首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surveillance and repair of DNA damage are essential for maintaining the integrity of the genetic information that is needed for normal development. Several multienzyme pathways, including the excision repair of damaged or missing bases, carry out DNA repair in mammals. We determined the developmental role of the X-ray cross-complementing (Xrcc)-1 gene, which is central to base excision repair, by generating a targeted mutation in mice. Heterozygous matings produced Xrcc1-/- embryos at early developmental stages, but not Xrcc1-/- late-stage fetuses or pups. Histology showed that mutant (Xrcc1-/-) embryos arrested at embryonic day (E) 6.5 and by E7.5 were morphologically abnormal. The most severe abnormalities observed in mutant embryos were in embryonic tissues, which showed increased cell death in the epiblast and an altered morphology in the visceral embryonic endoderm. Extraembryonic tissues appeared relatively normal at E6.5-7.5. Even without exposure to DNA-damaging agents, mutant embryos showed increased levels of unrepaired DNA strand breaks in the egg cylinder compared with normal embryos. Xrcc1-/- cell lines derived from mutant embryos were hypersensitive to mutagen-induced DNA damage. Xrcc1 mutant embryos that were also made homozygous for a null mutation in Trp53 underwent developmental arrest after only slightly further development, thus revealing a Trp53-independent mechanism of embryo lethality. These results show that an intact base excision repair pathway is essential for normal early postimplantation mouse development and implicate an endogenous source of DNA damage in the lethal phenotype of embryos lacking this repair capacity.  相似文献   

2.
The dynamic embryonic expression of germ cell nuclear factor (GCNF), an orphan nuclear receptor, suggests that it may play an important role during early development. To determine the physiological role of GCNF, we have generated a targeted mutation of the GCNF gene in mice. Germ line mutation of the GCNF gene proves that the orphan nuclear receptor is essential for embryonic survival and normal development. GCNF(-/-) embryos cannot survive beyond 10.5 days postcoitum (dpc), probably due to cardiovascular failure. Prior to death, GCNF(-/-) embryos suffer significant defects in posterior development. Unlike GCNF(+/+) embryos, GCNF(-/-) embryos do not turn and remain in a lordotic position, the majority of the neural tube remains open, and the hindgut fails to close. GCNF(-/-) embryos also suffer serious defects in trunk development, specifically in somitogenesis, which terminates by 8.75 dpc. The maximum number of somites in GCNF(-/-) embryos is 13 instead of 25 as in the GCNF(+/+) embryos. Interestingly, the tailbud of GCNF(-/-) embryos develops ectopically outside the yolk sac. Indeed, alterations in expression of multiple marker genes were identified in the posterior of GCNF(-/-) embryos, including the primitive streak, the node, and the presomitic mesoderm. These results suggest that GCNF is required for maintenance of somitogenesis and posterior development and is essential for embryonic survival. These results suggest that GCNF regulates a novel and critical developmental pathway involved in normal anteroposterior development.  相似文献   

3.
Recent work indicates that thyroid hormone receptor-associated protein 220 (TRAP220), a subunit of the multiprotein TRAP coactivator complex, is essential for embryonic survival. We have generated TRAP220 conditional null mice that are hypomorphic and express the gene at reduced levels. In contrast to TRAP220 null mice, which die at embryonic d 11.5 (E11.5), hypomorphic mice survive until E13.5. The reduced expression in hypomorphs results in hepatic necrosis, defects in hematopoiesis, and hypoplasia of the ventricular myocardium, similar to that observed in TRAP220 null embryos at an earlier stage. The embryonic lethality of null embryos at E11.5 is due to placental insufficiency. Tetraploid aggregation assays partially rescues embryonic development until E13.5, when embryonic loss occurs due to hepatic necrosis coupled with poor myocardial development as observed in hypomorphs. These findings demonstrate that, for normal placental function, there is an absolute requirement for TRAP220 in extraembryonic tissues at E11.5, with an additional requirement in embryonic tissues for hepatic and cardiovascular development thereafter.  相似文献   

