首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acid tolerance response (ATR) of chemostat cultures of Lactococcus lactis subsp. cremoris NCDO 712 was dependent on the dilution rate and on the extracellular pH (pHo). A decrease in either the dilution rate or the pHo led to a decrease in the cytoplasmic pH (pHi) of the cells, and similar levels of acid tolerance were observed at any specific pHi irrespective of whether the pHi resulted from manipulation of the growth rate, manipulation of the pHo, or both. Acid tolerance was also induced by sudden additions of acid to chemostat cultures growing at a pHo of 7.0, and this induction was completely inhibited by chloramphenicol. The end products of glucose fermentation depended on the growth rate and the environmental pHo of the cultures, but neither the spectrum of end products nor the total rate of acid production correlated with a specific pHi. The rate of ATP formation was not correlated with pHi, but a good correlation between the cellular level of H+-ATPase and pHi was observed. Moreover, an inverse correlation between the cytoplasmic levels of ATP and pHi was established. Each pHi below 6.6 was characterized by unique levels of ATR, H+-ATPase, and ATP. High levels of H+-ATPase also coincided with high levels of acid tolerance of cells in batch cultures induced with sublethal levels of acid. We concluded that H+-ATPase is one of the ATR proteins induced by acid pHi through growth at an acid pHo or a slow growth rate.  相似文献   

2.
3.
We describe the dynamics of changes in the intracellular pH (pHi) values of a number of lactic acid bacteria in response to a rapid drop in the extracellular pH (pHex). Strains of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis were investigated. Listeria innocua, a gram-positive, non-lactic acid bacterium, was included for comparison. The method which we used was based on fluorescence ratio imaging of single cells, and it was therefore possible to describe variations in pHi within a population. The bacteria were immobilized on a membrane filter, placed in a closed perfusion chamber, and analyzed during a rapid decrease in the pHex from 7.0 to 5.0. Under these conditions, the pHi of L. innocua remained neutral (between 7 and 8). In contrast, the pHi values of all of the strains of lactic acid bacteria investigated decreased to approximately 5.5 as the pHex was decreased. No pronounced differences were observed between cells of the same strain harvested from the exponential and stationary phases. Small differences between species were observed with regard to the initial pHi at pHex 7.0, while different kinetics of pHi regulation were observed in different species and also in different strains of S. thermophilus.  相似文献   

4.
Intracellular pH (pHi) homeostasis is crucial to cell survival. Cells that are chronically exposed to a low pH environment must adapt their hydrogen ion extrusion mechanisms to maintain their pHi in the physiologic range. An important component of the adaptation to growth at low pH is the upregulation of pHi relative to the extracellular pH (pHe). To test the ability of low pHe adapted cells to respond to a pHi lowering challenge, a fluorescence assay was used that directly monitors proton removal as the rate of change of pHi during recovery from cytosolic acidification. Two cell lines of Chinese hamster origin (ovarian carcinoma and ovary fibroblastoid cells) were compared, both of which showed altered proton extrusion after adaptation to growth at low pHe = 6.70. In the ovarian carcinoma (OvCa) cell line, the pattern was consistent with an upregulation by means of an increase in the number of functional proton transporters in the plasma membrane. In the ovary fibroblastoid (CHO-10B) cell line, pHi was consistently elevated in adapted cells as compared with cells grown at normal pHe = 7.30 without an increase in maximum extrusion rate. This upregulation was consistent with a shift in the activating pHi of proton transporters without an increase in the number of transporters, i.e., a change in substrate affinity of the transporter. In OvCa cells, recovery from acidification could be blocked by amiloride, an inhibitor of Na+/H+ exchange. In contrast, a more modest effect of amiloride on CHO cells was observed but a complete inhibition was seen with the Cl/HCO3 exchange inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). These data indicate that the two cell lines rely to different degrees on the two major pathways for pH regulation during recovery from cytosolic acidification. J. Cell. Physiol. 173:397–405, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Carbonic anhydrase (CA) enzymes catalyze the chemical equilibration among CO2, HCO3 and H+. Intracellular CA (CAi) isoforms are present in certain types of cancer, and growing evidence suggests that low levels correlate with disease severity. However, their physiological role remains unclear. Cancer cell CAi activity, measured as cytoplasmic CO2 hydration rate (kf), ranged from high in colorectal HCT116 (∼2 s−1), bladder RT112 and colorectal HT29, moderate in fibrosarcoma HT1080 to negligible (i.e. spontaneous kf = 0.18 s−1) in cervical HeLa and breast MDA-MB-468 cells. CAi activity in cells correlated with CAII immunoreactivity and enzymatic activity in membrane-free lysates, suggesting that soluble CAII is an important intracellular isoform. CAi catalysis was not obligatory for supporting acid extrusion by H+ efflux or HCO3 influx, nor for maintaining intracellular pH (pHi) uniformity. However, in the absence of CAi activity, acid loading from a highly alkaline pHi was rate-limited by HCO3 supply from spontaneous CO2 hydration. In solid tumors, time-dependence of blood flow can result in fluctuations of CO2 partial pressure (pCO2) that disturb cytoplasmic CO2-HCO3-H+ equilibrium. In cancer cells with high CAi activity, extracellular pCO2 fluctuations evoked faster and larger pHi oscillations. Functionally, these resulted in larger pH-dependent intracellular [Ca2+] oscillations and stronger inhibition of the mTORC1 pathway reported by S6 kinase phosphorylation. In contrast, the pHi of cells with low CAi activity was less responsive to pCO2 fluctuations. Such low pass filtering would “buffer” cancer cell pHi from non-steady-state extracellular pCO2. Thus, CAi activity determines the coupling between pCO2 (a function of tumor perfusion) and pHi (a potent modulator of cancer cell physiology).  相似文献   

