首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RsmG methyltransferase is responsible for N7 methylation of G527 of 16S rRNA in bacteria. Here, we report the identification of the Thermus thermophilus rsmG gene, the isolation of rsmG mutants, and the solution of RsmG X-ray crystal structures at up to 1.5 Å resolution. Like their counterparts in other species, T. thermophilus rsmG mutants are weakly resistant to the aminoglycoside antibiotic streptomycin. Growth competition experiments indicate a physiological cost to loss of RsmG activity, consistent with the conservation of the modification site in the decoding region of the ribosome. In contrast to Escherichia coli RsmG, which has been reported to recognize only intact 30S subunits, T. thermophilus RsmG shows no in vitro methylation activity against native 30S subunits, only low activity with 30S subunits at low magnesium concentration, and maximum activity with deproteinized 16S rRNA. Cofactor-bound crystal structures of RsmG reveal a positively charged surface area remote from the active site that binds an adenosine monophosphate molecule. We conclude that an early assembly intermediate is the most likely candidate for the biological substrate of RsmG.  相似文献   

2.
Ero R  Peil L  Liiv A  Remme J 《RNA (New York, N.Y.)》2008,14(10):2223-2233
In ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem–loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m3Ψ) at position 1915. The gene for pseudouridine methyltransferase was previously not known. We identified E. coli protein YbeA as the methyltransferase methylating Ψ1915 in 23S rRNA. The E. coli ybeA gene deletion strain lacks the N3 methylation at position 1915 of 23S rRNA as revealed by primer extension and nucleoside analysis by HPLC. Methylation at position 1915 is restored in the ybeA deletion strain when recombinant YbeA protein is expressed from a plasmid. In addition, we show that purified YbeA protein is able to methylate pseudouridine in vitro using 70S ribosomes but not 50S subunits from the ybeA deletion strain as substrate. Pseudouridine is the preferred substrate as revealed by the inability of YbeA to methylate uridine at position 1915. This shows that YbeA is acting at the final stage during ribosome assembly, probably during translation initiation. Hereby, we propose to rename the YbeA protein to RlmH according to uniform nomenclature of RNA methyltransferases. RlmH belongs to the SPOUT superfamily of methyltransferases. RlmH was found to be well conserved in bacteria, and the gene is present in plant and in several archaeal genomes. RlmH is the first pseudouridine specific methyltransferase identified so far and is likely to be the only one existing in bacteria, as m3Ψ1915 is the only methylated pseudouridine in bacteria described to date.  相似文献   

3.
Weikl TR  Boehr DD 《Proteins》2012,80(10):2369-2383
Protein function often involves changes between different conformations. Central questions are how these conformational changes are coupled to the binding or catalytic processes during which they occur, and how they affect the catalytic rates of enzymes. An important model system is the enzyme dihydrofolate reductase (DHFR) from Escherichia coli, which exhibits characteristic conformational changes of the active‐site loop during the catalytic step and during unbinding of the product. In this article, we present a general kinetic framework that can be used (1) to identify the ordering of events in the coupling of conformational changes, binding, and catalysis and (2) to determine the rates of the substeps of coupled processes from a combined analysis of nuclear magnetic resonance R2 relaxation dispersion experiments and traditional enzyme kinetics measurements. We apply this framework to E. coli DHFR and find that the conformational change during product unbinding follows a conformational‐selection mechanism, that is, the conformational change occurs predominantly prior to unbinding. The conformational change during the catalytic step, in contrast, is an induced change, that is, the change occurs after the chemical reaction. We propose that the reason for these conformational changes, which are absent in human and other vertebrate DHFRs, is robustness of the catalytic rate against large pH variations and changes to substrate/product concentrations in E. coli. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
The catalytic mechanism of bacterial tyrosine-kinases (PTK) is poorly understood. These enzymes possess Walker A and B ATP-binding motifs, which are effectively required for their autophosphorylation whereas these motifs are usually found in ATP-binding proteins but not in eukaryotic protein-kinases. It was previously shown that the PTK Wzc in Escherichia coli undergoes intra- and interphosphorylation. In this work, it is shown that, in addition to its kinase activity, Wzc produces free inorganic phosphate. It is demonstrated that this ATPase activity is increased significantly by intraphosphorylation of Wzc. The fact that intraphosphorylation of Wzc does not affect Wzc affinity for ATP was also demonstrated and it was suggested that it could rather modify the local environment of the ATP molecule in the catalytic site so as to render Wzc more liable to catalyze ATP hydrolysis and interphosphorylation. These results should contribute to better understanding of the catalytic mechanism of this particular class of tyrosine-kinases, which seems, so far, restricted to bacteria.  相似文献   