4.
An adenosine triphosphatase of the sucrose nonfermenting 2 protein family, androgen receptor-interacting protein 4 (ARIP4), modulates androgen receptor activity. To elucidate receptor-dependent and -independent functions of ARIP4, we have analyzed Arip4 gene-targeted mice. Heterozygous Arip4 mutants were normal. Arip4 is expressed mainly in the neural tube and limb buds during early embryonic development. Arip4-/- embryos were abnormal already at embryonic d 9.5 (E9.5) and died by E11.5. At E9.5 and E10.5, almost all major tissues of Arip4-null embryos were proportionally smaller than those of wild-type embryos, and the neural tube was shrunk in some Arip4-/- embryos. Dramatically reduced cell proliferation and increased apoptosis were observed in E9.5 and E10.5 Arip4-null embryos. Mouse embryonic fibroblasts (MEFs) isolated from Arip4-/- embryos ceased to grow after two to three passages and exhibited increased apoptosis and decreased DNA synthesis compared with wild-type MEFs. Comparison of gene expression profiles of Arip4-/- and wild-type MEFs at E9.5 revealed that putative ARIP4 target genes are involved in cell growth and proliferation, apoptosis, cell death, DNA replication and repair, and development. Collectively, ARIP4 plays an essential role in mouse embryonic development and cell proliferation, and it appears to coordinate multiple essential biological processes, possibly through a complex chromatin remodeling system.  相似文献   

5.
Inactivation of erythropoietin leads to defects in cardiac morphogenesis.   总被引:35,自引:0,他引:35  
Erythropoietin is an essential growth factor that promotes survival, proliferation, and differentiation of mammalian erythroid progenitor cells. Erythropoietin(-/-) and erythropoietin receptor(-/-) mouse embryos die around embryonic day 13.5 due, in part, to failure of erythropoiesis in the fetal liver. In this study, we demonstrated a novel role of erythropoietin and erythropoietin receptor in cardiac development in vivo. We found that erythropoietin receptor is expressed in the developing murine heart in a temporal and cell type-specific manner: it is initially detected by embryonic day 10.5 and persists until day 14.5. Both erythropoietin(-/-) and erythropoietin receptor(-/-) embryos suffered from ventricular hypoplasia at day 12-13 of gestation. This defect appears to be independent from the general state of hypoxia and is likely due to a reduction in the number of proliferating cardiac myocytes in the ventricular myocardium. Cell proliferation assays revealed that erythropoietin acts as a mitogen in cells isolated from erythropoietin(-/-) mice, while it has no effect in hearts from erythropoietin receptor(-/-) animals. Erythropoietin(-/-) and erythropoietin receptor(-/-) embryos also suffered from epicardium detachment and abnormalities in the vascular network. Finally, through a series of chimeric analysis, we provided evidence that erythropoietin acts in a manner which is non-cell-autonomous. Our results elucidate a novel role of erythropoietin in cardiac morphogenesis and suggest a combination of anemia and cardiac failure as the cause of embryonic lethality in the erythropoietin(-/-) and erythropoietin receptor(-/-) animals.  相似文献   

6.
7.
8.
Receptor activity-modifying protein-2 (RAMP2) is a single-pass transmembrane protein that can regulate the trafficking, ligand binding, and signaling of several G protein-coupled receptors (GPCR). The most well-characterized role of RAMP2 is in the regulation of adrenomedullin (AM) binding to calcitonin receptor-like receptor (CLR), and our previous studies using knockout mouse models support this canonical signaling paradigm. For example, Ramp2(-/-) mice die at midgestation with a precise phenocopy of the AM(-/-) and Calcrl(-/-) mice. In contrast, Ramp2(+/-) mice are viable and exhibit an expanded variety of phenotypes that are distinct from those of Calcrl(+/-) mice. Using Ramp2(+/-) female mice, we demonstrate that a modest decrease in Ramp2 expression causes severe reproductive defects characterized by fetal growth restriction, fetal demise, and postnatal lethality that is independent of the genotype and gender of the offspring. Ramp2(+/-) female mice also exhibit hyperprolactinemia during pregnancy and in basal conditions. Consistent with hyperprolactinemia, Ramp2(+/-) female mice have enlarged pituitary glands, accelerated mammary gland development, and skeletal abnormalities including delayed bone development and decreased bone mineral density. Because RAMP2 has been shown to associate with numerous GPCR, it is likely that signaling of one or more of these GPCR is compromised in Ramp2(+/-) mice, yet the precise identification of these receptors remains to be elucidated. Taken together, this work reveals an essential role for RAMP2 in endocrine physiology and provides the first in vivo evidence for a physiological role of RAMP2 beyond that of AM/CLR signaling.  相似文献   

