首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodynamic therapy is a moderately invasive therapeutic procedure based on the action of photosensitizers (PSs). These compounds are able to absorb light, and dissipate energy through photochemical processes leading to the production of oxidizing chemical species (singlet oxygen, free radicals or reactive oxygen species) which can damage the cell molecular structures eventually inducing cell death. To increase the entering through the plasma membrane, a PS with suitable chemical structure can be modified by addition of chemical groups (e.g., acetate or phosphate): this affects both the fluorescence emission and of the photosensitizing properties of the native PS. The modified compounds behave as fluorogenic substrates (FSs), since inside the cell the bound groups can be enzymatically removed and the fluorescence and photosensitizing properties of the native molecules are restored. With the aim to detect the subcellular localization of photoactive molecules at transmission electron microscopy, we loaded cultured HeLa cells with two different FSs, Rose Bengal acetate (RB-Ac) or Hypocrellin B acetate (HypB-Ac), and took advantage of the photophysical properties of the intracellularly restored PS molecules to obtain the photoconversion of diaminobenzidine (DAB) into an electrondense product. We demonstrated that RB-Ac and HypB-Ac are mostly internalized by endocytosis, and are converted into the native PSs already at the cell surface. Endocytosed PS molecules apparently follow the endosomes–lysosome route, being found in endosomes, lysosomes and multivescicular bodies; PS molecules were also detected in the cytosol. This ultrastructural localization of the photoactive molecules is fully consistent with the multiorganelle photodamage observed after irradiation in culture of RB-Ac- or HypB-Ac-loaded cells. Due to the very short half-life of the oxidizing chemical species and their limited mobility, DAB deposits do localize in close proximity of the very place where photoactive molecules elicited the production of reactive oxygen species upon light irradiation. Therefore, DAB photoconversion promises to be a suitable tool for directly visualizing in single cells the PS molecules at high resolution, helping to elucidate their mode of penetration into the cell as well as their dynamic intracellular redistribution and organelle targeting.  相似文献   

2.
To elucidate radiobiological effects of hypoxia on X-ray-induced apoptosis, MOLT-4 cells were treated under four set of conditions: (1) both X irradiation and incubation under normoxia, (2) X irradiation under hypoxia and subsequent incubation under normoxia, (3) X irradiation under normoxia and subsequent incubation under hypoxia, and (4) both X irradiation and incubation under hypoxia, and the induction of apoptosis was examined by fluorescence microscopy. About 28–33% apoptosis was observed in cells treated under conditions 1 and 2, but this value was significantly reduced to around 18–20% in cells treated under conditions 3 and 4, suggesting that post-irradiation hypoxic incubation rather than hypoxic irradiation mainly caused the reduction of apoptosis. The activation and expression of apoptosis signal-related molecules SAPK/JNK, Fas and caspase-3 were also suppressed by hypoxic incubation. Effects of hypoxic incubation were canceled when cells were treated under conditions 3 and 4 with an oxygen-mimicking hypoxic cell radiosensitizer, whereas the addition of N-acetyl-L-cysteine again reduced the induction of apoptosis. From these results it was concluded that hypoxia reduced the induction of apoptosis by changing the intracellular redox state, followed by the regulation of apoptotic signals in X-irradiated MOLT-4 cells.  相似文献   

3.
The present study addresses the impact of different aggregation states of meta-tetra(hydroxyphenyl)chlorin (mTHPC) on the photoinactivation of cells. Measurements of the photophysical properties of mTHPC in MCF-7 cells showed progressive sensitizer aggregation with increasing incubation time. Reconstructed absorption spectra of intracellular mTHPC showed a significant decrease in the molar extinction coefficient and broadening of the Soret band at 24 h incubation compared to 3 h. Intracellular photobleaching of mTHPC slowed down, and the profile changed from mono- to bi-exponential upon incubation. Fluorescence lifetime imaging (FLIM) measurements revealed a substantial decrease in the lifetime of mTHPC fluorescence at 24 h compared to 3 h. In addition, the intracellular localization of mTHPC as observed by fluorescence microscopy changed from a diffuse homogeneous fluorescence pattern at short incubation times to a punctiform pattern at 24 h. The efficiency of photodynamic therapy (PDT) assessed by a clonogenic assay was three times greater at 24 h. However, when the survival curves were replotted as a function of the number of absorbed photons, the efficiency was 1.8 times greater at 3 h than at 24 h. The loss of photosensitizing efficiency at higher mTHPC concentrations was attributed to self-quenching of the triplet states of the sensitizers.  相似文献   

