首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Slow electromagnetic solitons in electron-ion plasmas   总被引:1,自引:0,他引:1  
A set of nonlinear differential equations that describe moving relativistic solitons is investigated analytically and solved numerically. The influence of the ion motion on the soliton structure is investigated. It is demonstrated that, depending on the propagation velocity, relativistic solitary waves can occur in the form of bright solitons, dark solitons, or collisionless electromagnetic shock waves. In the limit of a low propagation velocity, a dark soliton can trap the ions and accelerate them. In the case of a bright soliton, the effects of ion dynamics limit the soliton amplitude. The constraint on the maximum amplitude is related to either the breaking of ion motion or the intersection of electron trajectories. The soliton breaking provides a new mechanism for ion and electron acceleration in the interaction of high-intensity laser pulses with plasmas.  相似文献   

2.
Based on simulations with the Dubreil-Jacotin-Long (DJL) equation, the limiting amplitude and the breaking mechanisms of internal solitary waves of depression (ISWs) are predicted for different background stratifications. These theoretical predictions are compared to the amplitude and the stability of the leading internal solitary waves of more than 200 trains of ISWs observed in the centre of a sub-basin of Lake Constance. The comparison of the model results with the field observations indicates that the simulated limiting amplitude of the ISWs provides an excellent prediction of the critical wave height above which ISWs break in the field. Shear instabilities and convective instabilities are each responsible for about half of the predicted wave breaking events. The data suggest the presence of core-like structures within the convectively unstable waves, but fully developed and stable cores were not observed. The lack of stable trapped cores in the field can be explained by the results from dynamic simulations of ISWs with trapped cores which demonstrate that even slight disturbances of the background stratification cause trapped cores to become unstable.  相似文献   

3.
Considering waves in the arteries as infinitesimal wave fronts rather than sinusoidal wavetrains, the change in pressure across the wave front, dP, is related to the change in velocity, dU, that it induces by the "water hammer" equation, dP=+/-rhocdU, where rho is the density of blood and c is the local wave speed. When only unidirectional waves are present, this relationship corresponds to a straight line when P is plotted against U with slope rhoc. When both forward and backward waves are present, the PU-loop is no longer linear. Measurements in latex tubes and systemic and pulmonary arteries exhibit a linear range during early systole and this provides a way of determining the local wave speed from the slope of the linear portion of the loop. Once the wave speed is known, it is also possible to separate the measured P and U into their forward and backward components. In cases where reflected waves are prominent, this separation of waves can help clarify the pattern of waves in the arteries throughout the cardiac cycle.  相似文献   

4.
An analytical nonlinear gasdynamic theory of ion-acoustic waves in an e-p-i plasma is developed for the case in which all the plasma components in the wave undergo polytropic compression and rarefaction. An exact solution to the basic equations is found and analyzed by the Bernoulli pseudopotential method. The parameter range in which periodic waves can propagate and the range in which solitary waves (solitons) exist are determined. It is shown that the propagation velocity of a solitary is always higher than the linear ion sound velocity. The profiles of all the physical quantities in both subsonic and supersonic waves are calculated. The results obtained agree well with both the data from other papers and particular limiting cases.  相似文献   

5.
In the present work, we study the propagation of solitary waves in a prestressed thick walled elastic tube filled with an incompressible inviscid fluid. In order to include the geometric dispersion in the analysis the wall inertia and shear deformation effects are taken into account for the inner pressure-cross-sectional area relation. Using the reductive perturbation technique, the propagation of weakly non-linear waves in the long-wave approximation is examined. It is shown that, contrary to thin tube theories, the present approach makes it possible to have solitary waves even for a Mooney-Rivlin (M-R) material. Due to dependence of the coefficients of the governing Korteweg-deVries equation on initial deformation, the solution profile changes with inner pressure and the axial stretch. The variation of wave profiles for a class of elastic materals are depicted in graphical forms. As might be seen from these illustrations, with increasing thickness ratio, the profile of solitary wave is steepened for a M-R material but it is broadened for biological tissues.  相似文献   

6.
A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth’s angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.  相似文献   

