首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundIodine is a key component of the thyroid hormones thyroxine (T4) and triiodothyronine (T3), which are crucial for proper growth and development of the human body. In particular, a great body of literature has been published on the link between thyroid hormones and brain development and functioning. However, there is a lack of knowledge on the iodine levels in the human brain. The aim of this work was to determine the brain iodine levels and to contribute to the establishment of “reference” levels for iodine in the different anatomical and functional regions of normal (i.e., subjects without neurological or psychiatric diseases) human brain.MethodsThe iodine levels were determined in 14 brain regions of 52 dead subjects without evidence of neurological or psychiatric disease (n = 728 samples). Iodine was extracted from brain samples using a standard procedure and determined by inductively coupled plasma – mass spectrometry (ICP-MS).ResultsFour subjects presented abnormally high brain iodine levels (26.0 ± 14.2 μg/g) and were excluded from the overall data analysis. The average brain iodine levels for the remaining 48 subjects was 0.14 ± 0.13 μg/g dry weight. Iodine showed very heterogeneous distribution across the different brain regions, with the frontal cortex, caudate nucleus and putamen showing the highest levels. Interestingly, these brain regions are closely related to cognitive function. Iodine levels also showed a tendency to increase with age. The high levels observed in four subjects seemed to be related to previous exposure to iodine-based contrast agents widely used in radiology and computed tomography exams.ConclusionsThis paper provides important data on iodine levels at different brain regions in “normal” people, which can be used to interpret eventual imbalances in subjects with mental disorders and neurodegenerative diseases.  相似文献   

2.
Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.  相似文献   

3.
4.
We examined sequences expressed in the brain and nervous system using EST data. A previous study including sequences thought to have neurological function found a deficiency of simple sequence within such sequences. This was despite many examples of neurodegenerative diseases, such as Huntington disease, which are thought to be caused by expansions of polyglutamine tracts within associated protein sequences. It may be that many of the sequences thought to have neurological function have other additional, non-neurological roles. For this reason, we examined sequences with specific expression in the brain and nervous system, using EST expression data to determine if they too are deficient of simple, repetitive sequences. Indeed, we find this class of sequences to be deficient. Unexpectedly, however, we find sequences expressed in the brain and nervous system to be consistently enriched for histidine-enriched simple sequence. Determining the function of these histidine-rich regions within brain-specific proteins requires more experimental data.  相似文献   

5.
The etiology of various age-related neurological diseases remains unknown. Sporadic forms ofAlzheimer's, Parkinson's and Lou Gehrig's disease have been linked to environmental factors that cause neuronal cell death either by excitotoxicity or by inducing oxidative stress. Our recent studies have demonstrated that various compounds not previously associated with these diseases, i.e. methionine sulfoximine (MSO), originally isolated from 'agenized' flour, and sitosterol glucoside (BSSG), isolated from the seed of the cycad, appear to be neurotoxins, likely acting by excitotoxic mechanisms. For these compounds, the primary excitotoxic effect appears to involve glutamate release followed by NMDA receptor activation. Lactate dehydrogenase assays demonstrate that both compounds cause rapid cell death in vitro. In addition, both compounds appear to alter antioxidant defense mechanisms, acting particularly on levels of reduced glutathione (GSH). In vivo application of MSO has historically been linked to behavioral abnormalities, including seizures, in various species. Our recent experiments have demonstrated that mice fed cycad flour containing sitosterol glucoside have severe behavioral abnormalities of motor and cognitive function, as well as significant levels of neurodegeneration in cortex, hippocampus, spinal cord and other CNS regions measured post mortem. The combined weight of excitotoxic action, in concert to a decline in antioxidant defenses, induced by molecules such as methionine sulfoximine and sitosterol glucoside is hypothesized to be causal to neuronal degeneration in various neurological diseases. Understanding the mechanisms of action of these and functionally related molecules may serve to focus attention on potential neurotoxins present in the human environment. Only once such molecules have been identified, can we begin to design appropriate pharmaceutical strategies to prevent or halt the progression of the age-related neurological diseases.  相似文献   

6.
米慧  林蓓  管敏鑫 《生命科学》2012,(6):549-557
线粒体呼吸链缺陷一直被认为是诱发线粒体疾病的重要因素,这有助于研究人员阐释其遗传和临床多样性。然而,线粒体的其他功能也具有重要意义,包括蛋白质运输、细胞器动力学和细胞凋亡。调控这些功能的基因缺陷不仅导致神经和精神疾病,而且还导致年龄相关的神经变性疾病。因此,引起越来越多的关注。在讨论呼吸链缺陷引起相关神经系统疾病的一些致病难题后,就线粒体动力学改变引起的相关神经系统疾病病因和常见神经变性疾病的病理生理机制作一综述。  相似文献   