6.
Pseudouridine (5-beta-D-ribofuranosyluracil, Psi) is the most commonly found modified base in RNA. Conversion of uridine to Psi is performed enzymatically in both prokaryotes and eukaryotes by pseudouridine synthases (EC 4.2.1.70). The Escherichia coli Psi-synthase RluD modifies uridine to Psi at positions 1911, 1915 and 1917 within 23S rRNA. RluD also possesses a second function related to proper assembly of the 50S ribosomal subunit that is independent of Psi-synthesis. Here, we report the crystal structure of the catalytic module of RluD (residues 68-326; DeltaRluD) refined at 1.8A to a final R-factor of 21.8% (R(free)=24.3%). DeltaRluD is a monomeric enzyme having an overall mixed alpha/beta fold. The DeltaRluD molecule consists of two subdomains, a catalytic subdomain and C-terminal subdomain with the RNA-binding cleft formed by loops extending from the catalytic sub-domain. The catalytic sub-domain of DeltaRluD has a similar fold as in TruA, TruB and RsuA, with the location of the RNA-binding cleft, active-site and conserved, catalytic Asp residue superposing in all four structures. Superposition of the crystal structure of TruB bound to a T-stem loop with RluD reveals that similar RNA-protein interactions for the flipped-out uridine base would exist in both structures, implying that base-flipping is necessary for catalysis. This observation also implies that the specificity determinants for site-specific RNA-binding and recognition likely reside in parts of RluD beyond the active site.  相似文献   

7.
李占杰  秦源 《植物学报》2021,56(6):664-675
真核生物基因组上的核小体呈现不均匀分布, 转录活跃区域的染色质结构相对松散且易被调节蛋白结合, 这些区域的可接近程度称为染色质可及性。随着测序技术的发展, DNase-seq、ATAC-seq、MNase-seq和NOMe-seq等组学技术的应用, 全基因组范围内染色质可及性检测变得简便且高效。该文主要介绍了真核生物染色质可及性的4种基本检测方法的技术原理, 总结了核小体定位、组蛋白修饰以及转录因子结合与染色质可及性的关系, 并综述了染色质可及性参与植物生长发育和环境响应研究进展, 以期为植物领域全基因组水平染色质可及性研究、顺式调控元件挖掘及发育和环境响应过程中基因表达调控网络的解析提供借鉴。  相似文献   

8.
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently identified and shown to specifically methylate U1498. Here we describe the enzymatic properties and substrate specificity of RsmE. The enzyme forms dimers in solution and is most active in the presence of 10-15 mM Mg(2+) and 100 mM NH(4)Cl at pH 7-9; however, in the presence of spermidine, Mg(2+) is not required for activity. While small ribosome subunits obtained from an RsmE deletion strain can be methylated by purified RsmE, neither 70S ribosomes nor 50S subunits are active. Likewise, 16S rRNA obtained from the mutant strain, synthetic 16S rRNA, and 3' minor domain RNA are all very poor or inactive as substrates. 30S particles partially depleted of proteins by treatment with high concentrations of LiCl or in vitro reconstituted intermediate particles also show little or no methyl acceptor activity. Based on these data, we conclude that RsmE requires a highly structured ribonucleoprotein particle as a substrate for methylation, and that methylation events in the 3' minor domain of 16S rRNA probably occur late during 30S ribosome assembly.  相似文献   