7.
A linear mechanism for the generation and amplification of internal gravity waves and their further nonlinear dynamics in the stably stratified dissipative ionosphere in the presence of an inhomogeneous zonal wind (shear flow) is studied. For shear flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal. Therefore, the canonical modal approach is poorly applicable to study such motions. In this case, the so-called nonmodal mathematical analysis is more adequate. Dynamic equations and equations for the energy transport of internal gravity perturbations in the ionosphere with shear flows are derived on the basis of the nonmodal approach. Exact analytic solutions of linear and nonlinear equations are found. The growth rate of the shear instability of internal gravity waves is determined. It is revealed that perturbations grow in time according to a power law, rather than exponentially. The frequency and wavenumber of the generated internal gravity modes depend on time; hence, a wide spectrum of wave perturbations caused by linear effects (rather than nonlinear turbulent ones) forms in the ionosphere with shear flows. The efficiency of the linear mechanism for the amplification of internal gravity waves during their interaction with the inhomogeneous zonal wind is analyzed. A criterion for the development of the shear instability of such waves in the ionospheric plasma is obtained. It is shown that, in the presence of shear instability, internal gravity waves extract the shear flow energy in the initial (linear) stage of their evolution, due to which their amplitude and, accordingly, energy increase substantially (by an order of magnitude). As the amplitude increases, the mechanism of nonlinear self-localization comes into play and the process terminates with the self-organization of strongly localized solitary nonlinear internal gravity vortex structures. As a result, a new degree of freedom of the system and a new way of the evolution of perturbations in a medium with a shear flow appear. Inductive and viscous dampings limit the lifetime of vortex internal gravity structures in the ionosphere; nevertheless, their lifetime is long enough for them to strongly affect the dynamic properties of the medium. It is revealed on the basis of the analytic solution of a set of time-independent nonlinear dynamic equations that, depending on the velocity profile of the shear flow, the nonlinear internal gravity structures can take the form of a purely monopole vortex, a dipole cyclone-anticyclone pair, a transverse vortex chain, or a longitudinal vortex path against the background of the inhomogeneous zonal wind. The accumulation of such vortices in the ionosphere can result in a strongly turbulent state.  相似文献   

8.
Solutions describing solitary fast magnetosonic (FMS) waves (FMS solitons) in cold magnetized plasma are obtained by numerically solving two-fluid hydrodynamic equations. The parameter domain within which steady-state solitary waves can propagate is determined. It is established that the Mach number for rarefaction FMS solitons is always less than unity. The restriction on the propagation velocity leads to the limitation on the amplitudes of the magnetic field components of rarefaction solitons. It is shown that, as the soliton propagates in plasma, the transverse component of its magnetic field rotates and makes a complete turn around the axis along which the soliton propagates.  相似文献   

9.
Muscle force can be generated actively through changes in neural excitation, and passively through externally imposed changes in muscle length. Disease and injury can disrupt force generation, but it can be challenging to separate passive from active contributions to these changes. Ultrasound elastography is a promising tool for characterizing the mechanical properties of muscles and the forces that they generate. Most prior work using ultrasound elastography in muscle has focused on the group velocity of shear waves, which increases with increasing muscle force. Few studies have quantified the phase velocity, which depends on the viscoelastic properties of muscle. Since passive and active forces within muscle involve different structures for force transmission, we hypothesized that measures of phase velocity could detect changes in shear wave propagation during active and passive conditions that cannot be detected when considering only group velocity. We measured phase and group velocity in the human biceps brachii during active and passive force generation and quantified the differences in estimates of shear elasticity obtained from each of these measurements. We found that measures of group velocity consistently overestimate the shear elasticity of muscle. We used a Voigt model to characterize the phase velocity and found that the estimated time constant for the Voigt model provided a way to distinguish between passive and active force generation. Our results demonstrate that shear wave elastography can be used to distinguish between passive and active force generation when it is used to characterize the phase velocity of shear waves propagating in muscle.  相似文献   

