首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The loss of skeletal muscle mass with aging has been attributed to an impaired muscle protein synthetic response to food intake. Therefore, nutritional strategies are targeted to modulate postprandial muscle protein accretion in the elderly. The purpose of this study was to assess the impact of protein administration during sleep on in vivo protein digestion and absorption kinetics and subsequent muscle protein synthesis rates in elderly men. Sixteen healthy elderly men were randomly assigned to an experiment during which they were administered a single bolus of intrinsically l-[1-(13)C]phenylalanine-labeled casein protein (PRO) or a placebo (PLA) during sleep. Continuous infusions with l-[ring-(2)H(5)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied to assess in vivo dietary protein digestion and absorption kinetics and subsequent muscle protein synthesis rates during sleep. We found that exogenous phenylalanine appearance rates increased following protein administration. The latter stimulated protein synthesis, resulting in a more positive overnight whole body protein balance (0.30 ± 0.1 vs. 11.8 ± 1.0 μmol phenylalanine·kg(-1)·h(-1) in PLA and PRO, respectively; P < 0.05). In agreement, overnight muscle protein fractional synthesis rates were much greater in the PRO experiment (0.045 ± 0.002 vs. 0.029 ± 0.002%/h, respectively; P < 0.05) and showed abundant incorporation of the amino acids ingested via the intrinsically labeled protein (0.058 ± 0.006%/h). This is the first study to show that dietary protein administration during sleep is followed by normal digestion and absorption kinetics, thereby stimulating overnight muscle protein synthesis. Dietary protein administration during sleep stimulates muscle protein synthesis and improves overnight whole body protein balance. These findings may provide a basis for novel interventional strategies to attenuate muscle mass loss.  相似文献   

2.
This study investigates the impact of protein coingestion with carbohydrate on muscle protein synthesis during endurance type exercise. Twelve healthy male cyclists were studied during 2 h of fasted rest followed by 2 h of continuous cycling at 55% W(max). During exercise, subjects received either 1.0 g·kg(-1)·h(-1) carbohydrate (CHO) or 0.8 g·kg(-1)·h(-1) carbohydrate with 0.2 g·kg(-1)·h(-1) protein hydrolysate (CHO+PRO). Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body protein turnover and muscle protein synthesis rates at rest and during exercise conditions. Protein coingestion stimulated whole body protein synthesis and oxidation rates during exercise by 22 ± 3 and 70 ± 17%, respectively (P < 0.01). Whole body protein breakdown rates did not differ between experiments. As a consequence, whole body net protein balance was slightly negative in CHO and positive in the CHO+PRO treatment (-4.9 ± 0.3 vs. 8.0 ± 0.3 μmol Phe·kg(-1)·h(-1), respectively, P < 0.01). Mixed muscle protein fractional synthetic rates (FSR) were higher during exercise compared with resting conditions (0.058 ± 0.006 vs. 0.035 ± 0.006%/h in CHO and 0.070 ± 0.011 vs. 0.038 ± 0.005%/h in the CHO+PRO treatment, respectively, P < 0.05). FSR during exercise did not differ between experiments (P = 0.46). We conclude that muscle protein synthesis is stimulated during continuous endurance type exercise activities when carbohydrate with or without protein is ingested. Protein coingestion does not further increase muscle protein synthesis rates during continuous endurance type exercise.  相似文献   