6.
Saccharomyces cerevisiae plasma membrane H+-ATPase activity was stimulated during octanoic acid-induced latency, reaching maximal values at the early stages of exponential growth. The time-dependent pattern of ATPase activation correlated with the decrease of cytosolic pH (pHi). The cell population used as inoculum exhibited a significant heterogeneity of pHi, and the fall of pHi correlated with the loss of cell viability as determined by plate counts. When exponential growth started, only a fraction of the initial population was still viable, consistent with the role of the physiology and number of viable cells in the inoculum in the duration of latency under acid stress.The biological target sites of octanoic acid in Saccharomyces cerevisiae may be related to processes of transport across membranes, particularly the plasma membrane (21). Like other weak acids at low pH, octanoic acid, a highly toxic by-product of yeast alcoholic fermentation (23) and an antimicrobial food additive (6), leads to the reduction of cytosolic pH (pHi) due to its dissociation in the approximately neutral cytoplasm following the entrance of the undissociated toxic form into the cell by passive diffusion (5, 20, 23). It is likely that this highly liposoluble weak acid significantly affects the spatial organization of the plasma membrane, affecting its function as a matrix for enzymes and as a selective barrier, thereby leading to the dissipation of the proton motive force across the plasma membrane and to intracellular acidification (16, 18). Significantly, the H+-ATPase in the plasma membrane in yeast, which creates the electrochemical proton gradient that drives the secondary transport of solutes and is implicated in the maintenance of pHi around neutrality, has been pointed out as a critical component of yeast adaptation to weak acids (8, 19, 24). Indeed, yeast plasma membrane H+-ATPase is activated during exponential growth with octanoic acid (19, 24), and the duration of lag phase before yeast cells enter exponential growth in the presence of sorbic acid is significantly extended in a mutant with reduced levels of plasma membrane ATPase activity (8). The activation of the H+-ATPase in the plasma membrane in yeast cells exposed to other stresses that also lead to the dissipation of the H+ gradient and intracellular acidification (such as subcritical inhibitory concentrations of ethanol [12, 14, 15], supraoptimal temperatures below 40°C [25], presence of other organic acids at low pH [1, 5, 8], and deprivation of nitrogen source [2]) have also been observed. Several lines of evidence indicate that ATPase activation is due to posttranslational modifications of the PMA1 ATPase (2, 12, 24, 25). Considerable information has been obtained on the variation of plasma membrane ATPase activity during exponential growth and early stationary phase of yeast cells cultivated in media, at low pH, supplemented or not with octanoic acid (24). However, this is not the case during the period of latency preceding exponential growth at concentrations of octanoic acid close to the maximal concentration allowing growth. The main objective of the present work was to obtain information about the pattern of ATPase activity and the changes in pHi and cell viability during the lag phase necessary for yeast adaptation to the physiological effects of octanoic acid before exponential growth.

Duration of yeast growth latency in octanoic acid-supplemented media.

When cells of S. cerevisiae IGC3507III grown, at 30°C, in medium that had not been supplemented with octanoic acid were used to inoculate buffered YG media (30 g of glucose liter−1, 6.7 g of Yeast Nitrogen Base [Difco] liter−1) (pH 4.0) supplemented with increasing concentrations of this toxic acid up to around 0.35 mM total acid (19, 23), exponential growth was initiated without significant delay (Fig. (Fig.1a),1a), although a dose-dependent decrease in specific growth rate was observed (Fig. (Fig.1b).1b). However, for higher concentrations up to the maximal that allowed growth (0.42 mM), a lag phase was observed and its duration strongly increased with the severity of octanoic acid stress (Fig. (Fig.1a).1a). The duration of latency was drastically reduced when exponential cells used as inoculum were grown in medium with an identical concentration of octanoic acid (Fig. (Fig.1a),1a), but the specific growth rate was not modified (Fig. (Fig.1b).1b). At a concentration of total octanoic acid of 0.39 mM, a lag phase of around 55 h was necessary for yeast cells, which had been cultivated under nonstressing conditions, to adapt to the deleterious effects of octanoic acid and to initiate inhibited exponential growth (Fig. (Fig.2).2). Open in a separate windowFIG. 1Effect of the addition to the growth medium of increasing concentrations of octanoic acid on the duration of lag phase (a) and the specific growth rate of S. cerevisiae IGC 3507III (b) for exponentially growing cells (used as inoculum) cultivated at 30°C at pH 4.0 in the absence (○) or presence (•) of concentrations of toxic lipophilic acid identical to those present in the growth medium. Results are representative of the many growth experiments carried out.Open in a separate windowFIG. 2Specific activity of plasma membrane H+-ATPase (filled symbols) and growth curve (open symbols) of S. cerevisiae IGC 3507III during cultivation in the presence (a) or absence (b) of 0.39 mM total octanoic acid (at pH 4.0, 30°C). The data are averages with standard deviations for at least three enzyme assays using cells from at least two independent growth experiments. OD, optical density.