4.
The thermal stability of the lipase from Chromobacterium viscosum was assessed by deactivation (loss of activity), fluorescence, circular dichroism (CD) and static light scattering (SLS) measurements. Lipase fluorescence emission is dominated by the tryptophyl contribution. An increase in the tyrosyl contribution from 2 to 16% was only observed upon prolonged incubation at 60 degrees C. The effect of temperature on the tryptophyl quantum yield was studied and two activation energies were calculated. Tryptophan residues in the native structure have an activation energy of 1.9 kcal mol(-1) for temperature-dependent non-radiative deactivation of the excited state. A structural change occurs at approximately 66.7 degrees C and the activation energy increases to 10.2 kcal mol(-1). This structural change is not characterized by tryptophan exposure on the surface of the protein. The deactivation and the evolution of structural changes with time after lipase incubation at 60 degrees C were assessed by fluorescence, CD and SLS measurements. CD spectra show that both secondary and tertiary structures remain native-like after incubation at 60 degrees C in spite of the fluorescence changes observed (red-shift from 330 to 336 nm on the trytophyl emission). SLS measurements together with the CD data show that deactivation may be due to protein association between native molecules. Deactivation and the decrease on the fraction of non-associated native lipase evaluated by changes in fluorescence intensity with time, show apparent first order kinetics. According to the rate constants, fluorescence changes precede deactivation pointing to an underestimation of the deactivation. Reactivation upon dilution during the activity assay and substrate-induced reactivation due to lipase interfacial adsorption are possible causes for this underestimation.  相似文献   

5.
Spectral changes and a sixfold increase in the emission intensity were observed in the fluorescence of a single xanthene probe (Texas red) attached to beta2m-microglobulin (beta2m) upon assembly of beta2m into a ternary complex with mouse H-2Kd heavy chain and influenza nuclear protein peptide. Dissociation of the labeled beta2m from the ternary complex restored the probe's fluorescence and absorption spectra and reduced the emission intensity. Thus changes in xanthene probe fluorescence upon association/dissociation of the labeled beta2m molecule with/from the ternary complex provide a simple and convenient method for studying the assembly/dissociation mechanism of the class I major histocompatibility complex (MHC-I) encoded molecule. The photophysical changes in the probe can be accounted for by the oligomerization of free labeled beta2m molecules. The fluorescence at 610 nm is due to beta2m dimers, where the probes are significantly separated spatially so that their emission and excitation properties are close to those of xanthene monomers. Fluorescence around 630 nm is due to beta2m oligomers where xanthene probes interact. Minima in the steady-state excitation (550 nm) and emission (630 nm) anisotropy spectra correlate with the maxima of the high-order oligomer excitation and emission spectra, showing that their fluorescence is more depolarized. These photophysical features are explained by splitting of the first singlet excited state of interacting xanthene probes that can be modeled by exciton theory.  相似文献   