3.
When consumed separately, whey protein (WP) is more rapidly absorbed into circulation than casein (Cas), which prompted the concept of rapid and slow dietary protein. It is unclear whether these proteins have similar metabolic fates when coingested as in milk. We determined the rate of appearance across the splanchnic bed and the rate of disappearance across the leg of phenylalanine (Phe) from coingested, intrinsically labeled WP and Cas. Either [1?N]Phe or [13C-ring C?]Phe was infused in lactating cows, and the labeled WP and Cas from their milk were collected. To determine the fate of Phe derived from different protein sources, 18 healthy participants were studied after ingestion of one of the following: 1) [1?N]WP, [13C]Cas, and lactose; 2) [13C]WP, [1?N]Cas, and lactose; 3) lactose alone. At 80-120 min, the rates of appearance (R(a)) across the splanchnic bed of Phe from WP and Cas were similar [0.068 ± 0.010 vs. 0.070 ± 0.009%/min; not significant (ns)]. At time 220-260 min, Phe appearance from WP had slowed (0.039 ± 0.008%/min, P < 0.05) whereas Phe appearance from Cas was sustained (0.068 ± 0.013%/min). Similarly, accretion rates across the leg of Phe absorbed from WP and Cas were not different at 80-120 min (0.011 ± 0.002 vs. 0.012 ± 0.003%/min; ns), but they were significantly lower for WP (0.007 ± 0.002%/min) at 220-260 min than for Cas (0.013 ± 0.002%/min) at 220-260 min. Early after meal ingestion, amino acid absorption and retention across the leg were similar for WP and Cas, but as rates for WP waned, absorption and assimilation into skeletal muscle were better retained for Cas.  相似文献   

4.
We made sex-based comparisons of rates of myofibrillar protein synthesis (MPS) and anabolic signaling after a single bout of high-intensity resistance exercise. Eight men (20 ± 10 yr, BMI = 24.3 ± 2.4) and eight women (22 ± 1.8 yr, BMI = 23.0 ± 1.9) underwent primed constant infusions of l-[ring-(13)C(6)]phenylalanine on consecutive days with serial muscle biopsies. Biopsies were taken from the vastus lateralis at rest and 1, 3, 5, 24, 26, and 28 h after exercise. Twenty-five grams of whey protein was ingested immediately and 26 h after exercise. We also measured exercise-induced serum testosterone because it is purported to contribute to increases in myofibrillar protein synthesis (MPS) postexercise and its absence has been hypothesized to attenuate adaptative responses to resistance exercise in women. The exercise-induced area under the testosterone curve was 45-fold greater in men than women in the early (1 h) recovery period following exercise (P < 0.001). MPS was elevated similarly in men and women (2.3- and 2.7-fold, respectively) 1-5 h postexercise and after protein ingestion following 24 h recovery. Phosphorylation of mTOR(Ser2448) was elevated to a greater extent in men than women acutely after exercise (P = 0.003), whereas increased phosphorylation of p70S6K1(Thr389) was not different between sexes. Androgen receptor content was greater in men (main effect for sex, P = 0.049). Atrogin-1 mRNA abundance was decreased after 5 h recovery in both men and women (P < 0.001), and MuRF-1 expression was elevated in men after protein ingestion following 24 h recovery (P = 0.003). These results demonstrate minor sex-based differences in signaling responses and no difference in the MPS response to resistance exercise in the fed state. Interestingly, our data demonstrate that exercise-induced increases in MPS are dissociated from postexercise testosteronemia and that stimulation of MPS occurs effectively with low systemic testosterone concentrations in women.  相似文献   

5.
In contrast to the effect of nutritional intervention on postexercise muscle protein synthesis, little is known about the potential to modulate protein synthesis during exercise. This study investigates the effect of protein coingestion with carbohydrate on muscle protein synthesis during resistance-type exercise. Ten healthy males were studied in the evening after they consumed a standardized diet throughout the day. Subjects participated in two experiments in which they ingested either carbohydrate or carbohydrate with protein during a 2-h resistance exercise session. Subjects received a bolus of test drink before and every 15 min during exercise, providing 0.15 g x kg(-1) x h(-1) carbohydrate with (CHO + PRO) or without (CHO) 0.15 g x kg(-1) x h(-1) protein hydrolysate. Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body and muscle protein synthesis rates during exercise. Protein coingestion lowered whole body protein breakdown rates by 8.4 +/- 3.6% (P = 0.066), compared with the ingestion of carbohydrate only, and augmented protein oxidation and synthesis rates by 77 +/- 17 and 33 +/- 3%, respectively (P < 0.01). As a consequence, whole body net protein balance was negative in CHO, whereas a positive net balance was achieved after the CHO + PRO treatment (-4.4 +/- 0.3 vs. 16.3 +/- 0.4 micromol phenylalanine x kg(-1) x h(-1), respectively; P < 0.01). In accordance, mixed muscle protein fractional synthetic rate was 49 +/- 22% higher after protein coingestion (0.088 +/- 0.012 and 0.060 +/- 0.004%/h in CHO + PRO vs. CHO treatment, respectively; P < 0.05). We conclude that, even in a fed state, protein coingestion stimulates whole body and muscle protein synthesis rates during resistance-type exercise.  相似文献   

