首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amiloride-sensitive Na(+) channels in the apical membrane and the Na(+)-K(+)-ATPase located in the basolateral membrane. Less is known about the identity and role of Cl(-) and K(+) channels in alveolar epithelial cells, but studies are revealing important functions for these channels in regulation of alveolar fluid volume and ionic composition. The purpose of this review is to examine previous work published on Cl(-) and K(+) channels in alveolar epithelial cells and to discuss the conclusions and speculations regarding their role in alveolar cell transport function.  相似文献   

2.
Amphibians inhabit areas ranging from completely aqueous to terrestrial environments and move between water and land. The kidneys of all anurans are similar at the gross morphological level: the structure of their nephrons is related to habitat. According to the observation by light and electron microscopy, the cells that make up the nephron differ among species. Immunohistochemical studies using antibodies to various ATPases showed a significant species difference depending on habitat. The immunoreactivity for Na+,K(+)-ATPase was low in the proximal tubules but high in the basolateral membranes of early distal tubules to collecting ducts in all species. In the proximal tubule, apical membranes of the cells were slightly immunoreactive to H(+)-ATPase antibody in aquatic species. In the connecting tubule and the collecting duct, the apical membrane of intercalated cells was immunoreactive in all species. In aquatic species, H+,K(+)-ATPase immunoreactivity was observed in cell along the proximal, distal tubule to the collecting duct. However, H+,K(+)-ATPase was present along the intercalated cells of the distal segments from early distal to collecting tubules in terrestrial and semi-aquatic species. In the renal corpuscle, the neck segment and the intermediate segment, immunoreactivities to ion pumps were not observed in any of the species examined. Taking together our observations, we conclude that in the aquatic species, a large volume of plasma must be filtered in a large glomerulus and the ultrafiltrate components are reabsorbed along a large and long proximal segment of the nephron. Control of tubular transport may be poorly developed when a small short distal segment of the nephron is observed. On the contrary, terrestrial species have a long and well-developed distal segment and regulation mechanisms of tubular transport may have evolved in these segments. Thus, the development of the late distal segments of the nephron is one of the important factors for the terrestrial adaptation.  相似文献   

3.
Potassium channels along the nephron   总被引:2,自引:0,他引:2  
The K+ channels that are present in three different nephron segments, the Necturus proximal, Amphiuma early distal (diluting segment), and rabbit collecting tubule have been examined. Ca2+-sensitive K+ channels were present in the apical membranes of the cells lining all these segments. The channels were all voltage-sensitive and their open probability increased with membrane depolarization. Because of the ubiquitous distribution, it is suggested that this channel is responsible for K+ secretion by the nephron and that the same intracellular regulators act throughout the various segments. Basolateral K+ channels have been examined only in Necturus proximal tubules. This channel is apparently insensitive to Ca2+; the voltage dependence is exactly opposite to that of the apical K+ channels; that is, hyperpolarizing potentials caused an increase in open probability. These differences in regulatory factors permit the independent regulation of apical and basolateral membrane K+ permeabilities that must occur in renal cells.  相似文献   

4.
Intermediate-conductance K(+) (Kcnn4) channels in the apical and basolateral membranes of epithelial cells play important roles in agonist-induced fluid secretion in intestine and colon. Basolateral Kcnn4 channels have been well characterized in situ using patch-clamp methods, but the investigation of Kcnn4 channels in apical membranes in situ has been hampered by a layer of mucus that prevents seal formation. In the present study, we used patch-clamp methods to characterize Kcnn4 channels in the apical membrane of IEC-18 cells, a cell line derived from rat small intestine. A monolayer of IEC-18 cells grown on a permeable support is devoid of mucus, and tight junctions enable selective access to the apical membrane. In inside-out patches, Ca(2+)-dependent K(+) channels observed with iberiotoxin (a Kcnma1/large-conductance, Ca(2+)-activated K(+) channel blocker) and apamin (a Kcnn1-3/small-conductance, Ca(2+)-activated K(+) channel blocker) present in the pipette solution exhibited a single-channel conductance of 31 pS with inward rectification. The currents were reversibly blocked by TRAM-34 (a Kcnn4 blocker) with an IC(50) of 8.7 ± 2.0 μM. The channels were not observed when charybdotoxin, a peptide inhibitor of Kcnn4 channels, was added to the pipette solution. TRAM-34 was less potent in inhibiting Kcnn4 channels in patches from apical membranes than in patches from basolateral membranes, which was consistent with a preferential expression of Kcnn4c and Kcnn4b isoforms in apical and basolateral membranes, respectively. The expression of both isoforms in IEC-18 cells was confirmed by RT-PCR and Western blot analyses. This is the first characterization of Kcnn4 channels in the apical membrane of intestinal epithelial cells.  相似文献   