10.
《Biorheology》1996,33(3):185-208
An analytical solution for pulsatile flow of a generalized Maxwell fluid in straight rigid tubes, with and without axial vessel motion, has been used to calculate the effect of blood viscoelasticity on velocity profiles and shear stress in flows representative of those in the large arteries. Measured bulk flow rate Q waveforms were used as starting points in the calculations for the aorta and femoral arteries, from which axial pressure gradient ▿P waves were derived that would reproduce the starting Q waves for viscoelastic flow. The ▿P waves were then used to calculate velocity profiles for both viscoelastic and purely viscous flow. For the coronary artery, published ▿P and axial vessel acceleration waveforms were used in a similar procedure to determine the separate and combined influences of viscoelasticity and vessel motion.Differences in local velocities, comparing viscous flow to viscoelastic flow, were in all cases less than about 2% of the peak local velocity. Differences in peak wall shear stress were less than about 3%.In the coronary artery, wall shear stress differences between viscous and viscoelastic flow were small, regardless of whether axial vessel motion was included. The shape of the wall shear stress waveform and its difference, however, changed dramatically between the stationary and moving vessel cases. The peaks in wall shear stress difference corresponded with large temporal gradients in the combined driving force for the flow.  相似文献   

11.
A nonlinear theory is constructed that describes steady-state ion-acoustic waves in an ideal plasma in which the electron component is a degenerate Fermi gas and the ion component is a classical gas. The parameter ranges in which such a plasma can exist are determined, and dispersion relations for ion-acoustic waves are obtained that make it possible to find the linear ion-acoustic velocity. Analytic gas-dynamic models of ion sound are developed for a plasma with the ion component as a cold, an isothermal, or an adiabatic gas, and moreover, the solutions to the equations of all the models are brought to a quadrature form. Profiles of a subsonic periodic and a supersonic solitary wave are calculated, and the upper critical Mach numbers of a solitary wave are determined. For a plasma with cold ions, the critical Mach number is expressed by an explicit exact formula.  相似文献   

12.
Low-frequency vibrations of the structural elements of the DNA molecule in a viscous solution were investigated. It was shown that shear, twist and extension waves can propagate along the axis of the molecule. The mutual influence of acoustic waves on each other was analyzed. Formulas for determining the sound velocity and the attenuation coefficients for these types of waves are obtained.  相似文献   

13.
 We study the existence and stability of traveling waves and pulses in a one-dimensional network of integrate-and-fire neurons with synaptic coupling. This provides a simple model of excitable neural tissue. We first derive a self-consistency condition for the existence of traveling waves, which generates a dispersion relation between velocity and wavelength. We use this to investigate how wave-propagation depends on various parameters that characterize neuronal interactions such as synaptic and axonal delays, and the passive membrane properties of dendritic cables. We also establish that excitable networks support the propagation of solitary pulses in the long-wavelength limit. We then derive a general condition for the (local) asymptotic stability of traveling waves in terms of the characteristic equation of the linearized firing time map, which takes the form of an integro-difference equation of infinite order. We use this to analyze the stability of solitary pulses in the long-wavelength limit. Solitary wave solutions are shown to come in pairs with the faster (slower) solution stable (unstable) in the case of zero axonal delays; for non-zero delays and fast synapses the stable wave can itself destabilize via a Hopf bifurcation. Received: 27 October 1998  相似文献   

14.
Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained.  相似文献   

15.
The Sagdeev potential technique has been employed to study the dust ion acoustic solitary waves and double layers in an unmagnetized collisionless dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, isothermally distributed electrons, and positrons. A computational scheme has been developed to draw the qualitatively different compositional parameter spaces or existence domains showing the nature of existence of different solitary structures with respect to any parameter of the present plasma system. The present system supports both positive and negative potential double layers. The negative potential double layer always restricts the occurrence of negative potential solitary waves, i.e., any sequence of negative potential solitary waves having monotonically increasing amplitude converges to a negative potential double layer. However, there exists a parameter regime for which the positive potential double layer is unable to restrict the occurrence of positive potential solitary waves. As a result, in this region of the parameter space, there exist solitary waves after the formation of positive potential double layer, i.e., positive potential supersolitons have been observed.  相似文献   