6.
Debilitating injury is accompanied by hypercortisolemia, muscle wasting, and disruption of the normal anabolic response to food. We sought to determine whether acute hypercortisolemia alters muscle protein metabolism following ingestion of a potent anabolic stimulus: essential amino acids (EAA). A 27-h infusion (80 microg. kg(-1). h(-1)) of hydrocortisone sodium succinate mimicked cortisol (C) levels accompanying severe injury (>30 microg/dl), (C + AA; n = 6). The control group (AA) received intravenous saline (n = 6). Femoral arteriovenous blood samples and muscle biopsies were obtained during a primed (2.0 micromol/kg) constant infusion (0.05 micromol. kg(-1). min(-1)) of l-[ring-(2)H(5)]phenylalanine before and after ingestion of 15 g of EAA. Hypercortisolemia [36.5 +/- 2.1 (C + AA) vs. 9.0 +/- 1.0 microg/dl (AA)] increased postabsorptive arterial, venous, and muscle intracellular phenylalanine concentrations. Hypercortisolemia also increased postabsorptive and post-EAA insulin concentrations. Net protein balance was blunted (40% lower) following EAA ingestion but remained positive for a greater period of time (60 vs. 180 min) in the C + AA group. Thus, although differences in protein metabolism were evident, EAA ingestion improved muscle protein anabolism during acute hypercortisolemia and may help minimize muscle loss following debilitating injury.  相似文献   

7.
This study was designed to evaluate the effects of enriching an essential amino acid (EAA) mixture with leucine on muscle protein metabolism in elderly and young individuals. Four (2 elderly and 2 young) groups were studied before and after ingestion of 6.7 g of EAAs. EAAs were based on the composition of whey protein [26% leucine (26% Leu)] or were enriched in leucine [41% leucine (41% Leu)]. A primed, continuous infusion of L-[ring-2H5]phenylalanine was used together with vastus lateralis muscle biopsies and leg arteriovenous blood samples for the determinations of fractional synthetic rate (FSR) and balance of muscle protein. FSR increased following amino acid ingestion in both the 26% (basal: 0.048 +/- 0.005%/h; post-EAA: 0.063 +/- 0.007%/h) and the 41% (basal: 0.036 +/- 0.004%/h; post-EAA: 0.051 +/- 0.007%/h) Leu young groups (P < 0.05). In contrast, in the elderly, FSR did not increase following ingestion of 26% Leu EAA (basal: 0.044 +/- 0.003%/h; post-EAA: 0.049 +/- 0.006%/h; P > 0.05) but did increase following ingestion of 41% Leu EAA (basal: 0.038 +/- 0.007%/h; post-EAA: 0.056 +/- 0.008%/h; P < 0.05). Similar to the FSR responses, the mean response of muscle phenylalanine net balance, a reflection of muscle protein balance, was improved (P < 0.05) in all groups, with the exception of the 26% Leu elderly group. We conclude that increasing the proportion of leucine in a mixture of EAA can reverse an attenuated response of muscle protein synthesis in elderly but does not result in further stimulation of muscle protein synthesis in young subjects.  相似文献   

