processes and various environments.  相似文献   

2.
3.
The study of viral-based processes is hampered by (a) their complex, transient nature, (b) the instability of products, and (c) the lack of accurate diagnostic assays. Here, we describe the use of real-time quantitative polymerase chain reaction to characterize baculoviral infection. Baculovirus DNA content doubles every 1.7 h from 6 h post-infection until replication is halted at the onset of budding. No dynamic equilibrium exists between replication and release, and the kinetics are independent of the cell density at the time of infection. No more than 16% of the intracellular virus copies bud from the cell.  相似文献   

4.
To improve detection of norovirus (NoVGI, NoVGII) and sapovirus (SaV), a simultaneous quantitative RT‐PCR method was established. This triplex real‐time PCR method was evaluated using a combination of optimized specific primers and probes. The performance of the developed PCR assay was equivalent to that of monoplex real‐time PCR across a broad dynamic range of 102–107 copies/assay using plasmid DNA standards. The limit of detection was 102 copies/assay. The quantitative value was comparable with that of monoplex real‐time PCR of stool samples. Our triplex real‐time PCR is useful for detection of NoV and SaV infections.  相似文献   

5.
Multidrug efflux pumps contribute to multiple antibiotic resistance in Pseudomonas aeruginosa. Pump expression usually has been quantified by Western blotting. Quantitative real-time polymerase chain reaction has been developed to measure mRNA expression for genes of interest. Whether this method correlates with pump protein quantities is unclear. We devised a real-time PCR for mRNA expression of MexAB-OprM and MexXY-OprM multidrug efflux pumps. In laboratory strains differing in MexB and MexY expression and in several clinical isolates, protein and mRNA expression correlated well. Quantitative real-time PCR should be a useful alternative in quantitating expression of multidrug efflux pumps by P. aeruginosa isolates in clinical laboratories.  相似文献   

6.
AIMS: A kinetic 5'-nuclease polymerase chain reaction (real-time PCR) for the quantification of Escherichia coli was developed. METHODS AND RESULTS: Specific primers and a fluorogenic probe oriented to sfmD gene, encoding a putative outer membrane export usher protein, were designed. The PCR system was highly specific and sensitive for E. coli, as determined with 37 non-E. coli strains (exclusivity, 100%) and 24 E. coli strains (inclusivity, 100%). When used in real-time PCR, linear calibration lines were obtained in the range from 10(2) to 10(8) CFU ml(-1) for three E. coli strains. Salmonella Enteritidis (10(6) CFU ml(-1)) or Citrobacter freundii (10(6) CFU ml(1)) had no effect on quantification of E. coli by the method. CONCLUSIONS: The developed real-time PCR is suitable for rapid quantification of E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: In connection to an appropriate sample preparation technique, the method is suitable for food safety and technological hygiene applications.  相似文献   

7.
Aim:  A new real-time polymerase chain reaction (PCR) was developed for sensitive contained detection of Cryptosporidium parvum .
Methods and Results:  The method is a nested PCR targeting a specific region of rDNA of C. parvum , which takes place in one tube, using different annealing temperatures to control the first and the second rounds of PCR, with real-time fluorogenic probe-based detection of the second round of PCR. The DNA-based detection limit of the method was 2 fg, which corresponds to approx. one genome per reaction. The detection level determined using diluted samples of C. parvum oocysts was ten oocysts per millilitre.
Conclusions:  The method facilitates sensitive detection of C. parvum thanks to the nested format, while reducing the risk of laboratory contamination thanks to the single-tube, real-time fluorimetric format.
Significance and Impact of the Study:  The developed method may be useful for sensitive contained detection of C. parvum in environmental and food samples, after appropriate separation of oocysts.  相似文献   

8.
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.  相似文献   

9.
Aims:  To detect and quantify Lactobacillus buchneri in plant samples with the aid of polymerase chain reaction (PCR) methods.
Methods and Results:  DNA from silage samples spiked with different amounts of L. buchneri cells was isolated using a lysozyme/sodium dodecyl sulfate lysis and phenol/chloroform extraction method. The DNA served as a template for PCR amplification with primers specific for the bacterium. The primers were developed by comparison of 16S rDNA sequences from different lactic acid bacteria (LAB) and testing for specificity with 11 different strains of LAB. As few as 100 L. buchneri colony-forming units per gram of silage could be detected. Additionally, the technique was successfully applied to quantify the population of L. buchneri in two cultivars of corn with or without inoculation.
Conclusions:  The PCR assay provided a specific and rapid tool for identifying and enumerating L. buchneri in silage samples.
Significance and Impact of the Study:  The use of microbial inoculants for silage production is a safe and environment friendly practice, but the full potential of such additives can only be achieved with a better understanding of the fate and activity of the microbes involved. The current study describes a methodology to detect and enumerate L. buchneri , a micro-organism used as an inoculant.  相似文献   