5.
Previous studies performed on apical membranes of seawater fish gills in primary culture have demonstrated the existence of stretch-activated K(+) channels with a conductance of 122 pS. The present report examines the involvement of K(+) channels in ion transport mechanisms and cell swelling. In the whole cell patch-clamp configuration, K(+) currents were produced by exposing cells to a hypotonic solution or to 1 microM ionomycin. These K(+) currents were inhibited by the addition of quinidine and charybdotoxin to the bath solution. Isotopic efflux measurements were performed on cells grown on permeable supports using (86)Rb(+) as a tracer to indicate potassium movements. Apical and basolateral membrane (86)Rb effluxes were stimulated by the exposure of cells to a hypotonic medium. During the hypotonic shock, the stimulation of (86)Rb efflux on the apical side of the monolayer was inhibited by 500 microM quinidine or 100 microM gadolinium but was insensitive to scorpion venom [Leirus quinquestriatus hebraeus (LQH)]. An increased (86)Rb efflux across the basolateral membrane was also reduced by the addition of quinidine and LQH venom but was not modified by gadolinium. Moreover, basolateral and apical membrane (86)Rb effluxes were not modified by bumetanide or thapsigargin. There is convincing evidence for two different populations of K(+) channels activated by hypotonic shock. These populations can be separated according to their cellular localization (apical or basolateral membrane) and as a function of their kinetic behavior and pharmacology.  相似文献   

6.
7.
L G Palmer  H Sackin 《FASEB journal》1988,2(15):3061-3065
Ion channels in renal epithelia are involved in maintenance of the volume and ion composition of the epithelial cells themselves and of the entire organism. The latter function depends on transepithelial ion transport, a process that often involves ion channels at the apical (luminal) and/or the basolateral (contraluminal) cell membranes. Regulation of these channels is accomplished within many different time frames, each of which can involve different molecular mechanisms of regulation. Changes in membrane voltage, intracellular ion composition, or mechanical force on the membrane mediate short-term regulation. Biosynthesis, degradation, and reversible transfer of channels to or from cytoplasmic stores are responsible for longer term regulation. Covalent modification of channel proteins can be involved in either short- or long-term regulation. In this review we outline the different models of ion channel regulation in renal epithelia and give examples that emphasize the physiological roles of these channels in specific nephron segments.  相似文献   

8.
Bleich M  Shan QX 《生理学报》2007,59(4):443-453
K^+通道在上皮细胞内以极化的方式表达,形成一个庞大的膜蛋白家族。出于对主要依赖Na^+-K^+-ATPase而维持的细胞内跨膜K^+梯度的考虑,K^+通道在跨上皮细胞转运中的主要作用为:膜电位生成和K^+循环。本文以肾近端小管和胃壁上皮细胞转运为例简要阐述了K^+通道的作用。在这两个组织中,K^+通道活性限速跨上皮细胞转运,调节细胞体积。近年来,药理学工具和转基因动物的实验证实了对K^+通道的原先认知,并将研究深入到分子水平。K^+通道的分子结构挑战高亲和力药物分子的设计,及其多组织同时表达的两个典型特征阻碍了高活性、组织特异性小分子治疗的进展。然而,抑制K^+通道能阻断胃酸分泌等病理生理机制的深入研究,促进K^+通道药物用于胃病治疗和作为肾脏转运抑制剂用于肾脏相关疾病治疗。  相似文献   

9.
The multidrug resistance-associated protein (MRP) that is involved in drug resistance and the export of glutathione-conjugated substrates may not have the same epithelial cell membrane distribution as the P-glycoprotein encoded by the MDR gene. Because intestinal and kidney epithelial cells are polarized cells endowed distinct secreting and absorptive ion and protein transport capacities, we investigated the tissue and cell distribution of MRP in adult mouse small intestine, colon, and kidney by immunohistochemistry. Western blot analyses revealed the 190-kD MRP protein in these tissues. MRP was found in the basolateral membranes of intestinal crypt cells, mainly Paneth cells, but not in differentiated enterocytes. All the cells lining the crypt-villous axis of the colon wall contained MRP. MRP was found in the glomeruli, ascending limb cells, and basolateral membranes of the distal and collecting tubule cells of the kidney but not in proximal tubule cells. Cultured mouse intestinal m-ICcl2 cells and renal distal mpkDCT cells that have retained the features typical of intestinal crypt and renal distal epithelial cells, respectively, also possess MRP in their basolateral membranes. The patterns of subcellular and cellular distribution indicate that MRP may have a specific role in the basolateral transport of endogenous compounds in Paneth, renal distal, and collecting tubule cells.  相似文献   