6.
Photoconvertible fluorescent proteins (PCFPs) are widely used in super-resolution microscopy and studies of cellular dynamics. However, our understanding of their photophysics is still limited, hampering their quantitative application. For example, we do not know the optimal sample preparation methods or imaging conditions to count protein molecules fused to PCFPs by single-molecule localization microscopy in live and fixed cells. We also do not know how the behavior of PCFPs in live cells compares with fixed cells. Therefore, we investigated how formaldehyde fixation influences the photophysical properties of the popular green-to-red PCFP mEos3.2 in fission yeast cells under a wide range of imaging conditions. We estimated photophysical parameters by fitting a three-state model of photoconversion and photobleaching to the time course of fluorescence signal per yeast cell expressing mEos3.2. We discovered that formaldehyde fixation makes the fluorescence signal, photoconversion rate, and photobleaching rate of mEos3.2 sensitive to the buffer conditions likely by permeabilizing the yeast cell membrane. Under some imaging conditions, the time-integrated mEos3.2 signal per yeast cell is similar in live cells and fixed cells imaged in buffer at pH 8.5 with 1 mM DTT, indicating that light chemical fixation does not destroy mEos3.2 molecules. We also discovered that 405-nm irradiation drove some red-state mEos3.2 molecules to enter an intermediate dark state, which can be converted back to the red fluorescent state by 561-nm illumination. Our findings provide a guide to quantitatively compare conditions for imaging mEos3.2-tagged molecules in yeast cells. Our imaging assay and mathematical model are easy to implement and provide a simple quantitative approach to measure the time-integrated signal and the photoconversion and photobleaching rates of fluorescent proteins in cells.  相似文献   

7.
The fluorescence emission spectrum of N-dansyl-S-nitrosohomocysteine was enhanced approximately 8-fold upon removal of the NO group either by photolysis or by transnitrosation with free thiols like glutathione. The fluorescence enhancement was reversible in that it could be quenched in the presence of excess S-nitrosoglutathione. Attempts were then made to utilize N-dansyl-S-nitrosohomocysteine as an intracellular probe of thiols/S-nitrosothiols. Fluorescence microscopy of fibroblasts in culture indicated that intracellular N-dansyl-S-nitrosohomocysteine levels reached a maximum within 5 min. N-Dansyl-S-nitrosohomocysteine fluorescence was directly proportional to intracellular GSH levels, directly determined with HPLC. N-Dansyl-S-nitrosohomocysteine preloaded cells were also sensitive to S-nitrosoglutathione uptake as the intracellular fluorescence decreased as a function of time upon exposure to extracellular S-nitrosoglutathione.  相似文献   

8.
Concanavalin A added to monolayer cultures of Reuber H-35 hepatoma cells caused a rapid inactivation of tyrosine aminotransferase (L-tyrosine:2-oxoglutarate aminotransferase, E.C. 2.6.1.5) and loss of reactivity with antibody against the native, dimeric enzyme. Analysis of treated cells with an antibody raised against carboxymethylated, denatured enzyme showed that the inactivated enzyme was reactive with this reagent, which does not react with the native enzyme. Subsequent addition of alpha-methyl-D-mannopyranoside to remove concanavalin A restored both enzyme activity and reactivity to antibody against native enzyme. After long-term treatment with concanavalin A, the restored enzyme levels were significantly higher than in controls treated with the sugar but not the lectin. Analysis of the turnover of the enzyme by two methods revealed that the rate of its degradation is reduced about 2-fold in concanavalin A-treated cells. Treatment with H-35 cells with concanavalin A thus effects an alteration in conformation of tyrosine aminotransferase, rendering it somewhat less sensitive to intracellular degradation.  相似文献   

9.
Komenda  J. 《Photosynthetica》1998,35(3):477-480
Changes in fluorescence parameters observed during irradiation of the Scenedesmus cells showed that photosystem 2 (PS2) photoinactivation in cells treated with phenolic PS2 inhibitor 2-bromo-3-methyl-6-isopropyl-4-nitrophenol (BNT) was significantly accelerated in comparison with control and DCMU-treated cells. Moreover, a negligible difference in the rate of PS2 photoinactivation in the absence and presence of chloramphenicol indicated that both DCMU and BNT blocked the PS2 repair process.  相似文献   