9.
In our study, we investigated the capacity of alkylhydroxybenzenes (AHB), which are microbial anabiosis autoinducers, for alteration of the enzymatic activity of the hen egg-white lysozyme, as well as the efficiency of hydrolysis of specific (peptidoglycan) and nonspecific (chitin) substrates catalyzed by lysozyme. AHB homologues (C7-AHB and C12-AHB), which differ in their hydrophobicity and effects in their interaction with lysozyme, were used as modifying agents. C7-AHB stimulated enzymatic activity within the whole range of concentrations used (10?7?10?3 M). More hydrophobic C12-AHB exhibited this ability only at low concentrations and inhibited fermentative activity at high concentrations, acting as a mixed-type inhibitor. Both AHB homologues caused changes in the hydrophobicity of lysozyme molecules. An increase in the affinity level between the C7-AHB-modified enzyme and the nonspecific substrate (colloidal chitin or cell wall polymers of Saccharomyces sp.) was observed, which manifested itself in the enhancement of the hydrolysis rate by 200–500% (as compared to the native enzyme). A significant effect on the efficiency of the lysozyme-catalyzed modifications of the substrate (peptidoglycan, colloidal chitin) structure as a result of its complexation with AHB was demonstrated. A stabilizing effect of C7-AHB and C12-AHB was revealed, which ensured a high level of activity of the AHB-modified enzyme (as compared to the control) after heat treatment (functional stability), as well as at nonoptimal temperatures of catalysis (operational stability). The biological significance of lysozyme modification with AHB and the practical aspects of its application are discussed.  相似文献   

10.
RNase E is an essential endoribonuclease that plays a central role in the processing and degradation of RNA in Escherichia coli and other bacteria. Most endoribonucleases have been shown to act distributively; however, Feng et al. [(2002) Proc. Natl. Acad. Sci. U.S.A. 99, 14746-14751] have recently found that RNase E acts via a scanning mechanism. A structural explanation for the processivity of RNase E is provided here, with our finding that the conserved catalytic domain of E. coli RNase E forms a homotetramer. Nondissociating nanoflow-electrospray mass spectrometry suggests that the tetramer binds up to four molecules of a specific substrate RNA analogue. The tetrameric assembly of the N-terminal domain of RNase E is consistent with crystallographic analyses, which indicate that the tetramer possesses approximate D(2) dihedral symmetry. Using X-ray solution scattering data and symmetry restraints, a solution shape is calculated for the tetramer. This shape, together with limited proteolysis data, suggests that the S1-RNA binding domains of RNase E lie on the periphery of the tetramer. These observations have implications for the structure and function of the RNase E/RNase G ribonuclease family and for the assembly of the E. coli RNA degradosome, in which RNase E is the central component.  相似文献   

11.
DNA methylation is an important epigenetic mechanism that ensures correct gene expression and maintains genetic stability. DNA methyltransferase 1 (DNMT1) is the primary enzyme that maintains DNA methylation during replication. Dysregulation of DNMT1 is implicated in a variety of diseases. DNMT1 protein stability is regulated via various post-translational modifications, such as acetyl- ation and ubiquitination, but also through protein-protein interactions. These mechanisms ensure DNMT1 is properly activated during the correct time of the ceil cycle and at correct genomic loci, as well as in response to appropriate extracellular cues. Further understanding of these regula- tory mechanisms may help to design novel therapeutic approaches for human diseases.  相似文献   