9.
More than blood (Mtb) is a novel gene that is widely expressed in mouse embryos prior to gastrulation but is subsequently restricted to specific tissues, including the developing central nervous system and hematopoietic organs. Since MTB is highly expressed in the fetal liver and developing thymus, we predicted that MTB would be required for hematopoiesis and that embryos deficient in MTB would die of anemia. Surprisingly, embryos with a targeted disruption of Mtb died prior to the initiation of blood cell development, immediately following implantation. This lethality is due to a defect in expansion of the inner cell mass (ICM), as Mtb(-/-) blastocysts failed to exhibit outgrowth of the ICM, both in vitro and in vivo. Furthermore, Mtb(-/-) blastocysts exhibited a higher frequency of apoptotic cells than wild-type or heterozygous blastocysts. These findings demonstrate that Mtb is a novel gene that is essential for early embryonic development.  相似文献   

10.
The docking protein Gab1 binds phosphorylated c-Met receptor tyrosine kinase directly and mediates signals of c-Met in cell culture. Gab1 is phosphorylated by c-Met and by other receptor and nonreceptor tyrosine kinases. Here, we report the functional analysis of Gab1 by targeted mutagenesis in the mouse, and compare the phenotypes of the Gab1 and c-Met mutations. Gab1 is essential for several steps in development: migration of myogenic precursor cells into the limb anlage is impaired in Gab1-/- embryos. As a consequence, extensor muscle groups of the forelimbs are virtually absent, and the flexor muscles reach less far. Fewer hindlimb muscles exist, which are smaller and disorganized. Muscles in the diaphragm, which also originate from migratory precursors, are missing. Moreover, Gab1-/- embryos die in a broad time window between E13.5 and E18.5, and display reduced liver size and placental defects. The labyrinth layer, but not the spongiotrophoblast layer, of the placenta is severely reduced, resulting in impaired communication between maternal and fetal circulation. Thus, extensive similarities between the phenotypes of c-Met and HGF/SF mutant mice exist, and the muscle migration phenotype is even more pronounced in Gab1-/-:c-Met+/- embryos. This is genetic evidence that Gab1 is essential for c-Met signaling in vivo. Analogy exists to signal transmission by insulin receptors, which require IRS1 and IRS2 as specific docking proteins.  相似文献   

11.
Septation of the single tubular embryonic outflow tract into two outlet segments in the heart requires the precise integration of proliferation, differentiation and apoptosis during remodeling. Lack of proper coordination between these processes would result in a variety of congenital cardiac defects such as those seen in the retinoid X receptor alpha knockout (Rxra(-/-)) mouse. Rxra(-/-) embryos exhibit lethality between embryonic day (E) 13.5 and 15.5 and harbor a variety of conotruncal and aortic sac defects making it an excellent system to investigate the molecular and morphogenic causes of these cardiac malformations. At E12.5, before the embryonic lethality, we found no qualitative difference between wild type and Rxra(-/-) proliferation (BrdU incorporation) in outflow tract cushion tissue but a significant increase in apoptosis as assessed by both TUNEL labeling in paraffin sections and caspase activity in trypsin-dispersed hearts. Additionally, E12.5 embryos demonstrated elevated levels of transforming growth factor beta2 (TGFbeta2) protein in multiple cell lineages in the heart. Using a whole-mouse-embryo culture system, wild-type E11.5 embryos treated with TGFbeta2 protein for 24 hours displayed enhanced apoptosis in both the sinistroventralconal cushion and dextrodorsalconal cushion in a manner analogous to that observed in the Rxra(-/-). TGFbeta2 protein treatment also led to malformations in both the outflow tract and aortic sac. Importantly, Rxra(-/-) embryos that were heterozygous for a null mutation in the Tgfb2 allele exhibited a partial restoration of the elevated apoptosis and of the malformations. This was evident at both E12.5 and E13.5. The data suggests that elevated levels of TGFbeta2 can (1) contribute to abnormal outflow tract morphogenesis by enhancing apoptosis in the endocardial cushions and (2) promote aortic sac malformations by interfering with the normal development of the aorticopulmonary septum.  相似文献   

