首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用天然生物诱导剂大鼠再生胰腺提取物(Rgenerating pancreatic extract,RPE)定向诱导人羊膜间充质干细胞(Human amniotic mesenchymal stem cells,hAMSCs)向胰岛素分泌细胞分化。切除大鼠60%胰腺刺激胰腺再生,而后制备RPE,以终浓度为20 mg/L的RPE诱导hAMSCs。实验通过形态学鉴定、双硫腙染色、免疫荧光分析、RT-PCR基因检测和高糖刺激胰岛素分泌等实验鉴定细胞诱导结果。实验结果显示P3代hAMSCs经RPE诱导后形态变化明显,诱导15 d后细胞呈簇状生长,经双硫腙染色可见棕红色细胞团;免疫荧光染色结果显示诱导细胞呈胰岛素阳性表达;RT-PCR实验证明诱导细胞阳性表达人胰岛相关基因Pdx1和insulin;高糖刺激实验证明培养液中有胰岛素成分产生,且分泌量随刺激时间的延长先增加而后趋于稳定。实验结果表明hAMSCs在体外经RPE诱导可以分化为胰岛素分泌细胞。  相似文献   

2.
Cell therapy is thought to be a possible approach for treatment of diabetes. Cells with the ability to differentiate into insulin-producing cells (IPCs) would provide an unlimited source of islet cells for transplantation. In this study, the differentiation capacity of rat bone-marrow-derived mesenchymal stem cells (MSCs) to IPCs and the feasibility of using them for reversal of hyperglycemia were investigated. In vitro studies indicated that treatment of cells with high glucose concentration, nicotinamide and β-mercaptoethanol resulted to differentiated cells, which had characteristics of IPCs including spherical, grape-like morphology, secretion of insulin, and being positive for dithizone. To test the in vivo function of differentiated MSCs, they were injected into the spleen of diabetic rats. It was shown that diabetic rats who received IPCs, significantly reduced the glucose level, in response to intraperitoneal glucose tolerance (IPGT) test. These results indicate that MSCs are capable of in vitro differentiation into functional IPCs, which can reverse hyperglycemia in rat model of diabetes.  相似文献   

3.
Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment.  相似文献   

4.
Efficient and effective therapies are required for diabetes mellitus. The use of adult stem cells for treating diabetes represents a major focus of current research. We have attempted to differentiate adult stem cells produced from umbilical cord blood‐derived stromal cells into insulin‐producing cells (IPCs). By activating the c‐Met/HGF axis through temporal hypoxia treatment and hepatocyte growth factor (HGF) supplementation, our protocol resulted in the differentiation of cells into functional pancreatic endocrine cells with increased viability. Glucose stimulation test results showed that significantly greater amounts of C‐peptide and insulin were released from the differentiated cells than from undifferentiated cells. These IPCs were capable of reversing the hyperglycemia of diabetic mice. In conclusion, targeting the c‐Met/HGF axis can be considered an effective and efficient means of obtaining IPCs from adult stem cells.  相似文献   

5.
目的探讨大鼠骨骼肌卫星细胞(MDSCs)定向诱导分化为胰岛素生成细胞(IPCs),为1型糖尿病的干细胞治疗提供一种新的研究思路。 方法通过二次酶消化法和差速贴壁培养法分离、培养大鼠MDSCs,利用不同的诱导培养液使MDSCs定向分化为IPCs,并对诱导后细胞进行形态观察,通过双硫腙染色和免疫组化染色对MDSCs-IPCs形态进行鉴定,采用Q-PCR和Western Blot方法检测MDSCs-IPCs中C-peptide和Insulin的表达,通过胰岛素释放实验检测MDSCs-IPCs的生物学功能,β细胞和MDSCs-IPCs两组间比较采用t检验。 结果MDSCs在接种4 h后开始贴壁部分细胞伸出小的突起,48 h后绝大多数细胞贴壁呈梭形、胞浆丰富、折光度高。随着培养时间的延长,细胞的梭形形状更为明显且生长迅速。免疫组化结果显示细胞表达Desmin、α-Sarcomeric Actinin、MyoD1、Myf5和PAX7。成胰诱导后MDSCs形成胰岛样的圆形细胞团,双硫腙染色呈猩红色,Insulin免疫组化染色阳性。Q-PCR结果显示MDSCs-IPCs中C-peptide和Insulin mRNA表达量分别是β细胞的0.73倍(P > 0.05)和0.79倍(P > 0.05)。胰岛素释放实验显示,5.6 mmol/L和16.7 nmlol/L葡萄糖刺激培养2 h后,β细胞和MDSCs-IPCs分泌胰岛素量分别为[(20.3±4.2)mU/L]、[(16.1±3.7)mU/L]、[(60.5±9.3)mU/L]和[(40.9±7.3)mU/L],葡萄糖可调节MDSCs-IPCs胰岛素的分泌。 结论MDSCs易于分离培养、增殖能力强,体外可诱导分化为有功能的IPCs,适合作为再生医学的种子细胞。  相似文献   

