首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, the interaction of Pyrogallol (PG) with human serum albumin (HSA) was investigated by UV, fluorescence, Circular dichroism (CD), and molecular docking methods. The results of fluorescence experiments showed that the quenching of intrinsic fluorescence of HSA by PG was due to a static quenching. The calculated binding constants (K) for PG-HSA at different temperatures were in the order of 104?M ?1, and the corresponding numbers of binding sites, n were approximately equal to unity. The thermodynamic parameters, ΔH and ΔS were calculated to be negative, which indicated that the interaction of PG with HSA was driven mainly by van der Waals forces and hydrogen bonds. The negative value was obtained for ΔG showed that the reaction was spontaneous. In addition, the effect of PG on the secondary structure of HSA was analyzed by performing UV–vis, synchronous fluorescence, and CD experiments. The results indicated that PG induced conformational changes in the structure of HSA. According to Förster no-radiation energy transfer theory, the binding distance of HSA to PG was calculated to be 1.93?nm. The results of molecular docking calculations clarified the binding mode and the binding sites which were in good agreement with the results of experiments.

Communicated by Ramaswamy H. Sarma  相似文献   


2.
The binding of ofloxacin (OFLX) to human serum albumin (HSA) was investigated by fluorescence and circular dichroism (CD) techniques. The binding parameters have been evaluated by a fluorescence quenching method. Competitive binding measurements were performed in the presence of warfarin and ibuprofen and suggest binding to the warfarin site I of HSA. The distance r between donor (HSA) and acceptor (OFLX) was estimated according to the Forster's theory of non‐radiatiative energy transfer. CD spectra revealed that the binding of OFLX to HSA induced conformational changes in HSA. Molecular docking was performed and shows that for the lowest energy complex OFLX is located in site I of HSA, which correlate to the competitive binding experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Qin C  Xie MX  Liu Y 《Biomacromolecules》2007,8(7):2182-2189
The interaction mechanism of flavonol myricetin (3,5,7,3',4',5'-hexahydroxyflavone) and human serum albumin (HSA) has been characterized by fluorescence, electronic absorption, and Fourier transform infrared (FT-IR) spectroscopic approaches and the molecular modeling method. The structural characteristics of myricetin and HSA were probed, and their binding affinities were determined under different pH conditions. The results showed that the binding abilities of the drug to protein decreased under lower pH conditions (pH 3.5 and 2.0) due to the alterations of the protein secondary and tertiary structures. The second derivative absorption spectra of myricetin after interacting with the protein showed that the drug existed as an anion form in the binding pocket. The fluorescence emission intensities of the normal and excited-state proton transfer (ESTP) tautomer of myricetin significantly enhanced in the presence of HSA with conspicuous shifts of the emission bands when excited with a wavelength of 370 nm, while the intensity ratios of the normal to ESTP tautomers rose rapidly with the increase of the HSA concentrations under different pH environments. This illustrated that the fluorescence emission of the normal tautomer (S1-S0, non-proton-transferred) predominated due to the interaction of drug and surrounding polar and ionic side chains of amino acid residues in the binding cavity. The similar spectroscopic properties of myricetin-HSA complex at pH 7.4 and 3.5 showed that the drug was located in subdomain IIA of the protein in the vicinity of the single Trp 214 because of the unfolding of the protein domain III in its F state. From the molecular modeling results, the drug-protein complex was stabilized by electrostatic force and hydrogen bonding with the amino acid residue in the binding pocket, which was consistent with the experimental results.  相似文献   

4.
The interaction between the food colorant canthaxanthin (CA) and human serum albumin (HSA) in aqueous solution was explored by using fluorescence spectroscopy, three‐dimensional fluorescence spectra, synchronous fluorescence spectra, UV–vis absorbance spectroscopy, circular dichroism (CD) spectra and molecular docking methods. The thermodynamic parameters calculated from fluorescence spectra data showed that CA could result in the HSA fluorescence quenching. From the KSV change with the temperature dependence, it was concluded that HSA fluorescence quenching triggered by CA is the static quenching and the number of binding sites is one. Furthermore, the secondary structure of HSA was changed with the addition of CA based on the results of synchronous fluorescence, three‐dimensional fluorescence and CD spectra. Hydrogen bonds and van der Waals forces played key roles in the binding process of CA with HSA, which can be obtained from negative standard enthalpy (ΔH) and negative standard entropy (ΔS). Furthermore, the conclusions were certified by molecular docking studies and the binding mode was further analyzed with Discovery Studio. These conclusions can highlight the potential of the interaction mechanism of food additives and HSA.  相似文献   

