首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two studies were conducted to determine the relationship between LH and progesterone and between PMSG and progesterone during pregnancy in mares. In the first, samples of jugular blood were collected daily from 7 mares from the first day of oestrus until Day 28 of pregnancy, and in the second, samples were collected weekly from 14 mares from Day 35 of gestation until parturition. In an attempt to prolong secretion of progesterone from accessory corpora lutea, 7 of these 14 mares were injected with increasing doses (2--10 mg) of diethylstilboestrol (DES) between Days 84 and 142 of gestation. The remaining 7 mares received injections of vehicle. Concentrations of LH, PMSG and progesterone in serum were determined by radioimmunoassay. From the onset of oestrus until Day 4 of gestation, serum concentrations of LH and progesterone were negatively correlated (r = 0.67, P less than 0.01), but from Days 5 to 28 a positive correlation (r = 0.80, P less than 0.01) was noted. Likewise, serum concentrations of PMSG and progesterone were highly correlated between Days 35 and 196 in mares injected with DES (r = 0.72, P less than 0.01) and the vehicle (r = 0.75, P less than 0.01). Injections of DES did not influence serum concentrations of LH, PMSG or progesterone, or affect the length of gestation. It was concluded that DES does not influence the maintenance of pregnancy in the mare.  相似文献   

2.
Between Days 9 and 15 after oestrus, concentrations of pregnenolone, pregnenolone sulphate, dehydroepiandrosterone (DHEA), DHEA sulphate, androstenedione, oestrone and oestrone sulphate in free uterine fluid collected from non-pregnant gilts were greater than respective values in plasma (P less than 0.05). The total contents of pregnenolone, progesterone, DHEA, testosterone, oestrone and oestradiol in washings from pregnant uteri exceeded (P less than 0.05) respective non-pregnancy levels during this same period. Concentrations of pregnenolone, pregnenolone sulphate, DHEA, DHEA sulphate, androstenedione, oestrone, oestrone sulphate and oestradiol in free uterine fluid recovered from gravid uteri were also higher (P less than 0.05) than respective plasma values. By contrast, the progesterone concentration in uterine fluid from pregnant animals was lower (P less than 0.001) than the plasma value. Concentrations of DHEA, DHEA sulphate, androstenedione and oestrone sulphate in plasma of pregnant gilts between Days 9 and 15 after mating exceeded (P less than 0.05) the respective concentrations in unmated gilts between Days 9 and 15 after oestrus. Plasma levels of pregnenolone sulphate were lower (P less than 0.05) in the pregnant animals. We therefore suggest that the endometrium of the pig can concentrate steroid hormones in uterine fluid and that increases in steroid levels in this milieu between Days 9 and 15 after coitus reflect steroidogenesis by embryonic tissues and modification of enzyme activities within uterine tissues under the influence of progestagens. The pool of steroid sulphoconjugates present in uterine fluid between Days 9 and 15 post coitum could serve as an important precursor source for progestagen, androgen and oestrogen synthesis by tissues of pig embryos before implantation.  相似文献   

3.
Changes in serum luteinizing hormone (LH) and progesterone concentrations, number of luteal unoccupied LH receptors, receptor affinity constants, luteal weights and luteal progesterone concentrations were determined during the postovulatory period in the mare. The number of unoccupied LH receptors and receptor affinity was less during the early (Days 1-4) and late [Day 15 through 3rd day after start of corpus luteum (CL) regression] luteal phases than during the mid-luteal (Days 9-14) phase of the postovulatory period (P less than 0.01). The number of LH receptors per CL increased 21-fold (P less than 0.001) from Day 1 to Day 14. Receptor affinity increased 5-fold (P less than 0.001) from Day 1 to Day 13. Receptor number was highly correlated with receptor affinity (P less than 0.01) and both were highly correlated with serum and luteal progesterone (P less than 0.01). During regression of the CL, the number of LH receptors and receptor affinity decreased concomitantly with serum and luteal progesterone. Morphologically, luteal cell development and degeneration correlated with the change in receptor numbers, affinity constants and luteal and serum progesterone concentrations. Receptor number and affinity, luteal weight and serum and luteal progesterone concentrations did not differ between the CL from multiple ovulations. Random variations in the data observed between CL from multiple and single ovulations suggested that CL from the two groups were not different in structure and function. In summary, the above results suggest that major factors in regulation of progesterone secretion and maintenance of the equine CL are changes in the number of LH receptors and the affinity constants throughout the postovulatory period.  相似文献   

