首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
CXC chemokine receptor 4 (CXCR4) has been shown to play a critical role in chemotaxis and homing, which are key steps in cancer metastasis. There is also increasing evidence that links this receptor to angiogenesis; however, its molecular basis remains elusive. Vascular endothelial growth factor (VEGF), one of the major angiogenic factors, promotes the formation of leaky tumor vasculatures that are the hallmarks of tumor progression. Here, we investigated whether CXCR4 induces the expression of VEGF through the PI3K/Akt pathway. Our results showed that CXCR4/CXCL12 induced Akt phosphorylation, which resulted in upregulation of VEGF at both the mRNA and protein levels. Conversely, blocking the activation of Akt signaling led to a decrease in VEGF protein levels; blocking CXCR4/CXCL12 interaction with a CXCR4 antagonist suppressed tumor angiogenesis and growth in vivo. Furthermore, VEGF mRNA levels correlated well with CXCR4 mRNA levels in patient tumor samples. In summary, our study demonstrates that the CXCR4/CXCL12 signaling axis can induce angiogenesis and progression of tumors by increasing expression of VEGF through the activation of PI3K/Akt pathway. Our findings suggest that targeting CXCR4 could provide a potential new anti-angiogenic therapy to suppress the formation of both primary and metastatic tumors.  相似文献   

2.
Cyclic stretch (CS) mediates different cellular functions in vascular smooth muscle cells and involves in neointimal hyperplasia and subsequent atherosclerosis of vein grafts. Here, we investigated whether CS can modulate stromal cell-derived factor-1α (SDF-1α)/CXCR4 axis in human saphenous vein smooth muscle cells. We found CS induced the upregulation of SDF-1α and CXCR4 in human saphenous vein smooth muscle cells in vitro, which was dependent on PI3K/Akt/mTOR pathway. Furthermore, CS augmented human saphenous vein smooth muscle migration and focal adhesion kinase (FAK) activation by PI3K/Akt/mTOR pathway. Interestingly, the upregulation of SDF-1α/CXCR4 axis was instrumental in CS-induced saphenous vein smooth muscle cell migration and FAK activation, as showed by AMD3100, an inhibitor of SDF-1α/CXCR4 axis, partially but significantly blocked the CS-induced cellular effects. Thus, those data suggested SDF-1α/CXCR4 axis involves in CS-mediated cellular functions in human saphenous vein smooth muscle cells.  相似文献   

3.
4.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

5.
6.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

7.
CXCL12-induced chemotaxis and adhesion to VCAM-1 decrease as B cells differentiate in the bone marrow. However, the mechanisms that regulate CXCL12/CXCR4-mediated signaling are poorly understood. We report that after CXCL12 stimulation of progenitor B cells, focal adhesion kinase (FAK) and PI3K are inducibly recruited to raft-associated membrane domains. After CXCL12 stimulation, phosphorylated FAK is also localized in membrane domains. The CXCL12/CXCR4-FAK pathway is membrane cholesterol dependent and impaired by metabolic inhibitors of G(i), Src family, and the GTPase-activating protein, regulator of G protein signaling 1 (RGS1). In the bone marrow, RGS1 mRNA expression is low in progenitor B cells and high in mature B cells, implying developmental regulation of CXCL12/CXCR4 signaling by RGS1. CXCL12-induced chemotaxis and adhesion are impaired when FAK recruitment and phosphorylation are inhibited by either membrane cholesterol depletion or overexpression of RGS1 in progenitor B cells. We conclude that the recruitment of signaling molecules to specific membrane domains plays an important role in CXCL12/CXCR4-induced cellular responses.  相似文献   