12.
13.
DNA fragments of Bacillus subtilis were inserted into a plasmid vector that can multiply in Escherichia coli cells, and foreign genes were expressed under the control of the lac promoter. By selecting hybrid plasmids that confer an increased resistance to alkylating agents on E. coli ada- mutant cells, the B. subtilis gene dat, which encodes O6-methylguanine-DNA methyltransferase, was cloned. The Dat protein, with a molecular weight of about 20,000, could transfer the methyl group from methylated DNA to its own protein molecule. Based on the nucleotide sequence of the gene, it was deduced that the protein comprises 165 amino acids and that the molecular weight is 18,779. The presumptive amino acid sequence of Dat protein is homologous to the sequences of the E. coli Ogt protein and the C-terminal half of the Ada protein, both of which carry O6-methylguanine-DNA methyltransferase activity. The pentaamino acid sequence Pro-Cys-His-Arg-Val, the cysteine residue of which is the methyl acceptor site in Ada protein, was conserved in the 3 methyltransferase proteins. The structural similarity of these methyltransferases suggests possible evolution from a single ancestral gene.  相似文献   

14.
15.
16.
Chenxiao Zhao  Lihua Dong  Yongjun Liu 《Proteins》2017,85(11):1967-1974
RlmN is a radical S‐adenosylmethionine (SAM) enzyme that catalyzes the C2 methylation of adenosine 2503 (A2503) in 23S rRNA and adenosine 37 (A37) in several Escherichia coli transfer RNAs (tRNA). The catalytic reaction of RlmN is distinctly different from that of typical SAM‐dependent methyltransferases that employs an SN2 mechanism, but follows a ping‐pong mechanism which involves the intermediate methylation of a conserved cysteine residue. Recently, the x‐ray structure of a key intermediate in the RlmN reaction has been reported, allowing us to perform combined quantum mechanics and molecular mechanics (QM/MM) calculations to delineate the reaction details of RlmN at atomic level. Starting from the Cross‐Linked RlmN C118A?tRNA complex, the possible mechanisms for both the formation and the resolution of the cross‐linked species (IM2) have been illuminated. On the basis of our calculations, IM2 is formed by the attack of the C355‐based methylene radical on the sp2‐hybridized C2 of the adenosine ring, corresponding to energy barrier of 14.4 kcal/mol, and the resolution of IM2 is confirmed to follow a radical fragmentation mechanism. The cleavage of C′–S′ bond of mC355‐A37 cross‐link is in concert with the deprotonation of C2 by C118 residue, which is the rate‐limiting step with an energy barrier of 17.4 kcal/mol. Moreover, the cleavage of C′–S′ bond of IM2 can occur independently, that is, it does not require the loss of an electron of IM2 and the formation of disulfide bond between C355 and C118 as precondition. These findings would deepen the understanding of the catalysis of RlmN.  相似文献   

17.
18.
Regulation of lysine decarboxylase activity in Escherichia coli K-12   总被引:2,自引:0,他引:2  
The biodegradative lysine decarboxylase of E. coli has been reported to attain a higher specific activity when grown to saturation in the presence of excess lysine under conditions of low pH and absence of aeration. In order to examine possible sources of the pH and anaerobic regulation, a series of isogenic strains of E. coli K-12 were constructed. The effects of cadR-, fnr -, cya -, crp -and pgl -mutations on lysine decarboxylase expression were examined. Cultures were grown in a lysine supplemented rich medium at pH 5.5, pH 6.8, and pH 8.0 with and without aeration and the enzyme was assayed from log phase cultures. The results suggested that the pH and air responses were independent and that these known regulatory processes are not responsible for this regulation of the biodegradative lysine decarboxylase.  相似文献   

19.
20.
The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers protein-free 23S rRNA to ribonucleoprotein particles containing only part of the 50S subunit proteins and does not methylate the assembled 50S subunit. We suggest renaming the yhiR gene to rlmJ according to the rRNA methyltransferase nomenclature. The phenotype of yhiR knockout gene is very mild under various growth conditions and at the stationary phase, except for a small growth advantage at anaerobic conditions. Only minor changes in the total E. coli proteome could be observed in a cell devoid of the 23S rRNA nucleotide A2030 methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号