首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
trans-N-Caffeoyltyramine (TNC), which was isolated from the Cortex Lycii in our laboratory, is a phenolic amide compound with multiple pharmacological activities. The interaction between TNC and human serum albumin (HSA) was studied by Nuclear magnetic resonance (NMR) relaxation experiment, fluorescence spectroscopy, and docking simulation. NMR methodology is based on the analysis of selective and non-selective spin-lattice relaxation rate enhancements of TNC protons in the presence of the HSA. Result indicated that the interaction occurred between HSA and TNC, and changed the proton magnetic environment of TNC. Fluorescence spectroscopy confirmed that TNC displayed a strong capability to quench the fluorescence of HSA, and the acting forces for binding were hydrogen bonds and van der Waals forces. Furthermore, the circular dichroism, synchronous, and three-dimensional fluorescence spectra, which were employed to determine the conformation of protein, revealed that binding of TNC with HSA could induce conformational changes in HSA. In addition, the molecular modeling results exhibited that TNC mainly bonded to site I in sub-domain IIA of HSA.  相似文献   

2.
Fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and molecular modeling methods were employed to analyze the binding of glycyrrhetinic acid (GEA) to human serum albumin (HSA) under physiological conditions with GEA concentrations from 4.0x10(-6) to 4.5x10(-5) mol L(-1). The binding of GEA to HSA was via two types of sites: the numbers of binding site for the first type was near 0.45 and for the second type it was approximately 0.75. The binding constants of the second type binding site were lower than those of the first type binding site at corresponding temperatures, the results suggesting that the first type of binding site had high affinity and the second binding site involved other sites with lower binding affinity and selectivity. The fluorescence titration results indicated that GEA quenched the fluorescence intensity of HSA through static mechanism. The FTIR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 26.2% at the drug to protein molar ratio of 3. Thermodynamic analysis showed that hydrogen bonds were the mainly binding force in the first type of binding site, and hydrophobic interactions might play a main role in the second type of binding site. Furthermore, the study of computational modeling indicated that GEA could bind to the site I of HSA and hydrophobic interaction was the major acting force for the second type of binding site, which was in agreement with the thermodynamic analysis.  相似文献   

3.
The interactions between the three kinds of naphthalimide‐based anti‐tumor drugs (NADA, NADB, NADC) and human serum albumin (HSA) under simulated physiological conditions were investigated by fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results of the fluorescence quenching spectroscopy showed that the quenching mechanisms for different drugs were static and their affinity was in a descending order of NADA > NADB > NADC. The relative thermodynamic parameters indicated that hydrophobic force was the predominant intermolecular force in the binding of NAD to HSA, while van der Waals interactions and hydrogen bonds could not be ignored. The results of site marker competitive experiment confirmed that the binding site of HSA primarily took place in site I. Furthermore, the molecular modeling study was consistent with these results. The study of circular dichroism spectra demonstrated that the presence of NADs decreased the α‐helical content of HSA and induced the change of the secondary structure of HSA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Binding of the bioactive component jatrorrhizine to human serum albumin   总被引:2,自引:0,他引:2  
The interaction between Jatrorrhizine with human serum albumin (HSA) were studied by fluorescence quenching technique, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K) are 7.278 x 10(4), 6.526 x 10(4), and 5.965 x 10(4) L.mol(-1) at 296, 303, and 310 K, respectively. The CD spectra and FT-IR spectra have proved that the protein secondary structure changed in the presence of Jatrorrhizine in aqueous solution. The effect of common ions on the binding constants was also investigated. In addition, the thermodynamic functions standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) for the reaction were calculated to be -10.891 kJ.mol(-1) and 56.267 J.mol(-1) K(-1), according to the van't Hoff equation. These data indicated that hydrophobic and electrostatic interactions played a major role in the binding of Jatrorrhizine to HSA. Furthermore, the displacement experiments indicated that Jatrorrhizine could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.  相似文献   