4.
The effect of prostaglandin F2 alpha (PGF2 alpha) on luteinizing hormone (LH) receptors, weight and progesterone content of corpora lutea (CL), and serum progesterone concentrations was studied in gilts. Fifteen gilts were hysterectomized between Days 9 to 11 of the estrous cycle. Twelve gilts were injected i.m. with 10 mg of PGF2 alpha and 3 with saline on Day 20. Ovaries were surgically removed from each of 3 gilts at 4, 8, 12 and 24 h following PGF2 alpha treatment and from the 3 control gilts 12 h following saline injection. Jugular blood samples for progesterone analysis were collected from all gilts at 0, 2 and 4 h following treatment and at 8, 12 and 24 h for gilts from which ovaries were removed at 8, 12 and 24 h, respectively. Mean serum progesterone and CL progesterone concentrations decreased within 4 h after PGF2 alpha treatment (P less than 0.05) and remained low through 24 h after treatment. The number of unoccupied LH receptors decreased by 4 h (P less than 0.05) and this trend continued through 24 h. There were no differences in luteal weight or affinity of unoccupied LH receptors of luteal tissue at 4, 8 12 and 24 h after PGF2 alpha when compared to luteal tissue from controls. These data indicate that during PGF2 alpha-induced luteolysis in the pig, luteal progesterone, serum progesterone concentrations and the number of LH receptors decrease simultaneously.  相似文献   

5.
Occupied and unoccupied LH receptors in corpora lutea, and LH and progesterone concentrations in circulating plasma, were measured in non-pregnant gilts that had been treated with oestradiol-17 beta benzoate to prolong luteal function. Oestradiol benzoate (5 mg, administered on Day 12 after oestrus) delayed luteal regression and the decline in LH receptor levels at luteolysis and raised unoccupied receptor levels from 11.8 +/- 1.14 fmol/mg protein on Days 10--15 after oestrus to 31.8 +/- 3.26 fmol/mg protein on Days 15--21. There was no simultaneous rise in occupied receptor levels and occupancy decreased from 29.8 +/- 3.01 to 11.5 +/- 1.26%. Basal plasma LH concentrations were unchanged by oestradiol, but mean corpus luteum weight and plasma progesterone concentrations were slightly reduced. Oestradiol benzoate on Day 12 caused a similar increase in unoccupied receptor levels in gilts hysterectomized on Days 6--9 after oestrus, from 17.0 +/- 5.83 to 34.5 +/- 6.00 fmol/mg protein, determined on Days 15--18. Plasma concentrations of LH and progesterone were unchanged by oestradiol. Unoccupied receptor levels in corpora lutea and plasma LH and progesterone were unaltered by hysterectomy in untreated gilts. Occupied receptor levels were not influenced by hysterectomy or oestradiol. It is concluded that oestradiol-17 beta raises luteal LH receptor levels by a mechanism independent of the uterus.  相似文献   