8.
Physical activity is required to attenuate the loss of skeletal muscle mass with aging. Short periods of muscle disuse, due to sickness or hospitalization, reduce muscle protein synthesis rates, resulting in rapid muscle loss. The present study investigates the capacity of neuromuscular electrical stimulation (NMES) to increase in vivo skeletal muscle protein synthesis rates in older type 2 diabetes patients. Six elderly type 2 diabetic men (70 ± 2 yr) were subjected to 60 min of one-legged NMES. Continuous infusions with l-[ring-(13)C(6)]phenylalanine were applied, with blood and muscle samples being collected regularly to assess muscle protein synthesis rates in both the stimulated (STIM) and nonstimulated control (CON) leg during 4 h of recovery after NMES. Furthermore, mRNA expression of key genes implicated in the regulation of muscle mass were measured over time in the STIM and CON leg. Muscle protein synthesis rates were greater in the STIM compared with the CON leg during recovery from NMES (0.057 ± 0.008 vs. 0.045 ± 0.008%/h, respectively, P < 0.01). Skeletal muscle myostatin mRNA expression in the STIM leg tended to increase immediately following NMES compared with the CON leg (1.63- vs. 1.00-fold, respectively, P = 0.07) but strongly declined after 2 and 4 h of recovery in the STIM leg only. In conclusion, this is the first study to show that NMES directly stimulates skeletal muscle protein synthesis rates in vivo in humans. NMES likely represents an effective interventional strategy to attenuate muscle loss in elderly individuals during bed rest and/or in other disuse states.  相似文献   

9.
The goal of this study was to discover whether using different tracers affects the measured rate of muscle protein synthesis in human muscle. We therefore measured the mixed muscle protein fractional synthesis rate (FSR) in the quadriceps of older adults during basal, postabsorptive conditions and mixed meal feeding (70 mg protein x kg fat-free mass(-1) x h(-1) x 2.5 h) by simultaneous intravenous infusions of [5,5,5-(2)H(3)]leucine and either [ring-(13)C(6)]phenylalanine or [ring-(2)H(5)]phenylalanine and analysis of muscle tissue samples by gas chromatography-mass spectrometry. Both the basal FSR and the FSR during feeding were approximately 20% greater (P < 0.001) when calculated from the leucine labeling in muscle tissue fluid and proteins (fasted: 0.063 +/- 0.005%/h; fed: 0.080 +/- 0.007%/h) than when calculated from the phenylalanine enrichment data (0.051 +/- 0.004 and 0.066 +/- 0.005%/h, respectively). The feeding-induced increase in the FSR ( approximately 20%; P = 0.011) was not different with leucine and phenylalanine tracers (P = 0.69). Furthermore, the difference between the leucine- and phenylalanine-derived FSRs was independent of the phenylalanine isotopomer used (P = 0.92). We conclude that when using stable isotope-labeled tracers and the classic precursor product model to measure the rate of muscle protein synthesis, absolute rates of muscle protein FSR differ significantly depending on the tracer amino acid used; however, the anabolic response to feeding is independent of the tracer used. Thus different precursor amino acid tracers cannot be used interchangeably for the evaluation of muscle protein synthesis, and data from studies using different tracer amino acids can be compared qualitatively but not quantitatively.  相似文献   

10.
Muscle protein turnover following resistance exercise and amino acid availability are relatively well described. By contrast, the beneficial effects of different sources of intact proteins in relation to exercise need further investigation. Our objective was to compare muscle anabolic responses to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after whey and casein intake, both of which were higher compared with control (P < 0.05). Phosphorylation of Akt and p70(S6K) was increased after exercise and protein intake (P < 0.05), but no differences were observed between the types of protein except for total 4E-BP1, which was higher after whey intake than after casein intake (P < 0.05). In conclusion, whey and casein intake immediately after resistance exercise results in an overall equal MPS response despite temporal differences in insulin and amino acid concentrations and 4E-BP1.  相似文献   

11.
Regular aerobic exercise strongly influences muscle metabolism in elderly and young; however, the acute effects of aerobic exercise on protein metabolism are not fully understood. We investigated the effect of a single bout of moderate walking (45 min at approximately 40% of peak O2 consumption) on postexercise (POST-EX) muscle metabolism and synthesis of plasma proteins [albumin (ALB) and fibrinogen (FIB)] in untrained older (n = 6) and younger (n = 6) men. We measured muscle phenylalanine (Phe) kinetics before (REST) and POST-EX (10, 60, and 180 min) using l-[ring-2H5]phenylalanine infusion, femoral arteriovenous blood samples, and muscle biopsies. All data are presented as the difference from REST (at 10, 60, and 180 min POST-EX). Mixed muscle fractional synthesis rate (FSR) increased significantly at 10 min POST-EX in both the younger (0.0363%/h) and older men (0.0830%/h), with the younger men staying elevated through 60 min POST-EX (0.0253%/h). ALB FSR increased at 10 min POST-EX in the younger men only (2.30%/day), whereas FIB FSR was elevated in both groups through 180 min POST-EX (younger men = 4.149, older men = 4.107%/day). Muscle protein turnover was also increased, with increases in synthesis and breakdown in younger and older men. Phe rate of disappearance (synthesis) was increased in both groups at 10 min POST-EX and remained elevated through 60 min POST-EX in the older men. A bout of moderate-intensity aerobic exercise induces short-term increases in muscle and plasma protein synthesis in both younger and older men. Aging per se does not diminish the protein metabolic capacity of the elderly to respond to acute aerobic exercise.  相似文献   