5.
Tian J  Liu J  He W  Hu Z  Yao X  Chen X 《Biomacromolecules》2004,5(5):1956-1961
The binding of scutellarin with human serum albumin (HSA) was investigated at four temperatures, 296, 303, 310, and 318 K, by fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR), and molecular modeling study at pH 7.40. The binding parameters were determined by Scatchard's procedure, which are approximately consistent with the results of Stern-Volmer equation. The thermodynamic parameters were calculated according to the dependence of enthalpy change on the temperature as follows: DeltaH degrees is a small negative value (-8.55 kJ/mol), whereas DeltaS degrees is a positive value (65.15 J/mol K). Quenching of the fluorescence HSA in the presence of scutellarin was observed. Data obtained by fluorescence spectroscopy and CD experiment, FT-IR experiment, and molecular modeling method suggested that scutellarin can strongly bind to the HSA and the primary binding site of scutellarin is located in site I of HSA. It is considered that scutellarin binds to site I (subdomain II) mainly by a hydrophobic interaction and there are hydrogen bond interactions between the scutellarin and the residues Arg222 and Arg257.  相似文献   

6.
5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone is one of the bioactive components isolated from Artemisia plants possessing antitumor therapeutic activities. In this paper, its binding properties and binding sites located on human serum albumin (HSA) have been studied using UV absorption spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectra. The results of fluorescence titration revealed that 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone could strongly quench the intrinsic fluorescence of HSA by static quenching and there was only one class of binding sites on HSA for this drug. The binding constants at four different temperatures (289, 298, 310, and 318 K) were 1.93, 1.56, 1.22, and 0.93x10(5) L mol-1, respectively. The FT-IR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 27.6% at the drug to protein molar ratio of 3. The thermodynamic functions standard enthalpy change (DeltaH0) and standard entropy change (DeltaS0) for the reaction were calculated to be -18.70 kJ mol-1 and 36.62 J mol-1 K-1 according to the van't Hoff equation. These results and the molecular modeling study suggested that hydrophobic interaction was the predominant intermolecular force stabilizing the complex, and 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone could bind to the site I of HSA (the Warfarin Binding site).  相似文献   

7.
Quercetin (Qu), a flavonoid compound, exists widely in the human diet and exhibits a variety of pharmacological activities. This work is aimed at studying the effect of Qu on the bioactive protein, human serum albumin (HSA) under simulated biophysical conditions. Multiple spectroscopic methods (including fluorescence and circular dichroism), electrochemical impedance spectra (EIS) and molecular modeling were employed to investigate the interaction between Qu and HSA. The fluorescence quenching and EIS experimental results showed that the fluorescence quenching of HSA was caused by formation of a Qu–HSA complex in the ground state, which belonged to the static quenching mechanism. Based on the calculated thermodynamic parameters, it concluded that the interaction was a spontaneous process and hydrogen bonds combined with van der Waal's forces played a major role in stabilizing the Qu–HSA complex. Molecular modeling results demonstrated that several amino acids participated in the binding process and the formed Qu–HSA complex was stabilized by H‐bonding network at site I in sub‐domain IIA, which was further confirmed by the site marker competitive experiments. The evidence from circular dichroism (CD) indicated that the secondary structure and microenvironment of HSA were changed. Alterations in the conformation of HSA were observed with a reduction in the amount of α helix from 59.9% (free HSA) to 56% (Qu–HSA complex), indicating a slight unfolding of the protein polypeptides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
利用荧光光谱法、紫外光谱法并结合计算机模拟技术在分子水平上研究了胡椒碱与人血清白蛋白(human serum albumin HSA)的键合作用.同步荧光及紫外光谱图表明,胡椒碱对HSA微环境有影响.位点竞争试验证明,胡椒碱分子键合在HSA的位点Ⅱ区.通过荧光光谱滴定数据求得不同温度下(300K 310K和318 K)药物与蛋白相互作用的结合常数及结合位点数.分子模拟的结果显示了胡椒碱与HSA的键合区域和键合模式,表明药物与蛋白有较强的键合作用;维持药物与蛋白质的相互作用力主要是疏水用,兼有氢键(位于氨基酸残基Arg 257,Arg 222及Arg218位).通过实验数据计算得到的热力学参数(ΔH0与ΔS0的值分别为原33.11 kJ·mol-1和原18.90 J·mol原1·K-1)确定了胡椒碱与HSA分子的相互作用力类型主要为氢键兼范德华力.  相似文献   