7.
胰岛素对中枢神经系统疾病的影响   总被引:6,自引:0,他引:6  
越来越多的实验证据和临床资料表明,胰岛素在中枢神经系统中发挥重要作用。多种动物脑内有高水平的胰岛素,而且神经元和胶质细胞上均存在胰岛素受体和胰岛素第二信使系统。很多神经性疾病的发病机制都和胰岛素水平或胰岛素敏感性有关。同样,胰岛素样生长因子对神经元功能也有一定的调节作用。胰岛素和包括胰岛素样生长因子在内的多种神经营养因子,在治疗神经退行性疾病方面被人类寄予了厚望。  相似文献   

8.
This paper presents a novel voxel-based method for texture analysis of brain images. Texture analysis is a powerful quantitative approach for analyzing voxel intensities and their interrelationships, but has been thus far limited to analyzing regions of interest. The proposed method provides a 3D statistical map comparing texture features on a voxel-by-voxel basis. The validity of the method was examined on artificially generated effects as well as on real MRI data in Alzheimer''s Disease (AD). The artificially generated effects included hyperintense and hypointense signals added to T1-weighted brain MRIs from 30 healthy subjects. The AD dataset included 30 patients with AD and 30 age/sex matched healthy control subjects. The proposed method detected artificial effects with high accuracy and revealed statistically significant differences between the AD and control groups. This paper extends the usage of texture analysis beyond the current region of interest analysis to voxel-by-voxel 3D statistical mapping and provides a hypothesis-free analysis tool to study cerebral pathology in neurological diseases.  相似文献   

9.
Mini- and microsatellite expansions: the recombination connection   总被引:8,自引:0,他引:8       下载免费PDF全文
It is widely accepted that the large trinucleotide repeat expansions observed in many neurological diseases occur during replication. However, genetic recombination has emerged as a major source of instability for tandem repeats, including minisatellites, and recent studies raise the possibility that it may also be responsible for trinucleotide repeat expansions. We will review data connecting tandem repeat rearrangements and recombination in humans and in eukaryotic model organisms, and discuss the possible role of recombination in trinucleotide repeat expansions in human neurological disorders.  相似文献   

10.
Several studies suggest a link between electric injuries and neurological diseases, where electric shocks may explain elevated risks for neuronal degeneration and, subsequently, neurological diseases. We conducted a retrospective cohort study on the risk of neurological diseases among people in Denmark who had survived an electric accident in 1968-2008. The cohort included 3,133 people and occurrences of neurological diseases were determined by linkage to the nationwide population-based Danish National Register of Patients. The numbers of cases observed at first hospital contact in the cohort were compared with the respective rates of first hospital contacts for neurological diseases in the general population. We observed significantly increased risks for peripheral nerve diseases (standardized hospitalization ratio (SHR), 1.66; 95% confidence interval (CI), 1.22-2.22), for migraine (SHR, 1.80; 95% CI, 1.23-2.54), for vertigo (SHR, 1.60; 95% CI, 1.22-2.05), and for epilepsy (SHR, 1.45; 95% CI, 1.11-1.85). Only small numbers of cases of other neurological diseases were found, making the risk estimates unstable. These findings suggest an association between a single electric shock and increased risks for peripheral nerve diseases, migraines, vertigo, and epilepsy, but confirmation of these observations is needed.  相似文献   

11.
Prion diseases, or transmissible spongiform encephalopathies, are a group of infectious neurological diseases associated with the structural conversion of an endogenous protein (PrP) in the central nervous system. There are two major forms of this protein: the native and noninfectious cellular form, PrPC; and the misfolded, infectious, and proteinase K‐resistant form, PrPSc. The C‐terminal domain of PrPC is mainly α‐helical in structure, whereas PrPSc in known to aggregate into an assembly of β‐sheets, forming amyloid fibrils. To identify the regions of PrPC potentially involved in the initial steps of the conversion to the infectious conformation, we have used high‐resolution NMR spectroscopy to characterize the stability and structure of bovine recombinant PrPC (residues 121 to 230) during unfolding with the denaturant urea. Analysis of the 800 MHz 1H NMR spectra reveals region‐specific information about the structural changes occurring upon unfolding. Our data suggest that the dissociation of the native β‐sheet of PrPC is a primary step in the urea‐induced unfolding process, while strong hydrophobic interactions between helices α1 and α3, and between α2 and α3, stabilize these regions even at very high concentrations of urea.  相似文献   