Activation of plasma membrane ATPase during octanoic acid-induced latency.

The specific activity of plasma membrane ATPase assayed in crude membrane suspensions prepared from nonadapted cells, as previously reported (19, 25), during cultivation in buffered medium (at pH 4.0) supplemented with 0.39 mM octanoic acid, increased during the 55 h of latency (Fig. (Fig.2a).2a). A peak of activity was reached during the early stages of exponential growth and values of ATPase activity were consistently higher (twofold) in cells grown under octanoic acid stress (Fig. (Fig.2),2), as described by Viegas et al. (24). Yeast cells must adapt to the physiological effects of octanoic acid during an extended lag period, the length of which depended on the severity of acid stress (Fig. (Fig.1a),1a), before eventually recovering and entering exponential growth; the activation of plasma membrane H+-ATPase observed during this period of latency reinforces the idea that this proton pump is an important component of this adaptative response (5, 8, 19, 24). In fact, the ability of yeast cells to grow in the presence of lipophilic acids at a low pH reflects their capacity to maintain control over their internal pH by excluding protons. This adaptative phenomenon, reported for the first time in the present work, complements the observation of Holyoak et al. (8) that a strain with reduced plasma membrane H+-ATPase activity displayed increased lag phase in the presence of the weak-acid preservative sorbic acid. Significantly, plasma membrane H+-ATPase activity was also pointed out to play a critical role in yeast tolerance of ethanol (15) or supraoptimal temperatures (13, 25). The mechanism underlying plasma membrane ATPase activation during octanoic acid-induced latency remains obscure at the present time, but it is likely that this is due to a posttranslational modification of ATPase, as proposed for ATPase activation during octanoic acid-stressed exponential growth (24). It is likely that during lag phase the amount of H+-ATPase in the plasma membrane slightly decreases, as found by Benito et al. (2) in yeast cells deprived of nitrogen source where ATPase activation also occurred (2), as the estimated half-life of the enzyme is about 11 h (2). ATPase activation during latency can hardly be attributed to the adaptative modification of the ATPase lipid environment in cells grown under lipophilic acid stress, as suggested by Alexandre et al. (1).

Changes in yeast pHi and viability during octanoic acid-stressed cultivation.