5.
The interaction between benzophenone (BP) and bovine serum albumin (BSA) was investigated by the methods of fluorescence spectroscopy combined with UV–Vis absorption and circular dichroism (CD) measurements under simulative physiological conditions. The experiment results showed that the fluorescence quenching of BSA by BP was resulted from the formation of a BP–BSA complex and the corresponding association constants (K a) between BP and BSA at four different temperatures had been determined using the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be –43.73 kJ mol−1 and −53.05 J mol−1 K−1, respectively, which suggested that hydrogen bond and van der Waals force played major roles in stabilizing the BP–BSA complex. Site marker competitive experiments indicated that the binding of BP to BSA primarily took place in site I (sub-domain IIA). The conformational investigation showed that the presence of BP decreased the α-helical content of BSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of BSA molecules.  相似文献   

6.
The interaction between Oxaprozin-E and bovine serum albumin (BSA) was studied by spectroscopic methods including fluorescence and UV–vis absorption spectroscopy. The quenching mechanism of fluorescence of BSA by Oxaprozin-E was discussed to be a dynamic quenching procedure. The number of binding sites n and apparent binding constant K was measured by fluorescence quenching method. The thermodynamics parameter ΔH, ΔG, ΔS were calculated. The results indicate the binding reaction was mainly entropy-driven and hydrophobic forces played major role in the binding reaction. The distance r between donor (BSA) and acceptor (Oxaprozin-E) was obtained according to Förster theory of non-radioactive energy transfer.  相似文献   

7.
The interaction between bovine serum albumin (BSA) and benzidine (BD) in aqueous solution was investigated by fluorescence spectroscopy, circular dichroism (CD) spectra and UV–Vis spectroscopy, as well as resonance light scattering spectroscopy (RLS). It was proved from fluorescence spectra that the fluorescence quenching of BSA by BD was a result of the formation of BD–BSA complex, and the binding constants (K a) were determined according to the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ?34.11 kJ mol?1 and ?25.89 J mol?1 K?1, respectively, which implied that van der Waals force and hydrogen bond played predominant roles in the binding process. The addition of increasing BD to BSA solution caused the gradual enhancement in RLS intensity, exhibiting the forming of the aggregate. Moreover, the competitive experiments of site markers suggested that the binding site of BD to BSA was located in the region of subdomain IIA (sudlow site I). The distance (r) between the donor (BSA) and the acceptor (BD) was 4.44 nm based on the Förster theory of non–radioactive energy transfer. The results of synchronous fluorescence and CD spectra demonstrated the microenvironment and the secondary conformation of BSA were changed.  相似文献   

8.
Hesperetin (5,7,3'-trihydroxyl-4'-methoxyl-flavanone) is an important bioactive compound in Chinese traditional medicine and has multiple biological and pharmacological activities. The interaction of hesperetin with human serum albumin (HSA) has been investigated by UV absorption, fluorescence and Fourier transformed infrared spectrometry. Fluorescence results showed that one molecule of protein combined with one molecule of drug at the molar ratio of drug to HSA ranging from 0.3 to 7 and the binding affinity (K(A)) was 8.11x10(4) M(-1). The primary binding site was most likely located on subdomain IIA. The binding ability of the drug to protein decreased from pH 6.4 to 8.4 in the drug to protein molar ratio of 1. Combining the curve-fitting results of infrared amide I band in D2O and H2O phosphate buffers, the alterations of protein secondary structure after drug complexation were estimated. With increasing the drug concentration, the percentage of protein alpha-helix structure decreased gradually. The reduction of protein alpha-helix structure reached about 7-9% after the protein interacted with hesperetin in D2O and H2O buffer solution at pH 7.4 when the drug to protein molar ratio was 10. This indicated a partial unfolding of HSA in the presence of the drug. From the results of UV absorption, fluorescence and Fourier transformed infrared spectrometry, the binding mode was discussed. The main mechanism of protein fluorescence quenching was a static quenching process and the hydroxyl groups of the drug in its neutral part played an important role in the binding process.  相似文献   