10.
miR‐122 and miR‐192 were investigated as indicators of toxic liver injury caused by acetaminophen, but their role in idiosyncratic toxic liver injury remains controversial. So, this work aimed to assess and compare the expressions of miR‐122 and miR‐192 in two different types of toxic liver injury (intrinsic [acetaminophen] and idiosyncratic [diclofenac]). Forty male adult Wistar albino rats were divided into equal five groups, in which serum liver enzymes; microRNAs (miRNAs) expressions (miR‐122 and miR‐192) and histopathological findings were studied. The present study showed that (1) miR‐122 and miR‐192 are good serum biomarkers of toxic liver injury whatever its etiology, as their serum levels exhibited a significantly earlier increase and earlier return to normal baseline levels as compared to serum aminotransferase levels; (2) miR‐122 is more specific than miR‐192; and (3) both serum levels of miR‐122 and miR‐192 showed non‐significant differences in relation to the type of toxic liver injury.  相似文献   

11.
Aims: A new real‐time polymerase chain reaction‐based method was developed for the detection of Salmonella enterica in food. Methods and Results: The method consisted of a novel two‐step enrichment involving overnight incubation in buffered peptone water and a 5‐h subculture in Rappaport–Vassiliadis medium, lysis of bacterial cells and a Salmonella‐specific 5′‐nuclease real‐time PCR with an exogenous internal amplification control. Because a two‐step enrichment was used, the detection limit for dead S. enterica cells in artificially contaminated ice cream and salami samples was high at 107 CFU (25 g)?1, eliminating potential false‐positive results. When the method was evaluated with a range of 100 naturally contaminated food samples, three positive samples were detected by both the real‐time PCR‐based method and by the standard microbiological method, according to EN ISO 6579. When the real‐time PCR‐based method was evaluated alongside the standard microbiological method according to EN ISO 6579 with 36 food samples artificially contaminated at a level of 100 CFU (25 g)?1, identical results were obtained from both methods. Conclusions: The real‐time PCR‐based method involving a two‐step enrichment produced equivalent results to EN ISO 6579 on the day after sample receipt. Significance and Impact of the Study: The developed method is suitable for rapid detection of S. enterica in food.  相似文献   

12.
Relative quantification by normalization against a stably expressed reference gene is a widely used data analysis method in microarray and quantitative real-time polymerase chain reaction (qRT-PCR) platforms; however, recent evidence suggests that many commonly utilized reference genes are unstable in certain experimental systems and situations. The primary aim of this study, therefore, was to screen and identify stably expressed reference genes in a well-established rat model of vocal fold mucosal injury. We selected and evaluated the expression stability of nine candidate reference genes. Ablim1, Sptbn1, and Wrnip1 were identified as stably expressed in a model-specific microarray dataset and were further validated as suitable reference genes in an independent qRT-PCR experiment using 2−ΔCT and pairwise comparison-based (geNorm) analyses. Parallel analysis of six commonly used reference genes identified Sdha as the only stably expressed candidate in this group. Sdha, Sptbn1, and the geometric mean of Sdha and Sptbn1 each provided accurate normalization of target gene Tgfb1; Gapdh, the least stable candidate gene in our dataset, provided inaccurate normalization and an invalid experimental result. The stable reference genes identified here are suitable for accurate normalization of target gene expression in vocal fold mucosal injury experiments.  相似文献   

13.
AIMS: In this study, a capillary polymerase chain reaction (cPCR) was applied for Salmonella detection from poultry meat. METHODS AND RESULTS: Salmonella detection limits of the optimized cPCR were determined with DNA templates from the samples of tetrathionate broth (TTB), Rappaport Vassiliadis broth (RVB) and selenite cystine broth (SCB) artificially contaminated with 10-fold dilutions of 6 x 10(8) CFU ml(-1) of pure Salmonella enterica ssp. enterica serovar Enteritidis 64K stock culture. Detection limits of cPCR from TTB, RVB and SCB were found as 6, 6 x 10(1) and 6 x 10(4) CFU ml(-1), respectively. In addition, detection limits of bacteriology were also determined as 6 CFU ml(-1) with TTB and SCB, and 6 x 10(1) CFU ml(-1) with RVB. A total of 200 samples, consisting of 100 chicken and 100 turkey meat samples, were tested with optimized cPCR and bacteriology. Eight and six per cent of the chicken meat samples were found to harbour Salmonella by cPCR and standard bacteriology, respectively. Of six Salmonella isolates, four belonged to serogroup D, two to serogroup B. CONCLUSIONS: The TTB cultures of both artificially and naturally contaminated samples were found to be superior to those of RVB and SCB cultures in their cPCR results. This cPCR, utilizing template from 18-h TTB primary enrichment broth culture, takes approximately 40 min in the successful detection of Salmonella from poultry meat. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that cPCR from TTB enrichment culture of poultry meat would enable rapid detection of Salmonella in laboratories with low sample throughput and limited budget.  相似文献   

