首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at approximately 20 Angstroms resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes.  相似文献   

2.
Dual localization of proteins at the plasma membrane and within the nucleus has been reported in mammalian cells. Among these proteins are those involved in cell adhesion structures and in clathrin-mediated endocytosis. In the case of endocytic proteins, trafficking to the nucleus is not known to play a role in their endocytic function. Here, we show localization of the yeast endocytic adaptor protein Sla1p to the nucleus as well as to the cell cortex and we demonstrate the importance of specific regions of Sla1p for this nuclear localization. A role for specific karyopherins (importins and exportins) in Sla1p nuclear localization is revealed. Furthermore, endocytosis of Sla1p-dependent cargo is defective in three strains with karyopherin mutations. Finally, we investigate possible functions for nuclear trafficking of endocytic proteins. Our data reveal for the first time that nuclear transport of endocytic proteins is important for functional endocytosis in Saccharomyces cerevisiae. We determine the mechanism, involving an alpha/beta importin pair, that facilitates uptake of Sla1p and demonstrate that nuclear transport is required for the functioning of Sla1p during endocytosis.  相似文献   

3.
4.
Yeast trans-Golgi network (TGN) membrane proteins maintain steady-state localization by constantly cycling to and from endosomes. In this study, we examined the trafficking itinerary and molecular requirements for delivery of a model TGN protein A(F-->A)-alkaline phosphatase (ALP) to the prevacuolar/endosomal compartment (PVC). A(F-->A)-ALP was found to reach the PVC via early endosomes (EEs) with a half-time of approximately 60 min. Delivery of A(F-->A)-ALP to the PVC was not dependent on either the GGA or adaptor protein 1 (AP-1) type of clathrin adaptors, which are thought to function in TGN to PVC and TGN to EE transport, respectively. Surprisingly, in cells lacking the function of both GGA and AP-1 adaptors, A(F-->A)-ALP transport to the PVC was dramatically accelerated. A 12-residue cytosolic domain motif of A(F-->A)-ALP was found to mediate direct binding to AP-1 and was sufficient to slow TGN-->EE-->PVC trafficking. These results suggest a model in which this novel sorting signal targets A(F-->A)-ALP into clathrin/AP-1 vesicles at the EE for retrieval back to the TGN.  相似文献   

5.
The AAA ATPase p97/VCP is involved in many cellular events including ubiquitin-dependent processes and membrane fusion. In the latter, the p97 adaptor protein p47 is of central importance. In order to provide insight into the molecular basis of p97 adaptor binding, we have determined the crystal structure of p97 ND1 domains complexed with p47 C-terminal domain at 2.9 A resolution. The structure reveals that the p47 ubiquitin regulatory X domain (UBX) domain interacts with the p97 N domain via a loop (S3/S4) that is highly conserved in UBX domains, but is absent in ubiquitin, which inserts into a hydrophobic pocket between the two p97 N subdomains. Deletion of this loop and point mutations in the loop significantly reduce p97 binding. This hydrophobic binding site is distinct from the predicted adaptor-binding site for the p97/VCP homologue N-ethylmaleimide sensitive factor (NSF). Together, our data suggest that UBX domains may act as general p97/VCP/CDC48 binding modules and that adaptor binding for NSF and p97 might involve different binding sites. We also propose a classification for ubiquitin-like domains containing or lacking a longer S3/S4 loop.  相似文献   

6.
Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin‐directed AAA‐ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo‐Lysosomal Damage Response. Together, they act downstream of K63‐linked ubiquitination and p62 recruitment, and selectively remove K48‐linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases.  相似文献   