12.
While the targeted disruption of a gene is a powerful tool for investigating the physiological functions of that gene, disruption of a gene essential for embryogenesis leads to embryonic death. Rescue of the defect(s) causing embryonic death should promote survival, thus permitting further evaluation of the roles that the gene plays later in the developmental process. Disruption of the gene for mouse hepatocyte growth factor/scatter factor (HGF/SF) leads to middle-stage embryonic lethality because of a defect in placental development. Here we report that a single injection of HGF/SF at embryonic day 9.5 (E9.5) into the amniotic cavity of HGF/SF(-/-) embryos rescued the placental defect and resulted in the survival of the embryos until term. Histological analysis suggested that HGF/SF is also required at the late stage of development for tissue organogenesis. Thus, injection of a secreted factor can be a useful method to rescue the defects causing embryonic lethality.  相似文献   

13.
Targeted disruption of the retinoblastoma gene in mice leads to embryonic lethality in midgestation accompanied by defective erythropoiesis. Rb(-/-) embryos also exhibit inappropriate cell cycle activity and apoptosis in the central nervous system (CNS), peripheral nervous system (PNS), and ocular lens. Loss of p53 can prevent the apoptosis in the CNS and lens; however, the specific signals leading to p53 activation have not been determined. Here we test the hypothesis that hypoxia caused by defective erythropoiesis in Rb-null embryos contributes to p53-dependent apoptosis. We show evidence of hypoxia in CNS tissue from Rb(-/-) embryos. The Cre-loxP system was then used to generate embryos in which Rb was deleted in the CNS, PNS and lens, in the presence of normal erythropoiesis. In contrast to the massive CNS apoptosis in Rb-null embryos at embryonic day 13.5 (E13.5), conditional mutants did not have elevated apoptosis in this tissue. There was still significant apoptosis in the PNS and lens, however. Rb(-/-) cells in the CNS, PNS, and lens underwent inappropriate S-phase entry in the conditional mutants at E13.5. By E18.5, conditional mutants had increased brain size and weight as well as defects in skeletal muscle development. These data support a model in which hypoxia is a necessary cofactor in the death of CNS neurons in the developing Rb mutant embryo.  相似文献   

14.
Previous studies have suggested that the vav protooncogene plays an important role in hematopoiesis. To study this further, we have ablated the vav protooncogene by homologous recombination in embryonic stem (ES) cells. Homozygous vav (-/-) ES clones differentiate normally in culture and generate cells of erythroid, myeloid and mast cell lineages. Mice heterozygous for the targeted vav allele do not display any obvious abnormalities. However, homozygous embryos die very early during development. Crosses of vav (+/-) heterozygous mice yield apparently normal vav (-/-) E3.5 embryos but not post-implantation embryos (> or = E7.5). Furthermore, homozygous vav (-/-) blastocysts do not hatch in vitro. These results indicate that vav is essential for an early developmental step(s) that precedes the onset of hematopoiesis. Consistent with the phenotypic analysis of vav (-/-) embryos, we have identified Vav immunoreactivity in the extra-embryonic trophoblastic cell layer but not in the inner embryonic cell mass of E3.5 preimplantation embryos or in the egg cylinder of E6.5 and E7.5 post-implantation embryos. These results suggest that the vav gene is essential for normal trophoblast development and for implantation of the developing embryo.  相似文献   

15.
PTP (protein-tyrosine phosphatase)-PEST is a ubiquitously expressed cellular regulator of integrin signalling. It has been shown to bind several molecules such as Shc, paxillin and Grb2, that are involved downstream of FAK (focal adhesion kinase) pathway. Through its specific association to p130cas and further dephosphorylation, PTP-PEST plays a critical role in cell-matrix interactions, which are essential during embryogenesis. We report here that ablation of the gene leads to early embryonic lethality, correlating well with the high expression of the protein during embryonic development. We observed an increased level of tyrosine phosphorylation of p130cas protein in E9.5 PTP-PEST(-/-) embryos, a first evidence of biochemical defect leading to abnormal growth and development. Analysis of null mutant embryos revealed that they reach gastrulation, initiate yolk sac formation, but fail to progress through normal subsequent developmental events. E9.5-10.5 PTP-PEST(-/-) embryos had morphological abnormalities such as defective embryo turning, improper somitogenesis and vasculogenesis, impaired liver development, accompanied by degeneration in both neuroepithelium and somatic epithelia. Moreover, in embryos surviving until E10.5, the caudal region was truncated, with severe mesenchyme deficiency and no successful liver formation. Defects in embryonic mesenchyme as well as subsequent failure of proper vascularization, liver development and somatogenesis, seemed likely to induce lethality at this stage of development, and these results confirm that PTP-PEST plays an essential function in early embryogenesis.  相似文献   