The change in pHi during cultivation of nonadapted cells with 0.39 mM octanoic acid was monitored by using an adaptation of the fluorescence microscopic image processing technique developed by Imai and Ohno (9); 5- (and 6)-carboxyfluorescein (cF) was used as the internal pH-dependent fluoroprobe. Cells washed and resuspended in cold CF buffer (citrate-phosphate buffer [at pH 4.0] with 50 mM glycine [Sigma], 110 mM NaCl, 5 mM KCl, and 1 mM MgCl2) to a cellular density of 2 × 108 ml−1 were loaded with cF by adding 20 μM of 5 (and 6)-carboxyfluorescein-diacetate (Sigma) and vortexing in two bursts of 1 min each, interspersed with 15 min on ice (9). After being washed twice with cold CF buffer, cF-loaded cells were immediately examined with a Zeiss Axioplan microscope equipped with adequate epifluorescence interference filters (Zeiss BP450-490 and Zeiss LP520) and connected to a video camera and to a computer with an image- analysis program (gel documentation system SW2000; UVP, San Gabriel, Calif.). Following a cell-by-cell analysis, the value of fluorescence intensity (fI) emitted by each cell, measured by direct densitometry, corresponded to the arithmetical mean value of fI measured in two or three different regions in the cytoplasm of the same cell, with the less fluorescent vacuole excluded. To estimate average pHi, an in vivo calibration curve was prepared (Fig. (Fig.3)3) by using cell suspensions grown in the absence of toxics which were loaded with cF as described above and incubated, at 30°C, with 0.5 mM carbonyl cyanide m-chlorophenylhydrazone (CCCP) to dissipate the plasma membrane pH gradient (4), before adjustment of external pH (in the range 3.5 to 7.5) by the addition of HCl or NaOH at 2 M. Fluorescence images were fixed 15 s after the occurrence of the excitation radiation in order to minimize interferences due to leakage of cF as well as fluorescence quenching (3, 7). Cells were kept on ice throughout the procedure, and CF buffer lacked glucose; therefore, the active efflux of cF (3) was minimized as confirmed by measuring the fluorescence in the medium surrounding the cells, which was negligible. Under the experimental conditions used and for the purpose of the study, this technique proved to be highly useful and suitable despite the limitations that might be raised (3, 7). It allowed a clear-cut picture of the pHi of individual cells, giving information about the distribution of pHi values of a yeast population (Fig. (Fig.44 and and5a5a to c), instead of solely an estimation of the average value of the whole population, as is the case with techniques based on the distribution of radioactive propionic acid (20) or on the in vivo 31P nuclear magnetic resonance (5). Moreover, values calculated for the average pHi of the whole yeast population during latency and exponential growth in medium with octanoic acid (Fig. (Fig.5d)5d) were close to, although slightly lower than, the values previously obtained based on the distribution of [14C]propionic acid (20, 22). Results revealed that the cell population used to inoculate octanoic acid-supplemented medium exhibited a significant heterogeneity (Fig. (Fig.4);4); around 31% showed a pHi in the optimal range (above 6.5) (Fig. (Fig.4),4), with the average pHi value of the whole population estimated to be approximately 6.0. This low pHi value results from cell cultivation in a rich medium with high production of organic acids (11) (external pH, 3.6), followed by washing of the cells with YG medium buffered at pH 4.0 (17). The introduction of the inoculum in octanoic acid-supplemented medium led to the very rapid (5-min) increase in the percentage of the cell population with pHi below 5.5, consistent with the rapid kinetics of cytosol acidification when yeast cells are exposed to weak acids (5). During extended incubation with octanoic acid and until the end of latency, the percentage of the population with a very low pHi (below 5.5) continued to increase, reaching 80% of the cell population, while the percentage of cell population with a pHi above 6.0 suffered a corresponding decrease (Fig. (Fig.5).5). During exponential growth, the opposite pHi modification was observed, consistent with a recovery of pHi to physiological levels (Fig. (Fig.5).5). The time-dependent pattern of internal acidification during lag phase correlated with plasma membrane ATPase activation (Fig. (Fig.2a2a and and5),5), suggesting that this activation was triggered by intracellular acidification, as proposed for acetic acid (5)- or nitrogen starvation (2)-induced activation. Immediately before yeast cells entered exponential growth, 80% of the initial viable population had lost viability, as assessed by the number of CFU (21) (Fig. (Fig.6),6), suggesting that octanoic acid-induced death during latency is related to internal acidification down to critical values (Fig. (Fig.55 and and6),6), in agreement with the relationship established by Imai and Ohno (10) between yeast viability and intracellular pH. Only about 20% of the initial population was able to start cell division in octanoic acid-supplemented medium, presumably those cells that in the inoculum exhibited pHi values around neutrality (Fig. (Fig.55 and and6).6). These results suggest that despite plasma membrane H+- ATPase activation, this system of pH homeostasis may not be able to fully counteract the physiological effects of increasing octanoic acid concentrations and eventually fails at very severe acid stress. Open in a separate windowFIG. 3In vivo calibration curve, showing the pH dependence of the fI of cF-loaded-cells of S. cerevisiae IGC 3507III. Intracellular and extracellular pHs were equilibrated by incubation of cF-loaded cells, for 10 min at 30°C, with 0.5 mM CCCP. At each pH, values of fI correspond to the average fI of about 20 cells. The data are averages with standard deviations for three independent experiments.Open in a separate windowFIG. 4Distribution of cells with different pHi values present in the inoculum of S. cerevisiae IGC 3507III prepared in growth medium without octanoic acid supplementation.Open in a separate windowFIG. 5Percentage of yeast cells with pHi below 5.5 (a), between 5.5 and 6.0 (b), or above 6.0 (c); average pHi of the whole cell population (▴) during S. cerevisiae IGC3507III cultivation in medium supplemented with 0.39 mM total octanoic acid (pH 4.0, 30°C); and the optical density (OD) of the culture at 600 nm (▪). The average pHi values estimated for the whole cell population are the arithmetical mean values of the various average pHi values calculated for individual cells. The percentage of cells present in the inoculum with pHi values within the three ranges (○) and the average pHi of the inoculum cell population (▵) are indicated.Open in a separate windowFIG. 6Concentration of viable cells (▴) and culture optical density (O.D.) at 600 nm (□) during lag and exponential phases of S. cerevisiae IGC 3507III growth in medium supplemented with 0.39 mM octanoic acid, at pH 4.0 and 30°C.

Adaptative response to octanoic acid.