12.
We recently demonstrated that muscle protein synthesis was stimulated to a similar extent in young and elderly subjects during a 3-h amino acid infusion. We sought to determine if a more practical bolus oral ingestion would also produce a similar response in young (34 +/- 4 yr) and elderly (67 +/- 2 yr) individuals. Arteriovenous blood samples and muscle biopsies were obtained during a primed (2.0 micromol/kg) constant infusion (0.05 micromol.kg(-1).min(-1)) of L-[ring-2H5]phenylalanine. Muscle protein kinetics and mixed muscle fractional synthetic rate (FSR) were calculated before and after the bolus ingestion of 15 g of essential amino acids (EAA) in young (n = 6) and elderly (n = 7) subjects. After EAA ingestion, the rate of increase in femoral artery phenylalanine concentration was slower in elderly subjects but remained elevated for a longer period. EAA ingestion increased FSR in both age groups by approximately 0.04%/h (P < 0.05). However, muscle intracellular (IC) phenylalanine concentration remained significantly higher in elderly subjects at the completion of the study (young: 115.6 +/- 5.4 nmol/ml; elderly: 150.2 +/- 19.4 nmol/ml). Correction for the free phenylalanine retained in the muscle IC pool resulted in similar net phenylalanine uptake values in the young and elderly. EAA ingestion increased plasma insulin levels in young (6.1 +/- 1.2 to 21.3 +/- 3.1 microIU/ml) but not in elderly subjects (3.0 +/- 0.6 to 4.3 +/- 0.4 microIU/ml). Despite differences in the time course of plasma phenylalanine kinetics and a greater residual IC phenylalanine concentration, amino acid supplementation acutely stimulated muscle protein synthesis in both young and elderly individuals.  相似文献   

13.
Although the importance of postexercise nutrient ingestion timing has been investigated for glycogen metabolism, little is known about similar effects for protein dynamics. Each subject (n = 10) was studied twice, with the same oral supplement (10 g protein, 8 g carbohydrate, 3 g fat) being administered either immediately (EARLY) or 3 h (LATE) after 60 min of moderate-intensity exercise. Leg blood flow and circulating concentrations of glucose, amino acids, and insulin were similar for EARLY and LATE. Leg glucose uptake and whole body glucose utilization (D-[6,6-2H(2)]glucose) were stimulated threefold and 44%, respectively, for EARLY vs. LATE. Although essential and nonessential amino acids were taken up by the leg in EARLY, they were released in LATE. Although proteolysis was unaffected, leg (L-[ring-2H(5)]phenylalanine) and whole body (L-[1-13C]leucine) protein synthesis were elevated threefold and 12%, respectively, for EARLY vs. LATE, resulting in a net gain of leg and whole body protein. Therefore, similar to carbohydrate homeostasis, EARLY postexercise ingestion of a nutrient supplement enhances accretion of whole body and leg protein, suggesting a common mechanism of exercise-induced insulin action.  相似文献   