10.
Rose Bengal (RB) is a very efficient photosensitizer which undergoes inactivation of its photophysical and photochemical properties upon addition of a quencher group—i.e. acetate—to the xanthene rings. The resulting RB acetate (RB-Ac) derivative behaves as a fluorogenic substrate: it easily enters the cells where the native photoactive molecule is restored by esterase activities. It is known that the viability of RB-Ac-loaded cells is strongly reduced by light irradiation, attesting to the formation of intracellular RB. The aim of this study was to identify the organelles photodamaged by the intracellularly formed RB. RB-Ac preloaded rat C6 glioma cells and human HeLa cells were irradiated at 530 nm. Fluorescence confocal imaging and colocalization with specific dyes showed that the restored RB molecules redistribute dynamically through the cytoplasm, with the achievement of a dynamic equilibrium at 30 min after the administration, in the cell systems used; this accounted for a generalized damage to several organelles and cell structures (i.e. the endoplasmic reticulum, the Golgi apparatus, the mitochondria, and the cytoskeleton). The multiple organelle damage, furthermore, led preferentially to apoptosis as demonstrated by light and electron microscopy and by dual-fluorescence staining with FITC-labelled annexin V and propidium iodide.  相似文献   

11.
Goc  J.  Klecha  K.  Waskowiak  A.  Miyake  J.  Frackowiak  D. 《Photosynthetica》2002,40(1):41-48
The polarized absorption, photoacoustic, fluorescence emission, and fluorescence excitation spectra of whole cells of cyanobacteria Synechocystis sp. embedded in a polymer film were measured. The bacteria cells, as it follows from anisotropy of absorption and fluorescence spectra, were even in a non-stretched polyvinyl alcohol film oriented to a certain extent. The measurements were done for such film in order to avoid the deformation of cyanobacteria shapes. Part of the samples was bleached by irradiation with strong polarized radiation with electric vector parallel to the orientation axis of cells. The anisotropy of photoacoustic spectra was higher than that of absorption spectra and it was stronger changed by the irradiation. Polarized fluorescence was excited in four wavelength regions characterised by different contribution to absorption from various bacteria pigments. The shapes of emission spectra were different depending on wavelength of excitation, polarization of radiation, and previous irradiation of the sample. The fluorescence spectra were analysed on Gaussian components belonging to various forms of pigments from photosystems (PS) 1 and 2. The results inform about excitation energy transfer between pools of pigments, differently oriented in the cells. Energy of photons absorbed by phycobilisomes was transferred predominantly to the chlorophyll of PS2, whereas photons absorbed by carotenoids to chlorophylls of PS1.  相似文献   

12.
Two zinc(II) phthalocyanines bearing either four methoxy (ZnPc 3) or trifluoromethylbenzyloxy (ZnPc 4) substituents have been synthesized by a two-step procedure starting from 4-nitrophthalonitrile. Absorption and fluorescence spectroscopic studies were analyzed in different media. These compounds are essentially non-aggregated in the organic solvent. Fluorescence quantum yields (phi(F)) of 0.26 for ZnPc 3 and 0.25 for ZnPc 4 were calculated in tetrahydrofuran (THF). The photodynamic activity of these compounds was compared in both THF containing photooxidizable substrates and in vitro on Hep-2 human larynx-carcinoma cell line. The production of singlet molecular oxygen, O(2)((1)Delta(g)), was determined using 9,10-dimethylanthracene yielding values of approximately 0.56 for both sensitizers. Under these conditions, the addition of beta-carotene (Car) suppresses the O(2)((1)Delta(g))-mediated photooxidation. In biological medium, no dark cytotoxicity was found for cells incubated with 0.1 microM of phthalocyanines 3 and 4 for 24 h. However, under similar conditions 0.5 microM of ZnPc 4 was toxic (70% cell survival). The uptake into Hep-2 cells was evaluated using 0.1muM of sensitizer, reaching values of approximately 0.05 nmol/10(6) cells after 3h of incubation at 37 degrees C. The cell survival after irradiation of the cultures with visible light was dependent upon both light exposure level and intracellular sensitizer concentration. A higher photocytotoxic effect was found for ZnPc 3 with respect to 4 (32%/70% cell survival after 15 min of irradiation). Also, these studies were performed treating the cells with 0.5 microM of ZnPc 3. In this case, an increase in the uptake (approximately 0.28 nmol/10(6) cells) was observed, which is accompanied by a higher photocytotoxic activity (20% cell survival). These results show that even though both sensitizer present similar photophysical properties in homogeneous medium, the photodynamic behavior in cellular media can significantly be changed.  相似文献   