16.
Data extracted from video recordings of individual estuarine flocs near the estuary bed during the advance and retreat of the salt intrusion show changes in size and settling velocity distributions. The recordings were taken using INSSEV —IN Situ SEttling Velocity instrument. Size coupled with effective density variations due to both changes in floc structure and ambient salinity result in changes in the settling velocity during the tidal cycle. In particular, just after high water slack, the appearance of high settling velocity medium size flocs and individual particles suggest that the lower density flocs have been broken up by the intense vertical shear in the currents caused by the salt wedge intrusion. Current shear is shown to have a significant influence on floc effective density.  相似文献   

17.
Mass-transfer rates between water and benthos are derived based on the dissipation of energy by the benthic communities of coral reefs. Roughness of the benthic communities causes currents and waves to dissipate energy on reef flats at rates which far exceed ocean values of energy dissipation. The derivation here shows that first-order rate constants for nutrient uptake are (1) proportional to energy dissipation to the 0.25 root, (2) proportional to the bottom shear stress to the 0.4 root, and (3) proportional to current speed to the 0.75 root (decreasing to the 0.4 root under extreme wave activity). The shear stress, thus nutrient uptake, is positively correlated to the large-scale roughness, and to excess wave height (above the breaking height) of incoming waves. These causal relationships between nutrient-uptake rates and dissipation of energy support the general observations of reef zonation and reef metabolic rates, and are the paramount reason that coral reefs can maintain high productivity in low-nutrient tropical waters.  相似文献   

18.
It is shown that, like physical systems, populations of species can be in different phases, depending on environmental conditions. These phases, like phases of physical systems, are described by specific state equations. The physical phenomenon of solitary population waves is revealed for the phase of invasion of organisms into their secondary range. The mathematical model has a solution in the form of a solitary wave propagating with a constant speed without changes in shape. The self-organization in solitary waves differs sharply from population processes in the primary species range and is close to the physical foundation of the theory of autosolitons. Solitary waves are impossible within the primary species range. A capacity for the formation of solitary waves is only revealed in phylogenetically young “juvenile taxa.” These coenophobes show the highest rates of adaptive changes, are provoked to expand into new areas. Their phase transitions are distinguished not only by an exclusively wide range of fluctuations of population density, but also high phenotypic variability. The macroevolutionary processes can be provided by juvenile taxa in solitary population waves formed as a result of disruption of ecosystems and invasions. Macrotaxa cannot appear in stable successional systems.  相似文献   

19.
The propagation of large-amplitude solitary ion-acoustic waves in magnetized plasma is analyzed. The problem is solved without assuming plasma quasineutrality within the pulse, and the wave potential is described by Poisson’s equation. Solutions in the form of supersonic and near-sonic solitary waves propagating obliquely to the magnetic field are found. The pulses have several peaks and exist for a discrete set of the wave parameters. The amplitude and oscillation frequency of a solitary wave are determined as functions of the Mach number and the propagation angle with respect to the magnetic field.  相似文献   

20.
Numerous experimental and theoretical studies have recently pointed to the importance of calcium signals and their propagation as waves of various kinds inside cells. This phenomenon has been particularly noted in fertilized egg cells. Ca2+ plays a fundamental role in these cells as it is capable of stimulating, by means of a first, large wave, the beginning of an organism's life at fertilization, immediately after sperm penetration. Furthermore, calcium is involved in numerous subsequent processes that are essential for the development of the future embryo, e.g. in contraction of cortical cytoplasm, protein synthesis and cell differentiation. Calcium waves, which are generated by self-oscillating pacemakers and propagate in excitable media, have been observed in some types of egg cells after fertilization. These waves adopt different shapes according to their emission frequency, wavelength, velocity and curvature, and they can occur as solitary waves, target waves or spiral waves. The mathematical models that study the progress of these waves have been developed by means of partial differential equations of the "reaction-diffusion" type. This study will discuss some significant models of intracellular Ca2+ dynamics. Some preliminary considerations will then be made in order to develop a model that describes the propagation of Ca2+ waves in ascidian eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号