6.
Secretion of progesterone by granulosa cells from preovulatory follicles of mice was determined during 2 weeks of cell culture in the presence of androgens, estrogen and pituitary gonadotropins. Androstenedione (10(-7) M) and dihydrotestosterone (10(-7) M) stimulated (P less than 0.05) progesterone secretion during the first 11 days of culture. In contrast, 17 beta-estradiol (10(-11)-10(-7) M) did not alter (P greater than 0.10) progesterone secretion throughout the culture period. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) stimulated (P less than 0.01) the granulosa cells in a dose-dependent manner during the first few days of culture. This luteotropic effect was rapidly lost and at later times when FSH was not effective, LH suppressed (P less than 0.05) progesterone secretion. In the presence of prolactin (Prl) (1 microgram/ml), granulosa cells progressively secreted more progesterone during the first week of culture. After maximal stimulation on Days 7-9, progesterone secretion by Prl-treated cells began to decline, but the amount of steroid produced on Day 13 was still higher (P less than 0.05) than in control cultures. Androstenedione and Prl gave an additive effect on progesterone secretion during Days 3-5 of culture. Thereafter, the androgen, although stimulatory by itself, did not influence the luteotropic action of Prl. Unlike the early effect of androgens, 17 beta-estradiol acted synergistically with Prl to maintain maximal secretion of progesterone during the last 4 days of culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
After parturition, eight sows were zero weaned by removing all piglets 6 h after birth; a further 18 sows suckled at least ten piglets each. Blood samples were collected on Day 4 after zero weaning or on Days 4, 14 and 21 of lactation and the sampling frequency increased during suckling bouts. Ovaries were recovered from sows on these days and corpora lutea were either extracted for estimation of relaxin and progesterone concentration, fixed for immunohistochemical analysis or incubated in vitro in the presence or absence of luteinizing hormone (LH) or oxytocin. Luteal weight and progesterone were higher in the zero-weaned sows than in lactating sows (P less than 0.05 and less than 0.001, respectively); relaxin content was below detection by Day 14. This was supported by immunohistochemical staining for relaxin, which showed limited immunostaining in zero-weaned and Day 4 sows, but none in the tissue recovered on Days 14 and 21, which showed typical signs of regression. Secretion of progesterone and relaxin by luteal tissue in vitro was highest in zero-weaned sows (P less than 0.05), decreased as lactation progressed and neither LH nor oxytocin had any significant effect. Concentrations of plasma relaxin were all less than 0.2 ng/ml in three of the four zero-weaned and Day-4-suckled sows assayed; there was no detectable increase during suckling bouts. It was concluded that during lactation the old corpus luteum of pregnancy is not able to release relaxin in response to suckling in vivo or to oxytocin treatment in vitro.  相似文献   