14.
We determined the effect of muscle glycogen concentration and postexercise nutrition on anabolic signaling and rates of myofibrillar protein synthesis after resistance exercise (REX). Sixteen young, healthy men matched for age, body mass, peak oxygen uptake (Vo(2peak)) and strength (one repetition maximum; 1RM) were randomly assigned to either a nutrient or placebo group. After 48 h diet and exercise control, subjects undertook a glycogen-depletion protocol consisting of one-leg cycling to fatigue (LOW), whereas the other leg rested (NORM). The next morning following an overnight fast, a primed, constant infusion of l-[ring-(13)C(6)] phenylalanine was commenced and subjects completed 8 sets of 5 unilateral leg press repetitions at 80% 1RM. Immediately after REX and 2 h later, subjects consumed a 500 ml bolus of a protein/CHO (20 g whey + 40 g maltodextrin) or placebo beverage. Muscle biopsies from the vastus lateralis of both legs were taken at rest and 1 and 4 h after REX. Muscle glycogen concentration was higher in the NORM than LOW at all time points in both nutrient and placebo groups (P < 0.05). Postexercise Akt-p70S6K-rpS6 phosphorylation increased in both groups with no differences between legs (P < 0.05). mTOR(Ser2448) phosphorylation in placebo increased 1 h after exercise in NORM (P < 0.05), whereas mTOR increased ~4-fold in LOW (P < 0.01) and ~11 fold in NORM with nutrient (P < 0.01; different between legs P < 0.05). Post-exercise rates of MPS were not different between NORM and LOW in nutrient (0.070 ± 0.022 vs. 0.068 ± 0.018 %/h) or placebo (0.045 ± 0.021 vs. 0.049 ± 0.017 %/h). We conclude that commencing high-intensity REX with low muscle glycogen availability does not compromise the anabolic signal and subsequent rates of MPS, at least during the early (4 h) postexercise recovery period.  相似文献   

15.
We aimed to assess the reliability of the single biopsy approach for calculating muscle protein synthesis rates compared with the well described sequential muscle biopsy approach following a primed continuous infusion of L-[ring-(2)H(5)]phenylalanine and GC-MS analysis in older men. Two separate experimental infusion protocols, with differing stable isotope amino acid incorporation times, were employed consisting of n = 27 (experiment 1) or n = 9 (experiment 2). Specifically, mixed muscle protein FSR were calculated from baseline plasma protein enrichments and muscle protein enrichments obtained at 90 min or 50 min (1BX SHORT), 210 min or 170 min (1BX LONG), and between the muscle protein enrichments obtained at 90 and 210 min or 50 min and 170 min (2BX) of the infusion for experiments 1 and 2, respectively. In experiment 2, we also assessed the error that is introduced to the single muscle biopsy approach when nontracer naive subjects are recruited for participation in a primed continuous infusion of isotope-labeled amino acids. In experiment 1, applying the individual plasma protein enrichment values to the single muscle biopsy approach resulted in no differences in muscle protein FSR between the 1BX SHORT (0.031 ± 0.003%·h(-1)), 1BX LONG (0.032 ± 0.002%·h(-1)), or the 2BX approach (0.034 ± 0.002%·h(-1)). A significant correlation in muscle protein FSR was observed only between the 1BX LONG and 2BX approach (r = 0.8; P < 0.001). Similar results were observed in experiment 2. In addition, using the single biopsy approach in nontracer na?ve state results in a muscle protein FSR that is negative for both the 1BX SHORT (-0.67 ± 0.051%·h(-1)) and 1BX LONG (-0.19 ± 0.051%·h(-1)) approaches. This is the first study to demonstrate that the single biopsy approach, coupled with the background enrichment of L-[ring-(2)H(5)]-phenylalanine of mixed plasma proteins, generates data that are similar to using the sequential muscle biopsy approach in the elderly population.  相似文献   

16.
Decreased dietary protein intake and hemodialysis (HD)-associated protein catabolism are among several factors that predispose chronic hemodialysis (CHD) patients to uremic malnutrition and associated muscle wasting. Intradialytic parenteral nutrition (IDPN) acutely reverses the net negative whole body and forearm muscle protein balances observed during the HD procedure. Exercise has been shown to improve muscle protein homeostasis, especially if performed with adequately available intramuscular amino acids. We hypothesized that exercise performance would provide additive anabolic effects to the beneficial effects of IDPN. We studied six CHD patients at two separate HD sessions: 1) IDPN administration only and 2) IDPN + exercise. Patients were studied 2 h before, during, and 2 h after an HD session by use of a primed constant infusion of l-[1-(13)C]leucine and l-[ring-(2)H(5)] phenylalanine. Exercise combined with IDPN promoted additive twofold increases in forearm muscle essential amino acid uptake (455 +/- 105 vs. 229 +/- 38 nmol.100 ml(-1).min(-1), P < 0.05) and net muscle protein accretion (125 +/- 37 vs. 56 +/- 30 microg.100 ml(-1).min(-1), P < 0.05) during HD compared with IDPN alone. Measurements of whole body protein homeostasis and energy expenditure were not altered by exercise treatment. In conclusion, exercise in the presence of adequate nutritional supplementation has potential as a therapeutic intervention to blunt the loss of muscle mass in CHD patients.  相似文献   