8.
Osteoarthritis is characterized by degenerative alterations of articular cartilage including both the degradation of extracellular matrix and the death of chondrocytes. The PI3K/Akt pathway has been demonstrated to involve in both processes. Inhibition of its downstream target NF‐kB reduces the degradation of extracellular matrix via decreased production of matrix metalloproteinases while inhibition of mTOR increased autophagy to reduce chondrocyte death. However, mTOR feedback inhibits the activity of the PI3K/Akt pathway and inhibition of mTOR could result in increased activity of the PI3K/Akt/NF‐kB pathway. We proposed that the use of dual inhibitors of PI3K and mTOR could be a promising approach to more efficiently inhibit the PI3K/Akt pathway than rapamycin or PI3K inhibitor alone and produce better treatment outcome. J. Cell. Biochem. 114: 245–249, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
In the present study, we have investigated the effects of PI3K/Akt pathway on the response of human leukemia cells to fludarabine. Inhibition of PI3K/Akt pathway with a selective inhibitor (e.g., LY294002, or wortmannin) in leukemic cells markedly potentiated fludarabine-induced apoptosis. Inhibition of the PI3K/Akt downstream target mTOR by rapamycin also significantly enhanced fludarabine-induced apoptosis. The co-treatment of fludarabine/LY294002 resulted in significant attenuation in the levels of both phospho-Erk1/2 and phospho-Akt, as well as a marked increase in the level of phospho-JNK. The broad spectrum caspase inhibitor BOC-D-fmk markedly blocked fludarabine/LY-induced apoptosis, had no effect on cytochrome c release to the cytosol, and did abrogate caspase and PARP cleavage. This indicates that mitochondrial dysfunction is upstream of the caspase cascade. Moreover, constitutive activation of the MEK/Erk pathway completely blocked apoptosis induced by the combination of fludarabine/LY294002. Additionally, either constitutive activation of Akt or blockage of the JNK pathway significantly diminished apoptosis induced by the combination. Collectively, these findings demonstrate that inactivation of MAPK, Akt, and activation of the JNK pathway contributes to the induction of apoptosis induced by fludarabine/LY. Comparatively, MAPK inactivation plays a crucial role in fludarabine/LY-induced apoptosis. These results also strongly suggest that combining fludarabine with an inhibitor of the PI3K/Akt/mTOR pathway may represent a novel therapeutic strategy for hematological malignancies.  相似文献   

10.
Chemokines control several cell functions in addition to chemotaxis. Although much information is available on the involvement of specific signaling molecules in the control of single functions controlled by chemokines, especially chemotaxis, the mechanisms used by these ligands to regulate several cell functions simultaneously are completely unknown. Mature dendritic cells (maDCs) migrate through the afferent lymphatic vessels to the lymph nodes, where they regulate the initiation of the immune response. As maDCs are exposed to chemokine CXCL12 (receptors CXCR4 and CXCR7) during their migration, its functions are amenable to be regulated by this ligand. We have used maDCs as a model system to analyze the mechanisms whereby CXCL12 simultaneously controls chemotaxis and survival in maDCs. We show that CXCL12 uses CXCR4, but not CXCR7, and the components of a signaling core that includes G(i)/Gβγ, PI3K-α/-δ/-γ, Akt, ERK1/2 and mammalian target of rapamycin complex 1 (mTORC1), which organize hierarchically to control both functions. Downstream of Akt, Forkhead box class O (FOXO) regulates CXCL12-dependent survival, but not chemotaxis, suggesting that downstream of the aforementioned signaling core, additional signaling molecules may control more selectively CXCL12-dependent chemotaxis or survival. Finally, the data obtained also show that CXCR4 uses a signaling signature that is different from that used by CCR7 to control similar functions.  相似文献   

11.
Abstract

Mesenchymal stem cells offer several potential advantages over other types of stem cells for cardiac repair. Nevertheless, poor survival of donor cells is one of the major concerns that hampers a better prognosis. Integrins, which involved in cell/extracellular matrix (ECM) interaction and connexins (Cxs), with a dual role as an anti-apoptotic and gap-junctional protein, can effectively resolve this issue. CXCL12, a member of the chemokine CXC subfamily, may play a role in stem cell survival and proliferation. CXCL12 activates several signaling pathways in stem cells, particularly the survival kinase, PI3K/Akt, which is also an important mediator of integrins and Cxs. Based on these characteristics of CXCL12, we investigated the potential of CXCL12 overexpression to induce integrin and connexin expression via PI3K/Akt pathway. Mesenchymal stem cells were transfected with adenovirus for increasing CXCL12 secretion. Membranous integrin and Cx expression as well as Akt expression levels were evaluated using Western blot analysis. Transfection resulted in increased CXCL12 in situ. Increased CXCL12 elevated membrane Cx43, Cx45, and integrin αVβ3 expression, as well as Cx phosphorylaton, which was activated by PI3K/Akt pathway. This mechanism may serve to improve mesenchymal stem cell viability in host tissue.  相似文献   