8.
Blood samples were collected simultaneously from the jugular and utero-ovarian veins of 13 gilts from Days 11 through 16 of the oestrous cycle. A luteolytic dose (10 mg) of PGF-2 alpha was given on Day 12 to facilitate the natural occurrence of luteolysis and standardize the associated decrease in concentrations of progesterone. The mean interval from PGF to oestrus was 5.5 +/- 0.7 days (mean oestrous cycle length = 17.5 +/- 0.7 days). Mean concentrations, pulse amplitudes and pulse frequencies of oestradiol and progesterone were greater (P less than 0.05) in the utero-ovarian than jugular vein. Secretory profiles of LH and FSH were similar (P greater than 0.05) in plasma collected simultaneously from both veins. Based on these data, temporal relationships among hormonal patterns of FSH and LH in the jugular vein and oestradiol and progesterone in the utero-ovarian vein were examined. Concentrations of progesterone declined (P less than 0.05) between Days 12 and 14, while all secretory variables for oestradiol increased (P less than 0.05) from Day 12 through 16 of the oestrous cycle. The pulsatile secretion of FSH remained relatively constant during the experiment. However, both pulse amplitude and mean concentration tended (P less than 0.2) to be lower on Day 16 compared with Day 12. The episodic secretion of LH shifted from a pattern characterized by high-amplitude, low-frequency pulses to one dominated by numerous pulses of diminishing magnitude between Days 13 and 14. From Days 14 to 16 of the oestrous cycle, 91% of all oestradiol pulses were temporally associated with gonadotrophin pulses composed of both FSH and LH episodes. However, pulses of oestradiol (52%) not associated with an episode of LH and/or FSH were observed on Days 12 and 13. These data demonstrate that during the follicular phase of the pig oestrous cycle substantial oestradiol production occurred coincident with luteolysis and before the shift in the episodic secretion of LH. The pool of follicles which ovulated was probably the source of this early increase in the secretion of oestradiol. Therefore, we propose that factors in addition to FSH and LH are involved in the initial selection of follicles destined to ovulate during the early stages of the follicular phase of the pig oestrous cycle. In contrast, high-frequency, low-amplitude pulses composed of LH and FSH were the predominant endocrine signal associated with oestradiol secretion during the second half of the oestrous cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Ovarian follicular development and concentrations of gonadotrophin and steroid hormones were studied in non-lactating Holstein cows following administration of progesterone (P(4)) or oestradiol benzoate (ODB) at the start of treatment with an intravaginal progesterone releasing insert (IVP(4)) in a 2 by 2 factorial experiment. Cows were treated at random stages of the oestrous cycle with an IVP(4) device (Day 0) and either no other treatment (n=8), 200 mg of P(4) IM (n=9), 2.0 mg of ODB IM (n=8) or both P(4) and ODB (n=9). Seven days later devices were removed and PGF(2alpha) was administered. Twenty-four hours later 1.0mg of ODB was administered IM. Oestrus was detected in 97.1% and ovulation in 64.7% (effect of treatment, P=0.41) of cows within 96 h of removing inserts. In the cows that ovulated, day of emergence of the ovulatory follicle was delayed (P<0.01) and more precise (P<0.05) in cows treated with ODB compared to the cows treated with P(4). Interval from wave emergence to ovulation and the diameter of the ovulatory follicle was less (P<0.05) in cows treated with ODB compared to cows treated with P(4). Combined treatment with P(4) and ODB at the time of starting treatment with an IVP(4) device did not significantly change the pattern of ovarian follicular development compared to treatment with ODB alone. Concentrations of LH and FSH in plasma were less in cows treated with ODB between Days 0 and 4 (P<0.05) while treatment with P(4) increased concentrations of FSH in plasma between Days 0 and 4 (P<0.05). When anovulatory cows were compared to ovulatory cows, diameters of follicles (P<0.001) and growth rate of follicles (P<0.01) were less in anovulatory cows between Days 7 and 9, while concentrations of FSH in plasma were greater (P<0.01), concentrations of LH similar (P>0.90) and concentrations of oestradiol were less (P=0.01) in the anovulatory cows between Days 4 and 10. Our findings support a hypothesis that ovarian follicular development following administration of P(4) or ODB at the start of treatment with an IVP(4) device differs. Anovulatory oestrus may have been associated with reduced maturity and/or later emergence of ovarian follicles.  相似文献   

10.
Two experiments were conducted to examine the effect of treatment with human chorionic gonadotropin (hCG) or ovine luteinizing hormone (LH) on the number and size distribution of steroidogenic luteal cells. In Experiment I, 27 ewes were assigned to one of three groups: 1) hCG (300 IU, i.v.) administered on Days 5 and 7.5 of the estrous cycle (Day 0 = Estrus); 2) LH (120 micrograms, i.v.) administered at 6-h intervals from Days 5 to 10 of the cycle; 3) saline (i.v.) administered as in the LH treatment group. Blood samples were drawn daily from the jugular vein for quantification of progesterone. On Day 10, corpora lutea were collected, decapsulated, weighed, and dissociated into single cell suspensions. Cells were fixed, stained for 3 beta-hydroxysteroid dehydrogenase (3 beta HSD) activity, and the size distribution of 3 beta HSD-positive cells was determined. Treatment with hCG, but not LH, increased (p less than 0.05) concentrations of progesterone in serum and the weight of corpora lutea. Treatment with either hCG of LH increased the proportion of cells greater than 22 micron in diameter and decreased the proportion of cells less than or equal to 22 micron (p less than 0.01). The ratio of small to large luteal cells decreased after treatment with either hCG or LH (p less than 0.05). In Experiment II, 9 ewes were assigned to one of two groups: 1) LH (120 micrograms, i.v.) administered at 6-h intervals from Days 5 to 10 of the estrous cycle, and 2) saline (i.v.) administered as in the LH treatment group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Five pregnant beagle bitches were treated with 2.5 mg mifepristone/kg body weight, twice a day, for 4.5 days starting at Day 32 of gestation. Results of fetal ultrasonography and assay of serum progesterone concentrations every 2-4 days were compared to those in 5 control bitches. Mifepristone resulted in a premature (P less than 0.01) termination of pregnancy (36 +/- 1 vs 65 +/- 1 days), without side effects. The antiprogestagen also caused progesterone to decline to less than 1 ng/ml by Day 40-45 after the preovulatory LH peak (vs 64-67 days in controls) and reduced (P less than 0.05) mean concentrations on Days 34-50 (2.2 +/- 0.5 vs 6.3 +/- 0.3 ng/ml). The results suggest that antiprogestagen therapy is a safe means to terminate unwanted pregnancy in dogs, and that luteal function in pregnant bitches is dependent on luteotrophic support that is blocked by antiprogestagen treatment, directly or indirectly, due to termination of pregnancy.  相似文献   