The adaptation of yeast cells to octanoic acid at a low pH appears to depend on their H+-exporting ability, but this requires not only a highly active H+-ATPase in the plasma membrane but the provision of sufficient ATP to drive this energy-demanding process as indicated by the results of Holyoak et al. (8). It is likely that increased ATPase activity under octanoic acid stress may reduce cellular ATP levels and that ATP depletion contributes to the failure of the maintenance of pHi homeostasis, particularly among the subpopulation that in the inoculum exhibited the lowest pHi values. The loss of viability might occur for those cells where pHi decreased down to nonphysiological values. The eventual recovery of growth therefore depends on the remaining viable population, in agreement with the well-known critical role played by the physiology and number of viable cells in the inoculum in the duration of latency under acid stress. The observation that octanoic acid-adapted cells reinoculated into the same fresh medium can resume growth after a much shorter latency (Fig. (Fig.1a)1a) is a good example of the importance of the physiology of the inoculum cells. Besides the increased plasma membrane H+-ATPase activity of octanoic acid-adapted cells, other mechanisms may underlie the adaptation to acid stress, such as the increased cellular buffering capacity of octanoic acid-grown cells due to their lower intracellular volume (20), the more favorable plasma membrane lipid composition (1), and the possible induction of the active efflux of the anion (26).  相似文献   

7.
We investigated whether intracellular pH (pHi) is a causal mediator in abscisic acid (ABA)-induced gene expression. We measured the change in pHi by a “null-point” method during stimulation of barley (Hordeum vulgare cv Himalaya) aleurone protoplasts with ABA and found that ABA induces an increase in pHi from 7.11 to 7.30 within 45 min after stimulation. This increase is inhibited by plasma membrane H+-ATPase inhibitors, which induce a decrease in pHi, both in the presence and absence of ABA. This ABA-induced pHi increase precedes the expression of RAB-16 mRNA, as measured by northern analysis. ABA-induced pHi changes can be bypassed or clamped by addition of either the weak acids 5,5-dimethyl-2,4-oxazolidinedione and propionic acid, which decrease the pHi, or the weak bases methylamine and ammonia, which increase the pHi. Artificial pHi increases or decreases induced by weak bases or weak acids, respectively, do not induce RAB-16 mRNA expression. Clamping of the pHi at a high value with methylamine or ammonia treatment affected the ABA-induced increase of RAB-16 mRNA only slightly. However, inhibition of the ABA-induced pHi increase with weak acid or proton pump inhibitor treatments strongly inhibited the ABA-induced RAB-16 mRNA expression. We conclude that, although the ABA-induced the pHi increase is correlated with and even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction pathway leading from the hormone to gene expression, it is not sufficient to cause such expression.  相似文献   

8.
TASK-2 (KCNK5 or K2P5.1) is a background K+ channel that is opened by extracellular alkalinization and plays a role in renal bicarbonate reabsorption and central chemoreception. Here, we demonstrate that in addition to its regulation by extracellular protons (pHo) TASK-2 is gated open by intracellular alkalinization. The following pieces of evidence suggest that the gating process controlled by intracellular pH (pHi) is independent from that under the command of pHo. It was not possible to overcome closure by extracellular acidification by means of intracellular alkalinization. The mutant TASK-2-R224A that lacks sensitivity to pHo had normal pHi-dependent gating. Increasing extracellular K+ concentration acid shifts pHo activity curve of TASK-2 yet did not affect pHi gating of TASK-2. pHo modulation of TASK-2 is voltage-dependent, whereas pHi gating was not altered by membrane potential. These results suggest that pHo, which controls a selectivity filter external gate, and pHi act at different gating processes to open and close TASK-2 channels. We speculate that pHi regulates an inner gate. We demonstrate that neutralization of a lysine residue (Lys245) located at the C-terminal end of transmembrane domain 4 by mutation to alanine abolishes gating by pHi. We postulate that this lysine acts as an intracellular pH sensor as its mutation to histidine acid-shifts the pHi-dependence curve of TASK-2 as expected from its lower pKa. We conclude that intracellular pH, together with pHo, is a critical determinant of TASK-2 activity and therefore of its physiological function.  相似文献   

9.
The changes in the intracellular pH (pHi) of sea urchin sperm associated with motility initiation and acrosome reaction were investigated using uptake of two different probes; 9-aminoacridine and methylamine, as a qualitative index. Sperm suspended in Na+-free sea water were immotile and able to concentrate these amines 20-fold or greater indicating that pHi is more acidic than the external medium (pHo = 7.7). This uptake ratio was essentially constant over a wide range of probe and sperm concentrations. Discharge of the pH gradient with specific ionophores (nigericin, monensin, and tetrachlorosalicylanilide) or nonspecifically using low concentration of detergents (Triton X-100 and lysolecithin) all resulted in the release of the probes indicating they are indeed sensing the pH gradient across the sperm membrane. Addition of Na+ to sperm suspended in Na+-free sea water resulted in activation of motility with concomitant efflux of the probes indicating the alkalinization of pHi by 0.4–0.5 pH units. That this pHi change is the causal trigger of motility was suggested by experiments using NH4Cl and nigericin, which increased the pHi and resulted in activation of motility in the absence of Na+. When sperm were directly diluted into artificial sea water (motility activated), a slow reacidification of pHi was observed in one species of sea urchin (L. pictus) but not in the other (S. purpuratus). This acidification could be blocked by mitochondrial inhibitors, verapamil, or the removal of external calcium suggesting that the increase in metabolic activity stimulated by the influx of Ca2+ is responsible for the reacidification. Induction of acrosome reaction further alkalinized the pHi by about 0.16 pH units and was also followed by prolonged reacidification which correlated with the observed increase in Ca2+ uptake. Either mitochondrial agents or the removal of external Ca2+ could also block this pHi change suggesting a similar mechanism is involved.  相似文献   