13.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

14.
Different strategies are presented to conjugate a fluorescein moiety to 9- and 10-hydroxystearic acids (HSAs). 5-Amino-fluorescein (5-AF) was used as a starting reagent. When reacted with acyl-chloride-modified HSAs, 5-AF gave rise to stable amide derivatives with a 75% reaction yield. These products exhibited the typical steady-state and time-resolved fluorescence properties of the fluorescein chromophore with absorption at 494 nm and emission at 519 nm. Flow cytometry studies confirmed the distinct proapoptotic effect of underivatized 9-HSA on Jurkat cells and revealed a comparable ability of its amide derivative. Confocal microscopy imaging studies showed that green fluorescence could stain intracellular membranous structures. Moreover, dual-dye labeling with Mito Tracker Red, followed by colocalization analysis, revealed that HSA can move to the mitochondria. Thus, fluorescent derivatives of HSA can be used to monitor the localization of these biologically active molecules in living cells and can provide a useful tool for linking biochemical investigation with optical visualization methods. In contrast, when unmodified HSAs were used, the reaction gave monoesterified and diesterified fluorescein derivatives. These products exhibited unusual steady-state and time-resolved fluorescence properties with the excitation wavelength at 342 nm and the emission wavelength at 432 nm. It is shown that the synthesized HSA amides of fluorescein provide all of the typical photophysical and instrumental advantages of this popular dye, whereas the unusual luminescence and excitation properties of the monoester and diester of the 5-aminofluorescein would make these dyes interesting to explore as potential candidates for two photon excitation applications.  相似文献   

15.
Synthetic peptides are valuable tools in fundamental and applied biomedical research. On one hand, these molecules provide highly efficient access to competitive inhibitors of molecular interactions and enzyme substrates by rational design. On the other hand, peptides may serve as powerful vectors to mediate cellular uptake of molecules that otherwise enter cells only poorly. The coupling of both such functionalities provides access to molecules interfering with molecular processes inside the cell. However, the combination of several functionalities on one synthetic peptide may be compromised by problems associated with the synthesis of long peptides. Native chemical ligation enables the chemoselective coupling of fully deprotected functional building blocks. However, peptide thioesters are still not accessible by standard solid-phase peptide synthesis. Here, we demonstrate the cofunctionalization of a thioester-activated N-hydroxypropyl methacrylamide (HPMA) copolymer (28,500 Da) with the cell-penetrating peptide (CPP) nonaarginine and a bioactive peptide as independent building blocks by native chemical ligation. Nonaarginine was employed as a cell-penetrating peptide (CPP), a fluorescein-labeled analogue of a pro-apoptotic peptide as a biofunctional cargo. Incorporation of the fluorescein label enabled the highly sensitive quantification of the coupling stoichiometry by fluorescence correlation spectroscopy (FCS) using 0.4 pmol/12 ng of labeled construct. A construct only bearing the functional cargo peptide required cellular import by electroporation in order to show activity. In contrast, a construct combining all functionalities was active upon incubation of cells, validating the modular nature of the approach.  相似文献   