14.
Summary. Using sex chromosome specific primers, leucocyte chimaerism in heterosexual bovine female twins was identified by combining polymerase chain reaction (PCR) and restriction enzyme digests.  相似文献   

15.
Miniaturization of polymerase chain reaction   总被引:1,自引:0,他引:1  
Polymerase chain reaction (PCR) is one of the most widely used analytical tool and is an important module that would benefit from being miniaturized and integrated onto diagnostic or analytical chips. There are potentially two different approaches for the miniaturization of the PCR module: chamber-type and flow-type micro-PCR. These miniaturized PCRs have distinct characteristics and advantages. In this article, we review the necessity of micro-PCR, the materials for the chip fabrication, the surface modification, and characteristics of the two types of micro-PCR. The motivation underlying the development of micro-PCR, the advantages and disadvantages of the various materials used in fabrication and the surface modification methods will be discussed. And finally, the precise features of the two different types of micro-PCR will be compared.  相似文献   

16.
Traditional real-time quantitative polymerase chain reaction protocols cannot be used accurately with symbiotic organisms unless the relative contribution of each symbiotic compartment to the total nucleic acid pool is known. A modified 'universal reference gene' protocol was created for reef-building corals and sea anemones, anthozoans that harbour endosymbiotic dinoflagellates belonging to the genus Symbiodinium. Gene expression values are first normalized to an RNA spike and then to a symbiont molecular proxy that represents the number of Symbiodinium cells extracted and present in the RNA. The latter is quantified using the number of genome copies of heat shock protein-70 (HSP70) amplified in the real-time quantitative polymerase chain reaction. Gene expression values are then normalized to the total concentration of RNA to account for differences in the amount of live tissue extracted among experimental treatments and replicates. The molecular quantification of symbiont cells and effect of increasing symbiont contributions to the nucleic acid pool on gene expression were tested in vivo using differentially infected sea anemones Aiptasia pulchella. This protocol has broad application to researchers who seek to measure gene expression in mixed organism assemblages.  相似文献   

17.
18.
DNA identification of non-invasive samples is a potentially useful tool for monitoring small mammal species. Here we describe a novel method for identifying five small mammal species: wood mouse, bank vole, common shrew, pygmy shrew and water shrew. Species-specific real-time polymerase chain reaction primers were designed to amplify fragments of the mitochondrial cytochrome b gene from hair and scat samples. We also amplified nuclear DNA from scats, demonstrating their potential as a source of DNA for population genetic studies.  相似文献   

19.
Polymerase chain reaction (PCR) is largely used in molecular biology for increasing the copy number of a specific DNA fragment. The succession of 20 replication cycles makes it possible to multiply the quantity of the fragment of interest by a factor of 1 million. The PCR technique has revolutionized genomics research. Several quantification methodologies are available to determine the DNA replication efficiency of the reaction which is the probability of replication of a DNA molecule at a replication cycle. We elaborate a quantification procedure based on the exponential phase and the early saturation phase of PCR. The reaction efficiency is supposed to be constant in the exponential phase, and decreasing in the saturation phase. We propose to model the PCR amplification process by a branching process which starts as a Galton-Watson branching process followed by a size-dependent process. Using this stochastic modelling and the conditional least-squares estimation method, we infer the reaction efficiency from a single PCR trajectory.  相似文献   

20.
We measured growth of a phenanthrene-degrading bacterium, Arthrobacter, strain RP17, in Forbes soil, amended with 500 μg g(-1) phenanthrene using a quantitative competitive polymerase chain reaction method. The inoculum, which was not indigenous to Forbes soil, grew from 5.55x10(5) colony forming units (cfu) g(-1) to 1.97x10(7) cfu g(-1) within 100 h after the cells were added to the soil. Maximum population density was reached before the highest degradation rate was observed 150 h after the cells were added to soil. Population density remained stable even after 56% of the phenanthrene had mineralized. This study is one of the few documented examples of growth by a non-indigenous bacterium in a non-sterile soil amended with a pollutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号