10.
11.
The mechanisms of HCO3-independent intracellular pH (pHi) regulation were examined in fibrous astrocytes within isolated neonatal rat optic nerve (RON) and in cultured cortical astrocytes. In agreement with previous studies, resting pHi in cultured astrocytes was 6.82 ± 0.06 and inhibition of the V-ATPase H+ pump by Cl removal or via the selective inhibitor bafilomycin had only a small effect upon resting pHi and recovery following an acid load. In contrast, resting pHi in RON astrocytes was 7.10 ± 0.04, significantly less acidic than that in cultured cells (p < 0.001), and responded to inhibition of V-ATPase with profound acidification to the 6.3–6.5 range. Fluorescent immuno-staining and immuno-gold labeling confirmed the presence V-ATPase in the cell membrane of RON astrocyte processes and somata. Using ammonia pulse recovery, pHi recovery in RON astrocyte was achieved largely via V-ATPase with sodium-proton exchange (NHE) playing a minor role. The findings indicate that astrocytes in a whole-mount preparation such as the optic nerve rely to a greater degree upon V-ATPase for HCO3-independent pHi regulation than do cultured astrocytes, with important functional consequences for the regulation of pH in the CNS.  相似文献   

12.
AMP-activated protein kinase (AMPK) is activated upon energy depletion and serves to restore energy balance by stimulating energy production and limiting energy utilization. Specifically, it enhances cellular glucose uptake by stimulating GLUT and SGLT1 and glucose utilization by stimulating glycolysis. During O2 deficiency glycolytic degradation of glucose leads to formation of lactate and H+, thus imposing an acid load to the energy-deficient cell. Cellular acidification inhibits glycolysis and thus impedes glucose utilization. Maintenance of glycolysis thus requires cellular H+ export. The present study explored whether AMPK influences Na+/H+ exchanger (NHE) activity and/or Na+-independent acid extrusion. NHE1 expression was determined by RT-PCR and Western blotting. Cytosolic pH (pHi) was estimated utilizing BCECF fluorescence and Na+/H+ exchanger activity from the Na+-dependent re-alkalinization (ΔpHi) after an ammonium pulse. As a result, human embryonic kidney (HEK) cells express NHE1. The pHi and ΔpHi in those cells were significantly increased by treatment with AMPK stimulator AICAR (1 mM) and significantly decreased by AMPK inhibitor compound C (10 μM). The effect of AICAR on pHi and ΔpHi was blunted in the presence of the Na+/H+ exchanger inhibitor cariporide (10 μM), but not by the H+ ATPase inhibitor bafilomycin (10 nM). AICAR significantly enhanced lactate formation, an effect significantly blunted in the presence of cariporide. These observations disclose a novel function of AMPK, i.e. regulation of cytosolic pH.  相似文献   