7.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   

8.
9.
Activation of the p38 MAP kinase pathways is crucial for the adaptation of mammalian cells to changes in the osmolarity of the environment. Here we identify SAP97/hDlg, the mammalian homologue of the Drosophila tumour suppressor Dlg, as a physiological substrate for the p38gamma MAP kinase (SAPK3/p38gamma) isoform. SAP97/hDlg is a scaffold protein that forms multiprotein complexes with a variety of proteins and is targeted to the cytoskeleton by its association with the protein guanylate kinase-associated protein (GKAP). The SAPK3/p38gamma-catalysed phosphorylation of SAP97/hDlg triggers its dissociation from GKAP and therefore releases it from the cytoskeleton. This is likely to regulate the integrity of intercellular-junctional complexes, and cell shape and volume in response to osmotic stress.  相似文献   

10.
P Hainaut  J Milner 《The EMBO journal》1992,11(10):3513-3520
In intact cells, hsp70 proteins selectively complex with mutant p53. We report here that rabbit reticulocyte lysate contains hsp70 which selectively complexes with the mutant p53 translated in vitro. Hsp70 complexes with dimers and possibly monomers of p53 in a manner that requires the terminal 28 amino acids of p53. Using murine p53Val135, which is temperature-sensitive for phenotype, we demonstrate that p53-hsp70 complexes can occur after post-translational switching from wild-type to mutant p53 phenotype. Moreover, the temperature-induced switch of full-length p53Val135 from wild-type to mutant phenotype is ATP-independent, whereas the switch from mutant to wild-type form requires ATP hydrolysis and involves hsp70. These results imply that hsp70 is involved in the regulation of p53 conformation.  相似文献   

11.
We previously reported that p97/p47-assisted membrane fusion is important for the reassembly of organelles at the end of mitosis, but not for their maintenance during interphase. We have now identified a p97 adaptor protein, p37, which forms a complex with p97 in the cytosol and localizes to the Golgi and ER. siRNA experiments revealed that p37 is required for Golgi and ER biogenesis. Injection of anti-p37 antibodies into cells at different cell cycle stages showed that p37 plays an important role in both Golgi and ER maintenance during interphase as well as in their reassembly at the end of mitosis. In an in vitro Golgi reassembly assay, the p97/p37 complex has membrane fusion activity. In contrast to the p97/p47 pathway, this pathway requires p115-GM130 tethering and SNARE GS15, but not syntaxin5. Interestingly, although VCIP135 is also required, its deubiquitinating activity is unnecessary for p97/p37-mediated activities.  相似文献   

12.
We recently characterized the interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and the product of the tumor suppressor gene p53. We investigated which domains of human PARP-1 and of human wild-type (wt) p53 were involved in this protein-protein interaction. We generated baculoviral constructs encoding full length or distinct functional domains of both proteins. Full length PARP-1 was simultaneously coexpressed in insect cells with full length wt p53 protein or its distinct truncated fragments and vice versa. Reciprocal immunoprecipitation of Sf9 cell lysates revealed that the central and carboxy-terminal fragments of p53 were sufficient to confer binding to PARP-1, whereas the amino-terminal part harboring the transactivation functional domain was dispensable. On the other hand, the amino-terminal and central fragments of PARP-1 were necessary for complex formation with p53 protein. As the most important features of p53 protein are regulated by phosphorylation, we addressed the question of whether its phosphorylation is essential for binding between the two proteins. Baculovirally expressed wt p53 was post-translationally modified. At least six distinct p53 isomeres were resolved by immunoblotting following two-dimensional separation of baculovirally expressed wt p53 protein. Using specific phospho-serine antibodies, we identified phosphorylation of baculovirally expressed p53 protein at five distinct sites. To define the role of p53 phosphorylation, pull-down assays using untreated and dephosphorylated p53 protein were performed. Dephosphorylated p53 failed to bind PARP-1 indicating that complex formation between both proteins is regulated by phosphorylation of p53. The marked phosphorylation of p53 at Ser392 observed in unstressed cells suggests that the phosphorylated carboxy-terminal part of p53 undergoes complex formation with PARP-1 resulting in masking of the NES and thereby preventing its export. The functional significance of the interaction between both proteins was investigated at two different conditions: inactivation of PARP-1 and overexpression of PARP-1. Our results unequivocally show that the presence of PARP-1 regulates the basal expression of wt p53 in unstressed cells.  相似文献   