9.
In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern–Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 104 L·mol?1. Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA.  相似文献   

10.
The interaction between ribavirin (RIB) with bovine serum albumin (BSA) has been investigated by fluorescence quenching technique in combination with UV–vis absorption and circular dichroism (CD) spectroscopies under the simulative physiological conditions. The quenching of BSA fluorescence by RIB was found to be a result of the formation of RIB–BSA complex. The binding constants and the number of binding sites were calculated at three different temperatures. The values of thermodynamic parameters ?H, ?S, ?G at different temperatures indicate that hydrophobic and hydrogen bonds played important roles for RIB–BSA association. The binding distance r was obtained according to the theory of FÖrster’s non–radiation energy transfer. The displacement experiments was performed for identifying the location of the binding site of RIB on BSA. The effects of common ions on the binding constant of RIB and BSA were also examined. Finally, the conformational changes of BSA in the presence of RIB were also analyzed by CD spectra and Synchronous fluorescence spectra.  相似文献   

11.
A combination of fluorescence, UV–Vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) and molecular modeling approaches were employed to determine the interaction between lysionotin and bovine serum albumin (BSA) at physiological pH. The fluorescence titration suggested that the fluorescence quenching of BSA by lysionotin was a static procedure. The binding constant at 298 K was in the order of 105 L mol?1, indicating that a high affinity existed between lysionotin and BSA. The thermodynamic parameters obtained at different temperatures (292, 298, 304 and 310 K) showed that the binding process was primarily driven by hydrogen bond and van der Waals forces, as the values of the enthalpy change (ΔH°) and entropy change (ΔS°) were found to be ?40.81 ± 0.08 kJ mol?1 and ?35.93 ± 0.27 J mol?1 K?1, respectively. The surface hydrophobicity of BSA increased upon interaction with lysionotin. The site markers competitive experiments revealed that the binding site of lysionotin was in the sub-domain IIA (site I) of BSA. Furthermore, the molecular docking results corroborated the binding site and clarified the specific binding mode. The results of UV–Vis absorption, CD and FT-IR spectra demonstrated that the secondary structure of BSA was altered in the presence of lysionotin.  相似文献   

12.
The interaction between human serum albumin (HSA) and aurantio‐obtusin was investigated by spectroscopic techniques combined with molecular docking. The Stern–Volmer quenching constants (KSV) decreased from 8.56 × 105 M?1 to 5.13 × 105 M?1 with a rise in temperatures from 289 to 310 K, indicating that aurantio‐obtusin produced a static quenching of the intrinsic fluorescence of HSA. Time‐resolved fluorescence studies proved again that the static quenching mechanism was involved in the interaction. The sign and magnitude of the enthalpy change as well as the entropy change suggested involvement of hydrogen bonding and hydrophobic interaction in aurantio‐obtusin–HSA complex formation. Aurantio‐obtusin binding to HSA produced significant alterations in secondary structures of HSA, as revealed from the time‐resolved fluorescence, Fourier transform infrared (FT‐IR) spectroscopy, three‐dimensional (3D) fluorescence and circular dichroism (CD) spectral results. Molecular docking study and site marker competitive experiment confirmed aurantio‐obtusin bound to HSA at site I (subdomain IIA).  相似文献   

13.
The interaction of morin with human serum albumin (HSA) has been investigated by using fluorescence, UV absorption and Fourier transform infrared spectroscopic approaches for the first time. Fluorescence data revealed the presence of a specific binding site on HSA for morin, and the binding affinity was 1.13+/-0.11x10(-5) L Mol(-1) in the physiological condition. The intrinsic fluorescence of morin was conspicuously enhanced in the presence of HSA due to excited-state proton transfer. The binding ability of morin to protein decreased with the increase of the buffer pH from 6.4 to 8.4, which signified that the level of protonation of the hydroxyl groups played an important role during the drug-protein binding process. From the UV absorption spectra of morin in various pH medium, the dissociation behaviors of the hydroxyl groups on the drug molecule were assigned. The second derivative UV absorption spectra of morin after interacting with HSA were used to elucidate the binding mode of morin to protein. The obvious red shift of the UV absorption band I of morin upon binding to HSA further confirmed the formation of HSA-morin complex, and this property was also utilized to estimate the binding constant. The interaction between morin and HSA induced an obvious reduction of the protein alpha-helix and beta-sheet structures.  相似文献   