16.
Cytochrome P450 oxidoreductase (POR) acts as an electron donor for all cytochrome P450 enzymes. Knockout mouse Por(-/-) mutants, which are early embryonic (E9.5) lethal, have been found to have overall elevated retinoic acid (RA) levels, leading to the idea that POR early developmental function is mainly linked to the activity of the CYP26 RA-metabolizing enzymes (Otto et al., Mol. Cell. Biol. 23, 6103-6116). By crossing Por mutants with a RA-reporter lacZ transgene, we show that Por(-/-) embryos exhibit both elevated and ectopic RA signaling activity e.g. in cephalic and caudal tissues. Two strategies were used to functionally demonstrate that decreasing retinoid levels can reverse Por(-/-) phenotypic defects, (i) by culturing Por(-/-) embryos in defined serum-free medium, and (ii) by generating compound mutants defective in RA synthesis due to haploinsufficiency of the retinaldehyde dehydrogenase 2 (Raldh2) gene. Both approaches clearly improved the Por(-/-) early phenotype, the latter allowing mutants to be recovered up until E13.5. Abnormal brain patterning, with posteriorization of hindbrain cell fates and defective mid- and forebrain development and vascular defects were rescued in E9.5 Por(-/-) embryos. E13.5 Por(-/-); Raldh2(+/-) embryos exhibited abdominal/caudal and limb defects that strikingly phenocopy those of Cyp26a1(-/-) and Cyp26b1(-/-) mutants, respectively. Por(-/-); Raldh2(+/-) limb buds were truncated and proximalized and the anterior-posterior patterning system was not established. Thus, POR function is indispensable for the proper regulation of RA levels and tissue distribution not only during early embryonic development but also in later morphogenesis and molecular patterning of the brain, abdominal/caudal region and limbs.  相似文献   

17.
18.
Dad1 is a putative anti-apoptosis gene identified in several distantly related organisms. Expression of Dad1 in transfected cells inhibits apoptosis in vitro. To determine whether Dad1 has a similar function in vivo, we used gene targeting to delete Dad1. Heterozygous adult mice (+/-) show no obvious phenotype or abnormalities, but genotype analysis of over 100 offspring from heterozygous matings detected no weanling, homozygous Dad1 null (-/-) mice. Subsequent analysis of embryos from heterozygous matings detected Dad1 null (-/-) embryos at E3.5 but no later, suggesting Dad1 is required for development beyond the late blastocyst stage. Increased levels of apoptosis were observed in cultured embryos lacking a functional copy of the gene, consistent with an anti-apoptotic role for Dad1.  相似文献   

19.
Embryogenesis is a period during which cells are exposed to dynamic changes of various intracellular and extracellular stresses. Oxidative stress response genes are regulated by heterodimers composed of Cap'n'Collar (CNC) and small Maf proteins (small Mafs) that bind to antioxidant response elements (ARE). Whereas CNC factors have been shown to contribute to the expression of ARE-dependent cytoprotective genes during embryogenesis, the specific contribution of small Maf proteins to such gene regulation remains to be fully examined. To delineate the small Maf function in vivo, in this study we examined mice lacking all three small Mafs (MafF, MafG, and MafK). The small Maf triple-knockout mice developed normally until embryonic day 9.5 (E9.5). Thereafter, however, the triple-knockout embryos showed severe growth retardation and liver hypoplasia, and the embryos died around E13.5. ARE-dependent cytoprotective genes were expressed normally in E10.5 triple-knockout embryos, but the expression was significantly reduced in the livers of E13.5 mutant embryos. Importantly, the embryonic lethality could be completely rescued by transgenic expression of exogenous MafG under MafG gene regulatory control. These results thus demonstrate that small Maf proteins are indispensable for embryonic development after E9.5, especially for liver development, but early embryonic development does not require small Mafs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号