16.
17.
The sequential occurrence of plasma and mitochondrial membrane alterations, intra-cellular pH shifts and changes in intracellular Ca2+ concentration after induction of cell death was monitored by flow cytometry in Jurkat and HSB2-cells. Cell death was induced by treatment with anti-Fas antibodies or by irradiation. Phosphatidylserine (PS) exposure and plasma membrane integrity were measured with FITC-Annexin V adhesion and by Propidium Iodide exclusion. Transition of the mitochondrial membrane potential was monitored by the occurrence of decay of DiOC6 fluorescence. Intracellular pH shifts were monitored by changes in the ratio of fluorescence at 575 nm and at 635 nm of SNARF-1-AM. Fluctuations in intracellular Ca2+ concentration were established by changes in Fura red quenching.The Jurkat cells were sensitive to anti-Fas treatment, while HSB-2 cells were not. HSB-2 cells appeared more sensitive to radiation damage than Jurkat cells.In all experiments the transition of mitochondrial membrane potential occurred first, almost immediately followed by PS exposure. Fluctuations in intracellular Ca2+ concentration occurred later and were less outspoken. A decrease in intracellular pH occurred not earlier than 24 hours after anti-Fas treatment. Chelation of intracellular Ca2+ concentration with BAPTA-AM had no effect on the time sequence of cell death related events.  相似文献   

18.
Michael Bradbury  Neil R. Baker 《BBA》1981,635(3):542-551
An analysis of the photo-induced decline in the in vivo chlorophyll a fluorescence emission (Kautsky phenomenon) from the bean leaf is presented. The redox state of PS II electron acceptors and the fluorescence emission from PS I and PS II were monitored during quenching of fluorescence from the maximum level at P to the steady state level at T. Simultaneous measurement of the kinetics of fluorescence emission associated with PS I and PS II indicated that the ratio of PS I/PS II emission changed in an antiparallel fashion to PS II emission throughout the induction curve. Estimation of the redox state of PS II electron acceptors at given points during P to T quenching was made by exposing the leaf to additional excitation irradiation and determining the amount of variable PS II fluorescence generated. An inverse relationship was found between the proportion of PS II electron acceptors in the oxidised state and PS II fluorescence emission. The interrelationships between the redox state of PS II electron acceptors and fluorescence emission from PS I and PS II remained similar when the shape of the induction curve from P to T was modified by increasing the excitation photon flux density. The contributions of photochemical and non-photochemical quenching to the in vivo fluorescence decline from P to T are discussed.  相似文献   

19.
HMA (5-(N,N-hexamethylene)amiloride), which belongs to a family of novel amiloride derivatives, is one of the most effective inhibitors of Na+/H+ exchangers, while uneffective against Na+ channels and Na+/Ca2+ exchangers. In this study, we provided evidence that HMA can act as a fluorescent probe. In fact, human retinal ARPE19 cells incubated with HMA show an intense bluish fluorescence in the cytoplasm when observed at microscope under conventional UV-excitation conditions. Interestingly, a prolonged observation under continuous exposure to excitation lightdoes not induce great changes in cells incubated with HMA for times up to about 5 min, while an unexpected rapid increase in fluorescence signal is observed in cells incubated for longer times. The latter phenomenon is particularly evident in the perinuclear region and in discrete spots in the cytoplasm. Since HMA modulates intracellular acidity, the dependence of its fluorescence properties on medium pH and response upon irradiation have been investigated in solution, at pH 5.0 and pH 7.2. The changes in both spectral shape and amplitude emission indicate a marked pH influence on HMA fluorescence properties, making HMA exploitable as a self biomarker of pH alterations in cell studies, in the absence of perturbations induced by the administration of other exogenous dyes.  相似文献   

20.
A new series of (E)-pyrene oxime ester conjugates of carboxylic acids including amino acids were synthesized by coupling with an environment sensitive fluorophore 1-acetylpyrene. (E)-Pyrene oxime esters exhibited strong fluorescence properties and interestingly their fluorescence properties were found to be highly sensitive to the surrounding environment. Direct irradiation of the (E)-pyrene oxime esters by UV light (≥350 nm) resulted in both the photo-Beckmann rearrangement product and products resulting from N-O bond homolysis. Photoproduct formation and their distribution were found to be solvent dependent. Further, we also showed (E)-pyrene oxime esters intercalated into DNA efficiently and photo-cleaved DNA. Finally we also showed these oxime esters can permeate cells efficiently and may cause cytotoxicity upon irradiation of light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号