6.
The aim of this study is to evaluate the collagen/hyaluronic acid (Col/HA) scaffold effect on the differentiation of insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ASCs). In this experimental study, ASCs were cultured and seeded in a Col/HA scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was evaluated using gene expression (PDX-1, GLUT-2 and insulin) analysis and immunocytochemistry, while functional maturity was determined by measuring insulin release in response to low- and high-glucose media. The induced IPCs were morphologically similar to pancreatic islet-like cells. Expression of the islet-associated genes PDX-1, GLUT-2 and insulin genes in 3D-cultured cells was markedly higher than the 2D-cultured cells exposure differentiation media. Compared to the 2D culture of ASCs-derived IPCs, the insulin release from 3D ASCs-derived IPCs showed a nearly 4-fold (p?<?0.05) increase when exposed to a high glucose (25 mmol) medium. The percentage of insulin-positive cells in the 3D experimental group showed an approximately 4-fold increase compared to the 2D experimental culture cells. The results of this study demonstrated that the COL/HA scaffold can enhance the differentiation of IPCs from rat ASCs.  相似文献   

7.
Dental tissue-derived mesenchymal stem cells have been proposed as an alternative source for mesenchymal stem cells. Here, we investigated the differentiation ability toward insulin producing cells (IPCs) of human dental pulp stem cells (hDPSCs) and human periodontal ligament stem cells (hPDLSCs). These cells expressed mesenchymal stem cell surface markers and were able to differentiate toward osteogenic and adipogenic lineages. Upon 3 step-IPCs induction, hDPSCs exhibited more colony number than hPDLSCs. The mRNA upregulation of pancreatic endoderm/islet markers was noted. However, the significant increase was noted only for PDX-1, NGN-3, and INSULIN mRNA expression of hDPSCs. The hDPSCs-derived IPCs expressed PRO-INSULIN and released C-PEPTIDE upon glucose stimulation in dose-dependent manner. After IPCs induction, the Notch target, HES-1 and HEY-1, mRNA expression was markedly noted. Notch inhibition during the last induction step or throughout the protocol disturbed the ability of C-PEPTIDE release upon glucose stimulation. The results suggested that hDPSCs had better differentiation potential toward IPCs than hPDLSCs. In addition, the Notch signalling might involve in the differentiation regulation of hDPSCs into IPCs.  相似文献   

8.
9.
10.
Stem/progenitor cells hold promise for alleviating/curing type 1 diabetes due to the capacity to differentiate into functional insulin-producing cells. The current study aims to assess the differentiation potential of human pancreatic IPCs (islet-derived progenitor cells). IPCs were derived from four human donors and subjected to more than 2000-fold expansion before turning into ICCs (islet-like cell clusters). The ICCs expressed ISL-1 Glut2, PDX-1, ngn3, insulin, glucagon and somatostatin at the mRNA level and stained positive for insulin and glucagon by immunofluorescence. Following glucose challenge in vitro, C-peptide was detected in the sonicated ICCs, instead of in the conditioned medium. To examine the function of the cells in vivo, IPCs or ICCs were transplanted under the renal capsule of immunodeficient mice. One month later, 19 of 28 mice transplanted with ICCs and 4 of 14 mice with IPCs produced human C-peptide detectable in blood, indicating that the in vivo environment further facilitated the maturation of ICCs. However, among the hormone-positive mice, only 9 of 19 mice with ICCs and two of four mice with IPCs were able to secrete C-peptide in response to glucose.  相似文献   