10.
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.  相似文献   

11.
PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 288: C20–C29, 2005; doi:10.1152/ajpcell.00368.2004.—The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of an epithelial cell will be maintained only if these membrane transporters are retained and properly regulated in their specific membrane compartments. Recent reports have indicated that PDZ domain-containing proteins play a dual role in these processes and, in addition, that different apical and basolateral PDZ proteins perform similar tasks in their respective membrane domains. First, although PDZ-based interactions are dispensable for the biosynthetic targeting to the proper membrane domain, the PDZ network ensures that the membrane proteins are efficiently retained at the cell surface. Second, the close spatial positioning of functionally related proteins (e.g., receptors, kinases, channels) into a signal transduction complex (transducisome) allows fast and efficient control of membrane transport processes. retention of apical and basolateral membrane proteins; transducisomes; protein complex formation  相似文献   

12.
Three different methods have been used to improve a model for fluid secretion in Upper Malpighian Tubules (UMT) of the blood sucking insect Rhodnius prolixus. (I) In the first, UMT double perfusions in 5th instar Rhodnius were used to measure their fluid secretion rate. They were stimulated to secrete with 5-HT. Double perfusions allowed access separately to the basolateral and the apical cell membranes with pharmacological agents known to block different ion transport functions, namely ATPases, cotransporters and/or countertransporters and ion and water channels: ouabain, bafilomycin A1, furosemide, bumetanide, SITS, acetazolamide, amiloride, DPC, BaCl(2), pCMBS and DTT. The basic assumption is that changes in water movement reflect changes in ion transport mechanisms. (II) Intracellular Na(+) concentrations were measured with a fluorometric method in dissected R. prolixus UMT, under several experimental conditions. (III) ATPase activities were measured in R. prolixus UMT. A tentative model for the function of the UMT cell is presented. We find that (a) at the basolateral cell membrane, fundamental is a Na(+)-K(+)-2Cl(-) cotransporter; of intermediate importance are the Na(+)-K(+)-ATPase and a ouabain-insensitive Na(+)-ATPase, ion channels and Rp-MIP water channels. (b) At the apical cell membrane, most important are a V-H(+)-ATPase; and a K(+) and/or Na(+)-H(+) exchanger.  相似文献   

13.
Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase–positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow–dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.  相似文献   

14.
Cultured Na(+)-transporting epithelia from amphibian renal distal tubule (A6) were impaled with microelectrodes and analyzed at short-circuit and after transepithelial voltage perturbation to evaluate the influence of voltage on apical and basolateral membrane conductances. For equivalent circuit analysis, amiloride was applied at each setting of transepithelial potential. At short-circuit, apical and basolateral membrane conductances averaged 88 and 497 microS/cm2, respectively (n = 10). Apical membrane conductance, essentially due to Na(+)-specific pathways, decreased after depolarization of the apical membrane. The drop was considerably larger than predicted by the Goldman-Hodgkin-Katz (GHK) constant-field equation. This suggests decrease in permeability of the apical Na+ channels upon depolarization. Basolateral membrane conductance, preferentially determined by K+ channels, increased after hyperpolarization of the basolateral membrane. This behavior is contrary to the prediction of the GHK constant field equation and reflects inward rectification of the K+ channels. The observed rectification patterns can be valuable for maintenance of cellular homeostasis.  相似文献   

15.
Summary A primary rabbit kidney epithelial cell culture system has been developed which retains differentiated functions of the renal proximal tubule. In addition, the cells have a distinctive metabolism and spectrum of hormone responses. The primary cell were observed to retain in vitro a Na+-dependent sugar transport system (distinctive of the proximal segment of the nephron) and a Na+-dependent phosphate transport system. Both of these transport processes are localized on the apical membrane of proximal tubule cells in vivo. In addition, probenicid-sensitivep-aminohippurate (PAH) uptake was observed in basolateral membranes of the primary tubule cells, and the PAH uptake by these vesicles occurred at a rate that was very similar to that observed with membranes derived from the original tissue. Several other characteristics of the primary cells were examined, including hormone-sensitive cyclic AMP production and phosphoenolpyruvate carboxykinase (PEPCK) activity. Like the cells in vivo, the primary proximal tubule cells were observed to produce significant cyclic AMP in response to parathyroid hormone, but not in response to arginine vasopressin or salmon calcitonin. Significant PEPCK acivity was observed in the particulate fraction derived from a homogenate of primary rabbit kidney proximal tubule cells. This paper was presented at a Symposium on the Physiology and Toxicology of the Kidney In Vitro co-sponsored by The Society of Toxicology (SOT) and the Tissue Culture Association held at the 27th annual meeting of the SOT in Dallas, Texas in 1988. This work was supported by Grant 9 RO1 DK40286-07 from the National Institutes of Health, Bethesda, MD, and NIH Research Career Development Award 1 K04 CA 0088-01 to M.T.  相似文献   