12.
Although the measurement of cardiac troponin I (cTnI) and T (cTnT) has now become the cornerstone for diagnosing cardiac injury, both ischemic and non-ischemic, recent evidence has become available that many patients display extra-cardiac causes of cTn elevations and carry a considerably enhanced risk of future mortality. The current literature data suggests that cTn elevations may be equally common in patients with cardiac and extra-cardiac diseases. Among the latter cohort of patients, the leading extra-cardiac diseases which may be responsible for either cTnI or cTnT elevations include infectious diseases/sepsis, pulmonary disorders, renal failure, malignancy, as well as gastrointestinal, neurological and musculoskeletal diseases. What also emerges rather clearly from the current literature data, is that the risk of dying for extra-cardiac diseases is higher (i.e., between two to three-fold) in patients with extra-cardiac cTn elevations than in those with cardiac pathologies, and that the most frequent cause of death would then be infections/sepsis, followed by malignancy, respiratory disorders, myocardial infarction, gastrointestinal and neurological diseases, heart failure, stroke, cardiac arrhythmias, renal failure, psychiatric, metabolic, urogenital and musculoskeletal disorders. These figures would lead to conclude that there is a considerable risk that the underlying pathology causing cardiac injury and cTn elevation would then become the cause of death in these patients. This important evidence shall lead the way to defining appropriate and effective strategies for managing patients with extra-cardiac cTn elevations, so that their risk of future death could be prevented or limited.  相似文献   

13.
As a novel neurotherapeutic strategy, stem cell transplantation has received considerable attention. However, little focus of this attention has been devoted to the probabilities of success of stem cell therapies for specific neurological disorders. Given the complexities of the cellular organization of the nervous system and the manner in which it is assembled during development, it seems unlikely that a cellular replacement strategy will succeed for any but the simplest of neurological disorders in the near future. A general strategy for stem cell transplantation to prevent or minimize neurological disorders is much more likely to succeed. The lysosomal storage diseases represent the quintessential neurodegenerative diseases for which preventative stem cell transplantation will both likely succeed and set the stage for therapeutic approaches to other neurodegenerative diseases.  相似文献   

14.
15.
Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood–brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.  相似文献   

16.
A double ligand enzyme-linked immunosorbent assay (ELISA) has been developed to detect antibodies against brain tissue antigens in the sera of patients with neurological diseases. The sera were tested on human white matter homogenate. The technique consists of successive incubations with the human serum to be tested, rabbit immunoglobulin G (IgG) to human immunoglobulins (Ig), alkaline phosphate-labeled protein A and alkaline phosphatase substrate. This procedure has the advantage of increased sensitivity compared to the classical ELISA. Application of this procedure to the sera of patients with neurological diseases showed that the unspecific binding is very low and the results are reliable. Moreover the test allows the detection of antibodies to chemically different antigenic structures that can occur in a variety of neurological diseases.  相似文献   

17.
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.  相似文献   

18.
A genetic epidemiological study of hereditary diseases of the nervous system (HDNS) was conducted in the cities of Volgograd and Volzhsky for the first time. In total, 1 323 500 individuals were examined including the populations of Volgograd and Volzhsky (1 012 800 and 310 700 persons, respectively). The prevalence of neurological diseases with autosomal dominant (AD), autosomal recessive (AR), and X-linked recessive inheritance was estimated. These data were compared with the estimates previously obtained for different population of the Russian Federation. A decrease was found in general HDNS load in Volgograd and Volzhsky. The compared populations were shown to differ in a contribution of AD, AR, and X-linked recessive diseases into the HDNS load formation. The possible effect of population dynamics factors on the HDNS load structure is discussed.  相似文献   

19.
The results of neurological, pathomorphological and clinic-genealogical studies of vilyuisk encephalitis (VE), a chronic progressive disease of CNS, are presented. The disease is spread in Yakutija in Vilyui river basin (mainly in Vilyuisk and Kobyaisk regions) exclusively among native population and is known there since the middle of the last century. The results obtained suggest that VE (despite the existing opinion on its natural-focal virus etiology) is an ethnic hereditary disease with autosomal recessive type of transmission, is spread in a limited Yakut population by an ancestor effect and gradually gets out of the limits of this population at the expense of migration. According to its clinical symptoms and pathomorphological substrate of this main neurological syndrome (peculiar lower spastic paraparesis as a result of systemic ascending degeneration of lateral corticospinal tract of spinal cord), VE belongs to hereditary heterogenous group of diseases which are referred to Strümpell's spastic paraplegia. VE is different from the diseases of this group by the occurrence of cases with very rapid progressing and characteristic brain damages. To prevent further VE accumulation, it is necessary to concentrate efforts on biochemical and neurological studies in search of reliable tests for early detection of heterozygotes. Taking into account the hereditary nature of VE, its ethnic limitations and nosological self-dependence, it is expedient to designate the disease by its local name "bokhoroor".  相似文献   

20.
Neural stem cells continually generate new neurons in very limited regions of the adult mammalian central nervous system. In the neurogenic regions there are unique and highly specialized microenvironments (niches) that tightly regulate the neuronal development of adult neural stem cells. Emerging evidence suggests that glia, particularly astrocytes, have key roles in controlling multiple steps of adult neurogenesis within the niches, from proliferation and fate specification of neural progenitors to migration and integration of the neuronal progeny into pre-existing neuronal circuits in the adult brain. Identification of specific niche signals that regulate these sequential steps during adult neurogenesis might lead to strategies to induce functional neurogenesis in other brain regions after injury or degenerative neurological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号