11.
A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.  相似文献   

12.
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro , MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro . On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.  相似文献   

13.
It was recently reported that pluripotent mesenchymal stem cells (MSCs) in rodent bone marrow (BM) have the capacity to generate insulin-producing cells (IPCs) in vitro. However, little is known about this capacity in human BM-MSCs. We developed a nongenetic method to induce human BM-MSCs to transdifferentiate into IPCs both phenotypically and functionally. BM-MSCs from 12 human donors were sequentially cultured in specially defined conditions. Their differentiation extent toward β-cell phenotype was evaluated systemically. Specifically, after induction human BM-MSCs formed spheroid islet-like clusters containing IPCs, which was further confirmed by dithizone (DTZ) staining and electron microscopy. These IPCs expressed multiple genes related to the development or function of pancreatic β cells (including NKX6.1, ISL-1, Beta2/Neurod, Glut2, Pax6, nestin, PDX-1, ngn3, insulin and glucagon). The coexpression of insulin and c-peptide was observed in IPCs by immunofluorescence. Moreover, they were able to release insulin in a glucose-dependent manner and ameliorate the diabetic conditions of streptozotocin (STZ)-treated nude mice. These results indicate that human BM-MSCs might be an available candidate to overcome limitations of islet transplantation.  相似文献   

14.

Background

The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) into insulin-producing cells (IPCs) for autologous transplantation may alleviate those limitations.

Methods

hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 106 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ)-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.

Results

The differentiated IPCs were characterized by Dithizone (DTZ) positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.

Conclusions

IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.  相似文献   

15.
16.
BackgroundDiabetes mellitus has become the third human killer following cancer and cardiovascular disease. Millions of patients, often children, suffer from type 1 diabetes (T1D). Stem cells created hopes to regenerate damaged body tissues and restore their function.AimThis work aimed at clarifying and comparing the therapeutic potential of differentiated and non-differentiated mesenchymal stem cells (MSCs) as a new line of therapy for T1D.Methods40 Female albino rats divided into group I (control): 10 rats and group II (diabetic), III and IV, 10 rats in each, were injected with streptozotocin (50 mg/kg body weight). Group III (MSCs) were transplanted with bone marrow derived MSCs from male rats and group IV (IPCs) with differentiated insulin producing cells. Blood and pancreatic tissue samples were taken from all rats for biochemical and histological studies.ResultsMSCs reduced hyperglycemia in diabetic rats on day 15 while IPCs normalizes blood glucose level on day 7. Histological and morphometric analysis of pancreas of experimental diabetic rats showed improvement in MSCs-treated group but in IPCs-treated group, β-cells insulin immunoreactions were obviously returned to normal, with normal distribution of β-cells in the center and other cells at the periphery. Meanwhile, most of the pathological lesions were still detected in diabetic rats.ConclusionMSCs transplantation can reduce blood glucose level in recipient diabetic rats. IPCs initiate endogenous pancreatic regeneration by neogenesis of islets. IPCs are better than MSCs in regeneration of β-cells. So, IPCs therapy can be considered clinically to offer a hope for patients suffering from T1D.  相似文献   

17.
Type 1 diabetes (T1D) is caused by autoimmune disease that leads to the destruction of pancreatic β-cells. Transplantation of cadaveric pancreatic organs or pancreatic islets can restore normal physiology. However, there is a chronic shortage of cadaveric organs, limiting the treatment of the majority of patients on the pancreas transplantation waiting list. Here, we hypothesized that human iPS cells can be directly differentiated into insulin producing cells (IPCs) capable of secreting insulin. Using a series of pancreatic growth factors, we successfully generated iPS cells derived IPCs. Furthermore, to investigate the capability of these cells to secrete insulin in vivo, the differentiated cells were transplanted under the kidney capsules of diabetic immunodeficient mice. Serum glucose levels gradually declined to either normal or near normal levels over 150 days, suggesting that the IPCs were secreting insulin. In addition, using MRI, a 3D organoid appeared as a white patch on the transplanted kidneys but not on the control kidneys. These organoids showed neo-vascularization and stained positive for insulin and glucagon. All together, these data show that a pancreatic organ can be created in vivo providing evidence that iPS cells might be a novel option for the treatment of T1D.  相似文献   