12.
Dispersed horse luteal cells were used to evaluate the ability of horse LH, hCG and PMSG to stimulate progesterone secretion in vitro. Morphological characterization of these cells before gonadotrophin stimulation indicated the presence of two populations of cells based on cell diameters. In luteal cells incubated as suspended cells, horse LH and hCG stimulated (P less than or equal to 0.05) progesterone production at all levels of treatment. Stimulation of progesterone secretion by hCG was greater (P less than or equal to 0.05) than by horse LH over the range of concentrations utilized. When mares (N = 7) received an intramuscular injection of 1000 i.u. hCG on Days 3, 4 and 5 after the end of oestrus, there was an increase (P less than or equal to 0.05), in peripheral progesterone concentrations beginning on Day 7 and continuing until Day 14 compared with controls (N = 7). Peripheral progesterone concentrations continued to be elevated in hCG-treated mares for Days 15-30 after oestrus in those mares that conceived. Although treatment with hCG increased progesterone concentrations, it had no influence on anterior pituitary release of LH as measured by frequency and amplitude of LH discharge. We conclude that the mare corpus luteum is responsive to gonadotrophins in vitro and that exogenous hCG can enhance serum progesterone concentrations throughout the oestrous cycle and early pregnancy.  相似文献   

13.
In Exp. I infusions of prolactin (0.5 mg in 2 ml sterile saline) were repeated every 2 h for 36 h on Days 12-13 of the cycle. In Exp. II infusions of prolactin were administered from Days 17 to 19 (60 h) at 2-h intervals. Control gilts were given 2 ml sterile saline at similar intervals during the same period. Basal prolactin concentrations before initiation of infusions ranged from 1.3 +/- 0.1 to 5.6 +/- 2.2 ng/ml in both experiments. By 5 min after a prolactin infusion, mean plasma prolactin concentration ranged from 74.9 +/- 5.8 to 113.0 +/- 9.5 ng/ml, but then declined to approximately equal to 10 ng/ml just before the next infusion of prolactin. Administration of prolactin during the luteal phase of the oestrous cycle of the gilts had no effect on basal levels of progesterone, oestradiol or LH. During the follicular phase there were no differences (P greater than 0.05) between control and prolactin-treated gilt progesterone and LH concentrations, but oestradiol plasma values were decreased (P less than 0.05) on the 2nd and 3rd day of prolactin treatment. Our results would indicate that prolactin does not play a major role in the regulation of the oestrous cycle of the pig.  相似文献   