13.
The proliferative response of hematopoietic cells is regulated by many factors, including the presence and type of growth factors, the cellular microenvironment, and the physiochemical conditions prevailing in the tissue milieu. A process fundamental to all cells is the regulation of the intracellular acid-base conditions. One of the mechanisms by which intracellular pH (pHi) is regulated is through the sodium/hydrogen exchanger, a ubiquitous membrane protein which exploits the intra- and extracellular sodium ion gradient to drive hydrogen ions out of the cell. However, activation of the exchanger via mitogenic and nonmitogenic signals leads to an increase in pHi which, in turn, may directly or indirectly result in a proliferative response. It has been shown that interaction of fibronectin with its integrin receptor subunits α4 and α5 can result in activation of the Na+/H+ exchanger. In this report, we demonstrate that when mouse bone marrow cells are physically brought together in a preculture system we designate as high cell density culture (HCDC), in a small volume and at the same cellularity as that in the marrow, hematopoietic stem and progenitor cell populations are stimulated with no additional stimulation in the presence of growth factors. Neutralizing antibodies to the growth factors added to HCDC had little, if any, effect on the degree of stimulation. However, when antibodies to fibronectin or the α4 integrin subunit were added to HCDC, inhibition was observed, indicating that the observed hematopoietic stimulation occurred via the fibronectin-integrin pathway. Addition of 5 μM 5-(N,N-hexamethylene) amiloride (5-HMA), a specific inhibitor of the Na+/H+ exchanger, also resulted in inhibition of in vitro hematopoiesis. Since the exchanger was implicated, we then measured the pHi of normal and HCDC-treated bone marrow cells in the absence and presence of 5-HMA by flow cytometry using the fluorescent pH-sensitive indicator, carboxy SNARF-1 AM. It was found that cells subjected to HCDC exhibited a higher pHi than normal fresh cells. In each case, the pHi was lowered in the presence of 5-HMA. Furthermore, addition of antibodies to fibronectin or the α4 integrin subunit to HCDC also reduced the pHi to a similar level to that found for 5-HMA. Our results demonstrate, for the first time, that a hematopoietic stem and progenitor cell proliferative response can be initiated by activation of the Na+/H+ exchanger, leading to an increase in pHi, via cell-cell interaction through the fibronectin-integrin pathway. This pathway could, therefore, be significant not only in normal hematopoietic regulation, but also under pathophysiological conditions. J. Cell. Physiol. 177:109–122, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The actions of intracellular pH (pH i ) on Ca2+dependent Cl? channels were studied in secretory epithelial cells derived from human colon carcinoma (T84) and in isolated rat parotid acinar cells. Channel currents were measured with the whole cell voltage clamp technique with pipette solutions of different pH. Ca2+dependent Cl? channels were activated by superfusing ionomycin to increase the intracellular calcium concentration ([Ca2+] i ) or by using pipette solutions with buffered Ca2+ levels. Large currents were activated in T84 and parotid cells by both methods with pH i levels of 7.3 or 8.3. Little or no Cl? channel current was activated with pH i at 6.4. We used on-cell patch clamp methods to investigate the actions of low pH i on single Cl? channel current amplitude in T84 cells. Lowering the pH i had little or no effect on the current amplitude of a 8 pS Cl? channel, but did reduce channel activity. These results suggest that cytosolic acidification may be able to modulate stimulus-secretion coupling in fluid-secreting epithelia by inhibiting the activation of Ca2+-activated Cl? channels.  相似文献   

15.
Excessive production of endothelin-1 (ET-1), a potent vasoconstrictor, occurs with several forms of pulmonary hypertension. In addition to modulating vasomotor tone, ET-1 can potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. It is well established that changes in cell proliferation and migration in PASMCs are associated with alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE). In the systemic vasculature, ET-1 increases pHi, Na+/H+ exchange activity and stimulates cell growth via a mechanism dependent on protein kinase C (PKC). These results, coupled with data describing elevated levels of ET-1 in hypertensive animals/humans, suggest that ET-1 may play an important role in modulating pHi and smooth muscle growth in the lung; however, the effect of ET-1 on basal pHi and NHE activity has yet to be examined in PASMCs. Thus, we used fluorescent microscopy in transiently (3–5 days) cultured rat PASMCs and the pH-sensitive dye, BCECF-AM, to measure changes in basal pHi and NHE activity induced by increasing concentrations of ET-1 (10−10 to 10−8 M). We found that application of exogenous ET-1 increased pHi and NHE activity in PASMCs and that the ET-1-induced augmentation of NHE was prevented in PASMCs pretreated with an inhibitor of Rho kinase, but not inhibitors of PKC. Moreover, direct activation of PKC had no effect on pHi or NHE activity in PASMCs. Our results indicate that ET-1 can modulate pH homeostasis in PASMCs via a signaling pathway that includes Rho kinase and that, in contrast to systemic vascular smooth muscle, activation of PKC does not appear to be an important regulator of PASMC pHi.  相似文献   

16.
In cystic fibrosis (CF), dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel disrupts epithelial ion transport and perturbs the regulation of intracellular pH (pHi). CFTR modulates pHi through its role as an ion channel and by regulating transport proteins. However, it is unknown how CFTR senses pHi. Here, we investigate the direct effects of pHi on recombinant CFTR using excised membrane patches. By altering channel gating, acidic pHi increased the open probability (Po) of wild-type CFTR, whereas alkaline pHi decreased Po and inhibited Cl flow through the channel. Acidic pHi potentiated the MgATP dependence of wild-type CFTR by increasing MgATP affinity and enhancing channel activity, whereas alkaline pHi inhibited the MgATP dependence of wild-type CFTR by decreasing channel activity. Because these data suggest that pHi modulates the interaction of MgATP with the nucleotide-binding domains (NBDs) of CFTR, we examined the pHi dependence of site-directed mutations in the two ATP-binding sites of CFTR that are located at the NBD1:NBD2 dimer interface (site 1: K464A-, D572N-, and G1349D-CFTR; site 2: G551D-, K1250M-, and D1370N-CFTR). Site 2 mutants, but not site 1 mutants, perturbed both potentiation by acidic pHi and inhibition by alkaline pHi, suggesting that site 2 is a critical determinant of the pHi sensitivity of CFTR. The effects of pHi also suggest that site 2 might employ substrate-assisted catalysis to ensure that ATP hydrolysis follows NBD dimerization. We conclude that the CFTR Cl channel senses directly pHi. The direct regulation of CFTR by pHi has important implications for the regulation of epithelial ion transport.  相似文献   