16.
A kidney from the budgerigar (budgie, parakeet; Melopsittacus undulatus) is composed of cortical reptilian-type nephrons (without loops of Henle) and mammalian-type nephrons (with loops) grouped together in medullary cones. The loop of the mammalian-type nephrons has a descending segment composed of thin and highly interdigitated cells. These thin limb cells have few mitochondria (15% of cell volume), undetectable Na+,K(+)-ATPase activity, and virtually no basolateral surface amplification. Prior to the hairpin turn, the descending limb thickens, but the cells continue to lack basolateral amplification. Cells just prior to and within the hairpin turn resemble cells of the entire ascending limb. These cells are thick (there is no thin ascending segment in the avian loop), with extensive infoldings of the basolateral membrane surrounding numerous mitochondria (45% of cell volume). The area of basolateral membrane is 25 times that of the apical membrane. The basolateral membrane (but not the apical membrane) is enriched in Na+,K(+)-ATPase activity. The structure of the avian mammalian-type nephron (as epitomized by the budgie nephron) and the fact that NaCl accounts for over 90% of the osmotic activity of avian urine leads to the conclusion that the countercurrent multiplier of the avian kidney functions by active NaCl transport from the entire ascending limb. No explanation is offered for the transport specializations found in the thick descending segment of the loop, just prior to the hairpin turn.  相似文献   

17.
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.  相似文献   

18.
Transepithelial transport, intracellular ion activities and membrane potentials are all affected by changes in the conductive properties of the membranes of polarised epithelial cells. Conventional electrophysiological techniques have already determined the major conductances of the apical and basolateral membranes of the various nephron segments. These conductances are presently being studied at the molecular level with the aid of the patch clamp technique. In the case of the amphibian nephron, single-channel studies have been carried out in the proximal and early distal (diluting) segments. Almost all of the channels described so far have been selective for potassium, and the properties of these channels are described in this review. In addition, the basic electrophysiological and transport properties of these two general nephron segments are briefly described. From the physiological stand-point, the results of single-channel studies are providing us with information concerning the regulation of the conductances by intracellular mediators, allowing us to make predictions about the effects of various perturbations on cell membrane conductances. On the other hand, biophysical analysis is giving information ranging from the voltage dependence and ion selectivity of the channels to clues concerning their submicroscopic structure.  相似文献   

19.
Topical intranasal application of the antifungal Amphotericin B (AmphoB) has been shown as an effective medical treatment of chronic rhinosinusitis. Because this antibiotic forms channels in lipid membranes, we considered the possibility that it affects the properties and/or cell surface expression of ion channels/pumps, and consequently transepithelial ion transport. Human nasal epithelial cells were exposed apically to AmphoB (50 microM) for 4 h, 5 days (4 h daily), and 4 weeks (4 h daily, 5 days weekly) and allowed to recover for 18-48 h. AmphoB significantly reduced transepithelial potential difference, short-circuit current, and the amiloride-sensitive current. This was not due to generalized cellular toxicity as judged from normal transepithelial resistance and mitochondrial activity, but was related to inhibitory effects of AmphoB on ion transport proteins. Thus, cells exposed to AmphoB for 4 h showed decreased apical epithelial sodium channels (ENaC) activity with no change in basolateral Na(+)K(+)-ATPase activity and K(+) conductance, and reduced amount of alphaENaC, alpha1-Na(+)K(+)-ATPase, and NKCC1 proteins at the cell membrane, but no change in mRNA levels. After a 5-day treatment, there was a significant decrease in Na(+)K(+)-ATPase activity. After a 4-week treatment, a decrease in basolateral K(+) conductance and in alphaENaC and alpha1-Na(+)K(+)-ATPase mRNA levels was also observed. These findings may reflect a feedback mechanism aimed to limit cellular Na(+) overload and K(+) depletion subsequently to formation of AmphoB pores in the cell membrane. Thus, the decreased Na(+) absorption induced by AmphoB resulted from reduced cell surface expression of the ENaC, Na(+)K(+)-ATPase pump and NKCC1 and not from direct inhibition of their activities.  相似文献   

20.
The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号