14.
Diurnal variation in progesterone and LH during the luteal phase and the temporal relationships between oscillations of the two hormones were studied in 10 heifers by collection of blood samples at 0100, 0700, 1300, and 1900 h each day, beginning on Day 1 (Day 0 = ovulation). Concentration of LH on Days 5-9, but not on Days 10-14, was lower (P < 0.05) at 0700 h (0.25 ± 0.02 ng/mL) than at each of the other three hours (combined, 0.32 ± 0.02 ng/mL). An oscillation was defined as an uninterrupted increase and decrease in concentrations. The number of LH oscillations/heifer with the peak at 1900 h (6.1 ± 0.7) throughout the luteal phase was greater (P < 0.01) than for each of the other hours (combined, 4.0 ± 0.2). Diurnal variation in progesterone was not detected. Only statistically defined LH oscillations were used to determine the temporal association between the peak of an LH oscillation and various components of a progesterone oscillation. On Days 5-14, the frequency of the peak of an LH oscillation occurring at the same hour as the peak of a progesterone oscillation (26/48, 54%) was greater (P < 0.0001) than at the progesterone nadir (3/48, 6%). The frequency of the LH peak occurring during increasing (11/34, 32%) and decreasing (8/25, 32%) progesterone concentrations was intermediate (P < 0.05). Results indicated the following: 1) diurnal variation occurred in LH as determined by concentration and by the hour of the peak of an oscillation; and 2) LH oscillations were temporally and positively related to progesterone oscillations.  相似文献   

15.
Progesterone and LH concentrations were measured in the plasma of blood samples taken from forty-eight pregnant ewes on Days 100, 120 and 134 of gestation. The ewes, in two groups of twenty-four were maintained from Day 100 until parturition on two planes of nutrition which supplied daily energy and protein intakes of about 4-1 or 2-3 Mcal metabolizable energy and either 192 or 111 g digestible crude protein per ewe. Within the groups, the ewes carried one, two or three fetuses and the feed intake was adjusted according to litter size to produce a uniform nutritional state within the group. On Day 100, litter size affected the concentration of plasma progesterone (P less than 0-001), but had no effect on Days 120 or 134 when the ewes were fed according to litter size. The low feed intake however caused a significant increase in plasma progesterone concentrations. The LH concentrations showed no major changes during late pregnancy and no effect of nutrition or little size on the plasma hormone concentration was observed. It was concluded that the effect of litter size on plasma progesterone concentration recorded on Day 100 or gestation was partly mediated by level of nutrition.  相似文献   

16.
Conceptuses were removed by extrusion through incisions in the uterus on Days 11, 12 and 18 post coitum (p.c.). Pseudopregnant does at Days 11 and 12 and pregnant does at Day 18 were sham-operated and served as controls. Blood samples were collected before and daily for 3 days after conceptus removal. Serum progesterone profiles of does whose conceptuses were removed on Day 11 p.c. were identical to those of intact pseudopregnant and sham-operated pseudopregnant controls. Conceptus removal on Days 12 or 18 p.c. resulted in a precipitous decline (P less than 0 X 01) in progesterone levels within 48 h. LH levels were low (less than 1 ng/ml) in all groups before and after surgery and there were no significant differences between treated and control rabbits. These data demonstrate that the maternal recognition of pregnancy occurs by Day 12 of gestation and that conceptus removal does not result in an alteration in serum LH levels.  相似文献   

17.
Palta P  Madan ML 《Theriogenology》1996,46(6):993-998
This study examined the effect of gestation on the hypophyseal responsiveness of buffalo to GnRH-induced LH and FSH release. Peripheral plasma LH and FSH concentrations were measured at 1 h before and upto 6 h after administration of GnRH (1 ug/kg body weight) or saline at Days 60, 150 and 240 of gestation in 2 groups of buffalo (n = 4 each). Basal LH concentrations did not vary at the 3 stages of gestation, while basal FSH concentrations exhibited a significant reduction (P < 0.05) from Day 60 to Day 150 of gestation. There was a significant reduction in the total LH (P < 0.05) and FSH (P < 0.01) released in response to GnRH from Day 60 to Day 240 of gestation. The duration of LH and FSH peaks and the time to attain peak concentration was not affected by the stage of gestation. The results of the present study point to a progressive decline in LH and FSH release responses to GnRH during the advancement of gestation in the buffalo.  相似文献   