17.
We determined myofibrillar and mitochondrial protein fractional synthesis rates (FSR), intramuscular signaling protein phosphorylation, and mRNA expression responses after isolated bouts of resistance exercise (RE), aerobic exercise (AE), or in combination [termed concurrent exercise (CE)] in sedentary middle-aged men. Eight subjects (age = 53.3 ± 1.8 yr; body mass index = 29.4 ± 1.4 kg·m(2)) randomly completed 8 × 8 leg extension repetitions at 70% of one repetition-maximum, 40 min of cycling at 55% peak aerobic power output (AE), or (consecutively) 50% of the RE and AE trials (CE). Biopsies were obtained (during a primed, constant infusion of l-[ring-(13)C(6)]phenylalanine) while fasted, and at 1 and 4 h following postexercise ingestion of 20 g of protein. All trials increased mitochondrial FSR above fasted rates (RE = 1.3-fold; AE = 1.5; CE = 1.4; P < 0.05), although only CE (2.2) and RE (1.8) increased myofibrillar FSR (P < 0.05). At 1 h postexercise, phosphorylation of Akt on Ser(473) (CE = 7.7; RE = 4.6) and Thr(308) (CE = 4.4; RE = 2.9), and PRAS40 on Thr(246) (CE = 3.8; AE = 2.5) increased (P < 0.05), with CE greater than AE for Akt Ser(473)-Thr(308) and greater than RE for PRAS40 (P < 0.05). Despite increased phosphorylation of Akt-PRAS40, phosphorylation of mammalian target of rapamycin (Ser(2448)) remained unchanged (P > 0.05), while rpS6 (Ser(235/236)) increased only in RE (10.4) (P < 0.05). CE and AE both resulted in increased peroxisome proliferator receptor-γ coactivator 1-α (PGC1α) expression at 1 h (CE = 2.9; AE = 2.8; P < 0.05) and 4 h (CE = 2.6; AE = 2.4) and PGC1β expression at 4 h (CE = 2.1; AE = 2.6; P < 0.05). These data suggest that CE-induced acute stimulation of myofibrillar and mitochondrial FSR, protein signaling, and mRNA expression are equivalent to either isolate mode (RE or AE). These results occurred without an interference effect on muscle protein subfractional synthesis rates, protein signaling, or mRNA expression.  相似文献   

18.
We measured glutamine kinetics using L-[5-15N]glutamine and L-[ring-2H5]phenylalanine infusions in healthy subjects in the postabsorptive state and during ingestion of an amino acid mixture that included glutamine, alone or with additional glucose. Ingestion of the amino acid mixture increased arterial glutamine concentrations by approximately 20% (not by 30%; P < 0.05), irrespective of the presence or absence of glucose. Muscle free glutamine concentrations remained unchanged during ingestion of amino acids alone but decreased from 21.0 +/- 1.0 to 16.4 +/- 1.6 mmol/l (P < 0.05) during simultaneous ingestion of glucose due to a decrease in intramuscular release from protein breakdown and glutamine synthesis (0.82 +/- 0.10 vs. 0.59 +/- 0.06 micromol x 100 ml leg(-1) x min(-1); P < 0.05). In both protocols, muscle glutamine inward and outward transport and muscle glutamine utilization for protein synthesis increased during amino acid ingestion; leg glutamine net balance remained unchanged. In summary, ingestion of an amino acid mixture that includes glutamine increases glutamine availability and uptake by skeletal muscle in healthy subjects without causing an increase in the intramuscular free glutamine pool. Simultaneous ingestion of glucose diminishes the intramuscular glutamine concentration despite increased glutamine availability in the blood due to decreased glutamine production.  相似文献   