13.
14.
Meyer HH  Wang Y  Warren G 《The EMBO journal》2002,21(21):5645-5652
The multiple functions of the p97/Cdc48p ATPase can be explained largely by adaptors that link its activity to different cellular pathways, but how these adaptors recognize different substrates is unclear. Here we present evidence that the mammalian adaptors, p47 and Ufd1-Npl4, both bind ubiquitin conjugates directly and so link p97 to ubiquitylated substrates. In the case of Ufd1-Npl4, which is involved in endoplasmic reticulum (ER)-associated degradation and nuclear envelope reassembly, binding to ubiquitin is mediated through a putative zinc finger in Npl4. This novel domain (NZF) is conserved in metazoa and is both present and functional in other proteins. In the case of p47, which is involved in the reassembly of the ER, the nuclear envelope and the Golgi apparatus, binding is mediated by a UBA domain. Unlike Ufd1-Npl4, it binds ubiquitin only when complexed with p97, and binds mono- rather than polyubiquitin conjugates. The UBA domain is required for the function of p47 in mitotic Golgi reassembly. Together, these data suggest that ubiquitin recognition is a common feature of p97-mediated reactions.  相似文献   

15.
p47 is a major adaptor molecule of the cytosolic AAA ATPase p97. The principal role of the p97-p47 complex is in regulation of membrane fusion events. Mono-ubiquitin recognition by p47 has also been shown to be crucial in the p97-p47-mediated Golgi membrane fusion events. Here, we describe the high-resolution solution structures of the N-terminal UBA domain and the central domain (SEP) from p47. The p47 UBA domain has the characteristic three-helix bundle fold and forms a highly stable complex with ubiquitin. We report the interaction surfaces of the two proteins and present a structure for the p47 UBA-ubiquitin complex. The p47 SEP domain adopts a novel fold with a betabetabetaalphaalphabeta secondary structure arrangement, where beta4 pairs in a parallel fashion to beta1. Based on biophysical studies, we demonstrate a clear propensity for the self-association of p47. Furthermore, p97 N binding abolishes p47 self-association, revealing the potential interaction surfaces for recognition of other domains within p97 or the substrate.  相似文献   

16.
17.
We have investigated p53-E1b 58-kilodalton (kDa) protein complex formation during permissive and semipermissive infections with adenovirus type 5 (Ad5) dl309. While metabolic labeling studies easily detected p53-E1b 58-kDa protein complexes in transformed rat cells (XhoI-C), the same methods have not revealed complexes during infection of either human osteosarcoma cells (permissive) or normal rat kidney cells (semipermissive). Complexes were not detectable at any stage during the replicative cycle of Ad5 dl309 in osteosarcoma cells, and they could not be stabilized by using an in vivo cross-linking agent. In addition, using the E4-defective mutant Ad5 dl355, no complexes were observed either. Thus, the lack of p53-E1b 58-kDa protein complex formation during infection is not due to competition from the E4 34-kDa protein. In vitro association experiments showed that in vitro-translated mouse and human p53 could form complexes with E1b 58-kDa antigen expressed during infection. Thus, such E1b proteins are competent to form complexes. The converse experiment, in which in vitro-translated E1b 58-kDa protein was mixed with lysates of osteosarcoma cells, showed little or no p53-E1b 58-kDa protein association, even though the in vitro E1b 58-kDa protein could associate stably with p53 from cells containing endogenous p53-E1b 58-kDa protein complex. These data suggest that competence to form p53-E1b 58-kDa protein complexes resides in some property of p53.  相似文献   