17.
Precise acid-base homeostasis is essential for maintaining normal cell proliferation and growth. Conversely, dysregulated acid-base homeostasis, with increased acid extrusion and marked extracellular acidification, is an enabling feature of solid tumors, yet the mechanisms through which intra- and extracellular pH (pHi, pHe) impact proliferation and growth are incompletely understood. The aim of this study was to determine the impact of pH, and specifically of the Na+/H+ exchanger NHE1 and Na+, HCO3? transporter NBCn1, on cell cycle progression and its regulators in human breast cancer cells. Reduction of pHe to 6.5, a common condition in tumors, significantly delayed cell cycle progression in MCF-7 human breast cancer cells. The NHE1 protein level peaked in S phase and that of NBCn1 in G2/M. Steady state pHi changed through the cell cycle, from 7.1 in early S phase to 6.8 in G2, recovering again in M phase. This pattern, as well as net acid extrusion capacity, was dependent on NHE1 and NBCn1. Accordingly, knockdown of either NHE1 or NBCn1 reduced proliferation, prolonged cell cycle progression in a manner involving S phase prolongation and delayed G2/M transition, and altered the expression pattern and phosphorylation of cell cycle regulatory proteins. Our work demonstrates, for the first time, that both NHE1 and NBCn1 regulate cell cycle progression in breast cancer cells, and we propose that this involves cell cycle phase-specific pHi regulation by the two transporters.  相似文献   

18.
31P-NMR has been used to estimate the internal pH (pHi) of sperm from the sea urchin Strongylocentrotus purpuratus. The values for pHi obtained from the chemical shift of inorganic phosphate agree well with those obtained from amine accumulation. At low pHi, when sperm are quiescent (immotile and non-respiring), they accumulate phosphocreatine (PCr), but have a low level of inorganic phosphate (Pi). Conversely, when the pHi is elevated, sperm respiration and motility are activated, PCr is decreased and Pi is increased. This change is reversible upon decrease of the pHi, whereupon respiration and motility are arrested, Pi disappears and PCr increases. We conclude that the overall balance of energy metabolism, and thus the phosphate potential, of sea urchin sperm are under the control of the pHi.  相似文献   

19.
Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids, but the exact mechanism is still unknown. We set out to quantitatively determine the contributions of various mechanisms of antifungal activity of these weak acids, as well as the mechanisms that yeast uses to counteract their effects. We analyzed the effects of four weak organic acids differing in lipophilicity (sorbic, benzoic, propionic, and acetic acids) on growth and intracellular pH (pHi) in Saccharomyces cerevisiae. Although lipophilicity of the acids correlated with the rate of acidification of the cytosol, our data confirmed that not initial acidification, but rather the cell''s ability to restore pHi, was a determinant for growth inhibition. This pHi recovery in turn depended on the nature of the organic anion. We identified long-term acidification as the major cause of growth inhibition under acetic acid stress. Restoration of pHi, and consequently growth rate, in the presence of this weak acid required the full activity of the plasma membrane ATPase Pma1p. Surprisingly, the proposed anion export pump Pdr12p was shown to play an important role in the ability of yeast cells to restore the pHi upon lipophilic (sorbic and benzoic) acid stress, probably through a charge interaction of anion and proton transport.  相似文献   

20.
Regulation of intracellular pH is critical for the maintenance of cell homeostasis in response to stress. We used yeast two-hybrid screening to identify novel interacting partners of the pH-regulating transporter NBCe1-B. We identified Hsp70-like stress 70 protein chaperone (STCH) as interacting with NBCe1-B at the N-terminal (amino acids 96–440) region. Co-injection of STCH and NBCe1-B cRNA into Xenopus oocytes significantly increased surface expression of NBCe1-B and enhanced bicarbonate conductance compared with NBCe1-B cRNA alone. STCH siRNA decreased the rate of Na+-dependent pHi recovery from NH4+ pulse-induced acidification in an HSG (human submandibular gland ductal) cell line. We observed that in addition to NBCe1-B, Na+/H+ exchanger (NHE)-dependent pHi recovery was also impaired by STCH siRNA and further confirmed the interaction of STCH with NHE1 but not plasma membrane Ca2+ ATPase. Both NBCe1-B and NHE1 interactions were dependent on a specific 45-amino acid region of STCH. In conclusion, we identify a novel role of STCH in the regulation of pHi through site-specific interactions with NBCe1-B and NHE1 and subsequent modulation of membrane transporter expression. We propose STCH may play a role in pHi regulation at times of cellular stress by enhancing the recovery from intracellular acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号