18.
Cellular models and culture conditions for in vitro expansion of insulin-producing cells represent a key element to develop cell therapy for diabetes. Initial evidence that human beta-cells could be expanded after undergoing a reversible epithelial-mesenchymal transition has been recently negated by genetic lineage tracing studies in mice. Here, we report that culturing human pancreatic islets in the presence of serum resulted in the emergence of a population of nestin-positive cells. These proliferating cells were mainly C-peptide negative, although in the first week in culture, proliferating cells, insulin promoter factor-1 (Ipf-1) positive, were observed. Later passages of islet-derived cells were Ipf-1 negative and displayed a mesenchymal phenotype. These human pancreatic islet-derived mesenchymal (hPIDM) cells were expanded up to 10(14) cells and were able to differentiate toward adipocytes, osteocytes and chondrocytes, similarly to mesenchymal stem/precursor cells. Interestingly, however, under serum-free conditions, hPIDM cells lost the mesenchymal phenotype, formed islet-like clusters (ILCs) and were able to produce and secrete insulin. These data suggest that, although these cells are likely to result from preexisting mesenchymal cells rather than beta-cells, hPIDM cells represent a valuable model for further developments toward future replacement therapy in diabetes.  相似文献   

19.
Islet cell replacement is considered as the optimal treatment for type I diabetes. However, the availability of human pancreatic islets for transplantation is limited. Here, we show that human bone marrow-derived mesenchymal stem cells (hMSCs) could be induced to differentiate into functional insulin-producing cells by introduction of the pancreatic duodenal homeobox-1 (PDX-1). Recombinant adenoviral vector was used to deliver PDX-1 gene into hMSCs. After being infected with Ad-PDX-1, hMSCs were successfully induced to differentiate into insulin-secreting cells. The differentiated PDX-1+ hMSCs expressed multiple islet-cell genes including neurogenin3 (Ngn3), insulin, GK, Glut2, and glucagon, produced and released insulin/C-peptide in a weak glucose-regulated manner. After the differentiated PDX-1+ hMSCs were transplanted into STZ-induced diabetic mice, euglycemia can be obtained within 2 weeks and maintained for at least 42 days. These findings validate the hMSCs model system as a potential basis for enrichment of human beta cells or their precursors, and a possible source for cell replacement therapy in diabetes.  相似文献   

20.
Human embryonic stem cells (hESCs) are pluripotent and capable of undergoing multilineage differentiation into highly specialized cells including pancreatic islet cells. Thus, they represent a novel alternative source for targeted therapies and regenerative medicine for diabetes. Significant progress has been made in differentiating hESCs toward pancreatic lineages. One approach is based on the similarities of pancreatic β cell and neuroepithelial development. Nestin-positive cells are selected as pancreatic β cell precursors and further differentiated to secrete insulin. The other approach is based on our knowledge of developmental biology in which the differentiation protocol sequentially reproduces the individual steps that are known in normal β cell ontogenesis during fetal pancreatic development. In the present study, the hESC cell line PKU1.1 was induced to differentiate into insulin-producing cells (IPCs) using both protocols. The differentiation process was dynamically investigated and the similarities and differences between both strategies were explored. Our results show that IPCs can be successfully induced with both differentiation strategies. The resulting IPCs from both protocols shared many similar features with pancreatic islet cells, but not mature, functional β cells. However, these differently-derived IPC cell types displayed specific morphologies and different expression levels of pancreatic islet development-related markers. These data not only broaden our outlook on hESC differentiation into IPCs, but also extend the full potential of these processes for regenerative medicine in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号