12.
Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis   总被引:9,自引:0,他引:9  
The chemokine stroma-derived factor (SDF-1/CXCL12) plays multiple roles in tumor pathogenesis. It has been demonstrated that CXCL12 promotes tumor growth and malignancy, enhances tumor angiogenesis, participates in tumor metastasis, and contributes to immunosuppressive networks within the tumor microenvironment. Therefore, it stands to reason that the CXCL12/CXCR4 pathway is an important target for the development of novel anti-cancer therapies. In this review, we consider the pathological nature and characteristics of the CXCL12/CXCR4 pathway in the tumor microenvironment. Strategies for therapeutically targeting the CXCL12/CXCR4 axis also are discussed. migration; immune suppression; tumor angiogenesis; tumor metastasis; stem cells  相似文献   

13.
Chemokines are critical in controlling lymphocyte traffic and migration. The CXC chemokine CXCL12/SDF-1alpha interacts with its receptor CXCR4 to induce the migration of a number of different cell types. Although an understanding of the physiological functions of this chemokine is emerging, the mechanism by which it regulates T cell migration is still unclear. We show here that the Tec family kinase ITK is activated rapidly following CXCL12/SDF-1alpha stimulation, and this requires Src and phosphatidylinositol 3-kinase activities. ITK regulates the ability of CXCL12/SDF-1alpha to induce T cell migration as overexpression of wild-type ITK-enhanced migration, and T cells lacking ITK exhibit reduced migration as well as adhesion in response to CXCL12/SDF-1alpha. Further analysis suggests that ITK may regulate CXCR4-mediated migration and adhesion by altering the actin cytoskeleton, as ITK null T cells were significantly defective in CXCL12/SDF-1a-mediated actin polymerization. Our data suggest that ITK may regulate the ability of CXCR4 to induce T cell migration.  相似文献   

14.
The Gi-coupled M4 muscarinic acetylcholine receptor (mAChR) has recently been shown to stimulate the survival of PC12 cells through the PI3K/Akt/tuberin pathway. Since mTOR and p70S6K are critical components in activating translation which lie downstream of tuberin, we examined the ability of M4 mAChR to regulate these targets in PC12 cells. Carbachol (CCh) dose-dependently stimulated both mTOR and p70S6K phosphorylations and these responses were abolished by pertussis toxin pretreatment, indicating the involvement of the Gi-coupled M4 mAChR. Phosphorylations of both mTOR and p70S6K were effectively blocked upon inhibition of PI3K by wortmannin. As compared to similar responses elicited by the nerve growth factor (NGF), the M4 mAChR-induced activation of Akt/tuberin/mTOR/p70S6K occurred in a relatively transient manner. Although inhibition of protein phosphatase 2A by okadaic acid augmented the transient effects of CCh on Akt/tuberin phosphorylations, it failed to significantly prolong these responses. The total protein level of PTEN (tumor suppressor gene phosphatase and tensin homologue deleted on chromosome ten) was attenuated upon NGF, but not CCh treatment. This indicates that downregulation of PTEN may help to sustain the phosphorylation of Akt/tuberin by NGF. Collectively, these findings suggest that PP2A and PTEN may be involved in fine tuning the regulation of Akt/tuberin/mTOR/p70S6K in PC12 cells by M4 mAChR and TrkA, respectively.  相似文献   

15.
The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.  相似文献   

16.
Glioblastoma Multiforme (GBM) is a malignant primary brain tumor associated with poor survival rate. PI3K/Akt pathway is highly upregulated in gliomas due to deletion or mutation of PTEN and its activation is associated with tumor grade. mTOR is downstream from PI3K/Akt pathway and it initiates translation through its action on S6K and 4E-BP1. mTOR is an important therapeutic target in many cancers, including glioblastomas. Rapamycin and its analogues are known to inhibit mTOR pathway; however, they also show simultaneous upregulation of Akt and eIF4E survival pathways on inhibition of mTOR, rendering cells more resistant to rapamycin treatment. In this study we investigated the effect of combination treatment of rapamycin with isoflavones such as genistein and biochanin A on mTOR pathway and activation of Akt and eIF4E in human glioblastoma (U87) cells. Our results show that combination treatment of rapamycin with isoflavones, especially biochanin A at 50 μM, decreased the phosphorylation of Akt and eIF4E proteins and rendered U87 cells more sensitive to rapamycin treatment when compared to cells treated with rapamycin alone. These results suggest the importance of combining chemopreventive with chemotherapeutic agents in order to increase the efficacy of chemotherapeutic drugs.  相似文献   