18.
The microsphere technique was used to obtain estimates of ovarian capillary blood flow near ovulation, in 8 seasonally anoestrous ewes, which were induced to ovulate by GnRH therapy. Plasma progesterone concentrations were monitored in jugular blood sampled between Days 4 and 7 after the onset of the preovulatory LH surge. The ewes were then slaughtered. Three of the ewes were treated with a single injection of 20 mg progesterone before GnRH therapy. In these ewes and 1 other, plasma progesterone values increased after ovulation and reached 1.0 ng/ml on Day 7 following the preovulatory LH surge (normal, functional CL), whilst in the other 4 ewes progesterone concentrations increased initially then declined to 0.5 ng/ml by Day 7 (abnormal CL). In the ewes exhibiting normal luteal function, the mean ovarian capillary blood flow was significantly greater (P less than 0.01) than that for ewes having abnormal luteal function. Irrespective of the type of CL produced, capillary blood flow was significantly greater (P less than 0.05) in ovulatory ovaries than in non-ovulatory ovaries. These findings indicate that the rate of capillary blood flow in ovaries near ovulation may be a critical factor in normal development and maturation of preovulatory follicles and function of subsequently formed CL.  相似文献   

19.
A controlled study was carried out to investigate the effects of suprabasal plasma progesterone concentrations on blood plasma patterns of progesterone, LH and estradiol-17beta around estrus. Heifers were assigned to receive subcutaneous silicone implants containing 2.5 g (n=4), 5 g (n=4), 6 g (n=3), 7.5 g (n=3) or 10 g (n=4) of progesterone, or implants without hormone (controls, n=5). The implants were inserted on Day 8 of the cycle (Day 0=ovulation) and left in place for 17 d. The time of ovulation was determined by ultrasound scanning. Blood was collected daily from Days 0 to 14 and at 2 to 4-h intervals from Days 15 to 27. Control heifers had the lowest progesterone concentrations on Days 20.5 to 21 (0.5 +/- 0.1 nmol L(-1)); a similar pattern was observed in heifers treated with 2.5 and 5 g of progesterone. In the same period, mean progesterone concentrations in the heifers treated with 6, 7.5 and 10 g were larger (P < 0.05) than in the controls, remaining between 1 and 2.4 nmol L(-1) until implant removal. A preovulatory estradiol increase started on Days 16.4 to 18.4 in all the animals. In the controls and in heifers treated with 2.5 and 5 g of progesterone, estradiol peaked and was followed by the onset of an LH surge. In the remaining treatments, estradiol release was prolonged and increased (P < 0.05), while the LH peak was delayed (P < 0.05) until the end of the increase in estradiol concentration. The estrous cycle was consequently extended (P < 0.05). In all heifers, onset of the LH surge occurred when progesterone reached 0.4 to 1.2 nmol L(-1). The induction of suprabasal levels of progesterone after spontaneous luteolysis caused endocrine asynchronies similar to those observed in cases of repeat breeding. It is suggested that suprabasal concentrations of progesterone around estrus may be a cause of disturbances oestrus/ovulation.  相似文献   

20.
Heifers between Days 6 and 10 of the cycle were allocated at random to groups of 8 and treated with (i) a 4% progesterone-releasing intravaginal device (PRID) + oestrogen capsule for 12 days; (ii) 4% PRID for 12 days; (iii) 20% PRID for 12 days; (iv) 4% for 14 days; or (v) 20% PRID for 14 days. Blood was obtained daily during treatment and at 2- or 4-h intervals for 72 h after removal of PRIDs. Some animals were sampled every 20 min for 4.676 h on the 3rd day after PRID insertion, and 1 day before and 36 h after removal of the PRID insertion, and 1 day before and 36 h after removal of the PRID. During progesterone treatment there was: (i) no correlation between concentrations of progesterone and LH within days; (ii) a significant negative correlation between progesterone and days (P less than 0.01) and also between progesterone and LH over days (P less than 0.01); (iii) the overall correlation co-efficient between LH and days was positive (P less than 0.05). The amplitude of LH or FSH episodes was not affected as progesterone concentrations declined during PRID treatment, but the number of LH (but not FSH) episodes was increased (p less than 0.01). After PRID removal, the amplitude of both LH and FSH episodes increased (P less than 0.01). We suggest that progesterone is part of a negative feedback complex on LH secretion in cattle and that this effect is apparently mediated through frequency of episodic LH release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号