18.
RanBP1 stabilizes the interaction of Ran with p97 nuclear protein import   总被引:10,自引:3,他引:7  
In this study we tested the hypothesis that fusion mediated by the influenza virus hemagglutinin (HA) is a cooperative event. To so this we characterized 3T3 cell lines that express HA at nine different defined surface densities. HA densities ranged from 1.0 to 12.6 x 10(3) HA trimers/microns2 as determined by quantitative fluorescent antibody binding. The lateral mobility and percent mobile fraction of HA did not vary significantly among these cells, nor did the contact area between HA-expressing cells and target RBCs. The fusion reaction of each HA- expressing cell line was analyzed using a fluorescence dequenching assay that uses octadecylrhodamine (R18)-labeled RBCs. For each cell line we measured the lag time preceding the onset of fusion, the initial rate of fusion, and final extent of fusion. The final extent of fusion was similar for all cell lines, and the initial rate of fusion as a function of HA surface density displayed a Michaelis-Menten-type dependence. However, the dependence of the lag time preceding the onset of fusion on HA surface density was clearly sigmoidal. Kinetic analysis of the data for the reciprocal lag time vs HA surface density, by both a log/log plot and a Hill plot, suggested that the observed sigmoidicity does not reflect cooperativity at the level of formation of HA aggregates as a prerequisite to fusion. Rather, the cooperativity of the process(es) that occur(s) during the lag time arises at a later step and involves a minimum of three, and most likely four, HA trimers. A model is proposed to explain HA cooperativity during fusion.  相似文献   

19.
The gamma-secretase complex, composed of four non-covalently bound transmembrane proteins Presenilin, Nicastrin (NCT), APH-1 and PEN-2, is responsible for the intramembranous cleavage of amyloid precursor protein (APP), Notch and several other type I transmembrane proteins. gamma-Secretase cleavage of APP releases the Abeta peptides, which form the amyloid plaques characteristic of Alzheimer's disease brains, and cleavage of Notch releases an intracellular signalling peptide that is critical for numerous developmental processes. NCT, a type I membrane protein, is the only protein within the complex that is glycosylated. The importance of these glycosylation sites is not fully understood. Here, we have observed that NCT N-linked oligosaccharides mediated specific interactions with the secretory pathway lectins calnexin and ERGIC-53. In order to investigate the role played by N-glycosylation, mutation of each site was performed. All hNCT mutants interacted with calnexin and ERGIC-53, indicating that the association was not mediated by any single N-glycosylation site. Moreover, the interaction with ERGIC-53 still occurred in PS1/2 double knockout cells as detected in immunoprecipitation as well as confocal immunofluorescence microscopy studies, which indicated that NCT interacted with ERGIC-53 prior to its association with the active gamma-secretase complex.  相似文献   

20.
Valosin-containing protein (VCP), also known as p97, is an AAA+ ATPase that plays an essential role in a broad array of cellular processes including the endoplasmic reticulum-associated degradation (ERAD) pathway. Recently, ERAD-specific deubiquitinating enzymes have been reported to be physically associated with VCP, although the exact mechanism is not yet clear. Among these enzymes is ovarian tumor domain-containing protein 1 (OTU1). Here, we report the structural basis for interaction between VCP and OTU1. The crystal structure of the ubiquitin regulatory X-like (UBXL) domain of OTU1 (UBXLOTU1) complexed to the N-terminal domain of VCP (NVCP) at 1.8-Å resolution reveals that UBXLOTU1 adopts a ubiquitin-like fold and binds at the interface of two subdomains of NVCP using the 39GYPP42 loop of UBXLOTU1 with the two prolines in cis- and trans-configurations, respectively. A mutagenesis study shows that this loop is not only critical for the interaction with VCP but also for its role in the ERAD pathway. Negative staining EM shows that one molecule of OTU1 binds to one VCP hexamer, and isothermal titration calorimetry suggests that the two proteins bind with a KD of 0.71 μm. Analytical size exclusion chromatography and isothermal titration calorimetry demonstrates that OTU1 can bind VCP in both the presence and absence of a heterodimer formed by ubiquitin fusion degradation protein 1 and nuclear localization protein 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号