19.
Sepsis is a severe catabolic condition. The loss of skeletal muscle protein mass is characterized by enhanced release of the amino acids glutamine and arginine, which (in)directly affects interorgan arginine and the related nitric oxide (NO) synthesis. To establish whether changes in muscle amino acid and protein kinetics are regulated by NO synthesized by nitric oxide synthase-2 or -3 (NOS2 or NOS3), we studied C57BL6/J wild-type (WT), NOS2-deficient (NOS2-/-), and NOS3-deficient (NOS3-/-) mice under control (unstimulated) and lipopolysaccharide (LPS)-treated conditions. Muscle amino acid metabolism was studied across the hindquarter by infusing the stable isotopes L-[ring-2H5]phenylalanine, L-[ring-2H2]tyrosine, L-[guanidino-15N2]arginine, and L-[ureido-13C,2H2]citrulline. Muscle blood flow was measured using radioactive p-aminohippuric acid dilution. Under baseline conditions, muscle blood flow was halved in NOS2-/- mice (P < 0.1), with simultaneous reductions in muscle glutamine, glycine, alanine, arginine release and glutamic acid, citrulline, valine, and leucine uptake (P < 0.1). After LPS treatment, (net) muscle protein synthesis increased in WT and NOS2-/- mice [LPS vs. control: 13 +/- 3 vs. 8 +/- 1 (SE) nmol.10 g(-1).min(-1) (WT), 18 +/- 5 vs. 7 +/- 2 nmol.10 g(-1).min(-1) (NOS2-/-); P < 0.05 for LPS vs. control]. This response was absent in NOS3-/- mice (LPS vs. control: 11 +/- 4 vs. 10 +/- 2 nmol.10 g(-1).min(-1)). In agreement, the increase in muscle arginine turnover after LPS was also absent in NOS3-/- mice. In conclusion, disruption of the NOS2 gene compromises muscle glutamine release and muscle blood flow in control mice, but had only minor effects after LPS. NOS3 activity is crucial for the increase in muscle arginine and protein turnover during early endotoxemia.  相似文献   

20.
The present study was designed to assess the impact of coingestion of various amounts of carbohydrate combined with an ample amount of protein intake on postexercise muscle protein synthesis rates. Ten healthy, fit men (20 +/- 0.3 yr) were randomly assigned to three crossover experiments. After 60 min of resistance exercise, subjects consumed 0.3 g x kg(-1) x h(-1) protein hydrolysate with 0, 0.15, or 0.6 g x kg(-1) x h(-1) carbohydrate during a 6-h recovery period (PRO, PRO + LCHO, and PRO + HCHO, respectively). Primed, continuous infusions with L-[ring-(13)C(6)]phenylalanine, L-[ring-(2)H(2)]tyrosine, and [6,6-(2)H(2)]glucose were applied, and blood and muscle samples were collected to assess whole body protein turnover and glucose kinetics as well as protein fractional synthesis rate (FSR) in the vastus lateralis muscle over 6 h of postexercise recovery. Plasma insulin responses were significantly greater in PRO + HCHO compared with PRO + LCHO and PRO (18.4 +/- 2.9 vs. 3.7 +/- 0.5 and 1.5 +/- 0.2 U.6 h(-1) x l(-1), respectively, P < 0.001). Plasma glucose rate of appearance (R(a)) and disappearance (R(d)) increased over time in PRO + HCHO and PRO + LCHO, but not in PRO. Plasma glucose R(a) and R(d) were substantially greater in PRO + HCHO vs. both PRO and PRO + LCHO (P < 0.01). Whole body protein breakdown, synthesis, and oxidation rates, as well as whole body protein balance, did not differ between experiments. Mixed muscle protein FSR did not differ between treatments and averaged 0.10 +/- 0.01, 0.10 +/- 0.01, and 0.11 +/- 0.01%/h in the PRO, PRO + LCHO, and PRO + HCHO experiments, respectively. In conclusion, coingestion of carbohydrate during recovery does not further stimulate postexercise muscle protein synthesis when ample protein is ingested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号