17.
B7-H4 plays an important role in tumor immune evasion. In previous studies we have found that B7-H4 can translocate to the nucleus, and the exposure to PI3K inhibitor Ly294002 affects B7-H4 subcellular distribution. In this study we report the role of PI3K/Akt pathway in the B7-H4 subcellular distribution and the effect of PI3K/Akt inhibitors on B7-H4-mediated immunoresistance. The involvement of PI3K/Akt pathway in B7-H4 subcellular distribution was evident in experiments with wortmannin, while MDM2 inhibitor nutlin-3 and the mTOR inhibitor rapamycin were used to dissect the signaling downstream of Akt. Wortmannin and rapamycin demonstrated similar effects on B7-H4 subcellular distribution. Exposure to any of these inhibitors decreased levels of membrane B7-H4 while at the same time inducing its nuclear accumulation, while exposure to nutlin-3 had no effect on B7-H4 subcellular distribution. In the T cell proliferation assay, both wortmannin and rapamycin effectively inhibited B7-H4 WT/293 cells-mediated T cell proliferation while exerting no effect on Mock/293 cells. PI3K/Akt/mTOR plays a role in B7-H4 subcellular distribution, while MDM2 does not take part in it. Moreover, we show that wortmannin and rapamycin inhibit B7-H4-mediated tumor immunoresistance through regulating B7-H4 subcellular distribution. Taken together, these results suggest that PI3K/Akt/mTOR inhibitors might be used for adjuvant therapy aimed at inhibition of immune evasion.  相似文献   

18.
自噬是一种以胞质内出现双层膜结构包裹长寿命蛋白和细胞器的自噬体为特征的细胞“自我消化”过程,在维持细胞内稳态、发育、肿瘤发生和感染中发挥重要作用。近来,诸多研究表明,自噬作为一把“双刃剑”,对肿瘤的发生发展既有促进作用,也有抑制作用。PI3K/Akt/mTOR通路由PI3激酶(PI3K)、蛋白激酶B(PKB/Akt)和哺乳动物类雷帕霉素靶蛋白(mTOR)3个作用分子组成,是一个中心的调节机构,对肿瘤细胞的生长与增殖有促进作用,同时对自噬进行抑制。本文就PI3K/Akt/mTOR通路与自噬及肿瘤发生发展的关系作一综述。  相似文献   

19.
Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting in increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.  相似文献   

20.
Chemokines and their receptors participate in the development of cancers by enhancing tumor cell proliferation, angiogenesis, invasion, metastasis and penetration of tumor immune cells. It remains unclear whether CXC chemokine ligand 4 (CXCL4)/CXC chemokine receptor 3-B (CXCR3-B) can be used as an independent molecular marker for establishing prognosis for breast cancer patients. We evaluated CXCL4 and CXCR3-B expression in 114 breast cancer tissues and 30 matched noncancerous tissues using immunohistochemistry and western blot, and determined the correlation between their expression and clinicopathologic findings. We observed that breast cancer tissues express CXCL4 strongly and CXCR3-B weakly compared to noncancerous tissues. Strong CXCL4 expression was detected in 94.7% and weak CXCR3-B expression was detected in 78.9% of the tissues. Therefore, CXCL4/CXCR3-B might play a crucial role in breast cancer progression. We found no significant correlation between CXCL4 and age, tumor stage, tumor grade or TNM stage. CXCR3-B was associated significantly with tumor grade. Moreover, the Chi-square test of association showed that the expression of CXCL4/CXCR3-B might be an independent prognostic marker for breast cancer. Therefore, we suggest that CXCR3-B is an indicator of poor prognosis and may also be a chemotherapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号