14.
The characteristics of the interaction between reserpine and bovine serum albumin (BSA) were studied by fluorescence, UV-vis absorption and Fourier transform infrared (FT-IR) spectroscopy. Spectroscopic analysis revealed that fluorescence quenching of BSA by reserpine was through a static quenching procedure. The binding constant K(A) of reserpine with BSA at 293, 301 and 309 K was 1.63, 1.78 and 2.35 x 10(5) moL(-1) L respectively, which indicated degree of binding force between reserpine and BSA. There was one binding site between reserpine and BSA. The entropy and enthalpy changes were positive, indicating that interaction of reserpine and BSA was driven mainly by hydrophobic forces. The average binding distance between the donor (BSA) and the acceptor (reserpine) was about 3.84 nm based on the Forster non-radiation energy transfer theory. Results of synchronous fluorescence and FT-IR spectra indicated that the conformation and microenvironment of BSA were changed by the binding of reserpine. The results may provide important insights into the physiological activity of reserpine.  相似文献   

15.
The interaction between jatrorrhizine (JAT) and bovine serum albumin (BSA) has been studied. The studies were carried out in a buffer medium at pH 7.4 using fluorescence spectroscopy, UV–vis spectroscopy, and molecular modeling methods. The results of fluorescence quenching and UV–vis absorption spectra experiments indicated the formation of the complex of BSA–JAT. Binding parameters were determined using the Stern–Volmer equation and Scatchard equation. The results of thermodynamic parameters ΔG, ΔH and ΔS at different temperatures indicate that the electrostatic interactions and hydrogen bonds play a major role for JAT–BSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that JAT is mainly located within the hydrophobic pocket of the subdomain IIIA of BSA. Furthermore, The distance between donor (BSA) and acceptor (JAT) was estimated according to fluorescence resonance energy transfer.  相似文献   

16.
Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA) using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ~pH 7.2, B form ~pH 9.0 and F form ~pH 3.5) by absorption and fluorescence spectroscopy. There is a considerable quenching of the intrinsic fluorescence of HSA on binding the drug. The distance (r) between donor (Trp214 in HSA) and acceptor (virstatin), obtained from Forster-type fluorescence resonance energy transfer (FRET), was found to be 3.05 nm. The ITC data revealed that the binding was an enthalpy-driven process and the binding constants K(a) for N and B isomers were found to be 6.09×10(5 )M(-1) and 4.47×10(5) M(-1), respectively. The conformational changes of HSA due to the interaction with the drug were investigated from circular dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. For 1:1 molar ratio of the protein and the drug the far-UV CD spectra showed an increase in α- helicity for all the conformers of HSA, and the protein is stabilized against urea and thermal unfolding. Molecular docking studies revealed possible residues involved in the protein-drug interaction and indicated that virstatin binds to Site I (subdomain IIA), also known as the warfarin binding site.  相似文献   

17.
The interactions between the three kinds of naphthalimide‐based anti‐tumor drugs (NADA, NADB, NADC) and human serum albumin (HSA) under simulated physiological conditions were investigated by fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results of the fluorescence quenching spectroscopy showed that the quenching mechanisms for different drugs were static and their affinity was in a descending order of NADA > NADB > NADC. The relative thermodynamic parameters indicated that hydrophobic force was the predominant intermolecular force in the binding of NAD to HSA, while van der Waals interactions and hydrogen bonds could not be ignored. The results of site marker competitive experiment confirmed that the binding site of HSA primarily took place in site I. Furthermore, the molecular modeling study was consistent with these results. The study of circular dichroism spectra demonstrated that the presence of NADs decreased the α‐helical content of HSA and induced the change of the secondary structure of HSA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The interaction between 8-azaguanine (8-Azan) and bovine serum albumin (BSA) in Tris-HCl buffer solutions at pH 7.4 was investigated by means of fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. At 298 K and 310 K, at a wavelength of excitation (λ ex) of 282 nm, the fluorescence intensity decreased significantly with increasing concentrations of 8-Azan. Fluorescence static quenching was observed for BSA, which was attributed to the formation of a complex between 8-Azan and BSA during the binding reaction. This was illuminated further by the UV-Vis absorption spectra and the decomposition of the fluorescence spectra. The thermodynamic parameters ∆G, ∆H, ∆S were calculated. The results showed that the forces acting between 8-Azan and BSA were typical hydrophobic forces, and that the interaction process was spontaneous. The interaction distance r between 8-Azan and BSA, evaluated according to fluorescence resonance energy transfer theory, suggested that there is a high possibility of energy transfer from BSA to 8-Azan. Theoretical investigations based on homology modeling and molecular docking suggested that binding between 8-Azan and BSA is dominated by hydrophilic forces and hydrogen bonding. The theoretical investigations provided a good structural basis to explain the phenomenon of fluorescence quenching between 8-Azan and BSA.  相似文献   

19.
The interaction between cyclophosphamide monohydrate with human serum albumin (HSA) and human serum transferrin (hTf) was studied with UV absorption, fluorescence and circular dichroism (CD) spectroscopies as well as molecular modeling. Based on the fluorescence quenching results, it was determined that HSA and hTf had two classes of apparent binding constants and binding sites at physiological conditions. The K(SV1), K(SV2), n(1) and n(2) values for HSA were found to be 8.6 x 10(8) Lmol(-1), 6.34 x 10(8) Lmol(-1), 0.7 and 0.8, respectively, and the corresponding results for hTf were 6.08 x 10(7) Lmol(-1), 4.65 x 10(7) Lmol(-1), 1.3 and 2.6, respectively. However, the binding affinity of cyclophosphamide monohydrate to HSA was more significant than to hTf. Circular dichroism results demonstrated that the binding of cyclophosphamide to HSA and hTf induced secondary changes in the structure and that the a-helix content became altered into b-sheet, turn and random coil forms. The participation of tyrosyl and tryptophan residues of proteins was also estimated in the drug-HSA and hTf complexes by synchronous fluorescence. The micro-environment of the HSA and hTf fluorophores was transferred to hydrophobic and hydrophilic conditions, respectively. The distance r between donor and acceptor was obtained by the Forster energy according to fluorescence resonance energy transfer (FRET) and found to be 1.84 nm and 1.73 nm for HSA and hTf, respectively. This confirmed the existence of static quenching for both proteins in the presence of cyclophosphamide monohydrate. Site marker competitive displacement experiments demonstrated that cyclophosphamide bound with high affinity to Site II, sub-domain IIIA of HSA, and for hTf, the C-lobe constituted the binding site. Furthermore, a study of molecular modeling showed that cyclophosphamide situated in domain II in HSA was bound through hydrogen bonding with Arg 257 and Ser 287, and that cyclophosphamide was situated in the C-lobe in hTf, presenting hydrogen bonding with Asp 625 and Arg 453. The modeling data thus confirmed the experimental results.  相似文献   

20.
In this work, fluorescence spectroscopy in combination with circular dichroism spectroscopy and molecular modeling was employed to investigate the binding of 10-hydroxycamptothecin (HCPT) to human serum albumin (HSA) under simulative physiological conditions. The experiment results showed that the fluorescence quenching of HSA by HCPT was a result of the formation of HCPT–HSA complex. The corresponding association constants (K a) between HCPT and HSA at four different temperatures were determined according to the modified Stern–Volmer equation. The results of thermodynamic parameters ΔG, ΔH, and ΔS indicated that hydrogen bonds and van der Waals forces played major roles for HCPT–HSA association. Site marker competitive displacement experiment indicated that the binding of HCPT to HSA primarily took place in sub-domain IIA (site I). Molecular docking study further confirmed the binding mode and the binding site obtained by fluorescence and site marker competitive experiments. The conformational investigation showed that the presence of HCPT decreased the α-helical content of HSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of HSA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号