9.
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra‐red spectroscopy (FT‐IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern–Volmer quenching constants and binding constants for the MS–HSA system at 293, 298 and 303 K were obtained from the Stern–Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS–HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three‐dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS–HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.  相似文献   

10.
In this work, the interaction of an anti‐HIV drug lamivudine and human serum albumin (HSA) was studied by multispectroscopic and molecular modeling methods. The fluorescence emission spectra showed that the fluorescence of HSA was quenched by lamivudine through static mechanism with HSA‐lamivudine complex produced at ground state. According to the binding equilibriums observed at 4 different temperatures, the number of binding site, binding constant, enthalpy change, entropy change, and Gibbs free energy change of the interaction were calculated. The results indicated that there was only 1 main binding site under present concentration condition, and then, the location of this binding site was ascertained by molecular probe experiments using warfarin and ibuprofen as site markers. The interaction was a spontaneous and exothermic process. Hydrogen bonds and van der Waals force were the major power that fixed lamivudine on Sudlow's site I in subdomain IIA of HSA molecule. The distance between donor and acceptor was determined by Förster's nonradiative fluorescence resonance energy transfer theory. Circular dichroism spectra exhibited the alteration of HSA's secondary structures. Molecular modeling investigation revealed the structure of HSA‐lamivudine complex, including the conformation of lamivudine in binding site, the amino residues close to lamivudine, and the interaction forces between receptor and ligand. The study may be beneficial to therapists in understanding the distribution of lamivudine in vivo and explaining its drug‐resistant mechanism in clinical diagnosis.  相似文献   

11.
The interactions between human serum albumin (HSA) and fluphenazine (FPZ) in the presence or absence of rutin or quercetin were studied by fluorescence, absorption and circular dichroism (CD) spectroscopy and molecular modeling. The results showed that the fluorescence quenching mechanism was static quenching by the formation of an HSA–FPZ complex. Entropy change (ΔS 0) and enthalpy change (ΔH 0) values were 68.42 J/(mol? K) and ?4.637 kJ/mol, respectively, which indicated that hydrophobic interactions and hydrogen bonds played major roles in the acting forces. The interaction process was spontaneous because the Gibbs free energy change (ΔG 0) values were negative. The results of competitive experiments demonstrated that FPZ was mainly located within HSA site I (sub‐domain IIA). Molecular docking results were in agreement with the experimental conclusions of the thermodynamic parameters and competition experiments. Competitive binding to HSA between flavonoids and FPZ decreased the association constants and increased the binding distances of FPZ binding to HSA. The results of absorption, synchronous fluorescence, three‐dimensional fluorescence, and CD spectra showed that the binding of FPZ to HSA caused conformational changes in HSA and simultaneous effects of FPZ and flavonoids induced further HSA conformational changes.  相似文献   

12.
The interaction between the food colorant canthaxanthin (CA) and human serum albumin (HSA) in aqueous solution was explored by using fluorescence spectroscopy, three‐dimensional fluorescence spectra, synchronous fluorescence spectra, UV–vis absorbance spectroscopy, circular dichroism (CD) spectra and molecular docking methods. The thermodynamic parameters calculated from fluorescence spectra data showed that CA could result in the HSA fluorescence quenching. From the KSV change with the temperature dependence, it was concluded that HSA fluorescence quenching triggered by CA is the static quenching and the number of binding sites is one. Furthermore, the secondary structure of HSA was changed with the addition of CA based on the results of synchronous fluorescence, three‐dimensional fluorescence and CD spectra. Hydrogen bonds and van der Waals forces played key roles in the binding process of CA with HSA, which can be obtained from negative standard enthalpy (ΔH) and negative standard entropy (ΔS). Furthermore, the conclusions were certified by molecular docking studies and the binding mode was further analyzed with Discovery Studio. These conclusions can highlight the potential of the interaction mechanism of food additives and HSA.  相似文献   

13.
In this work, fluorescence spectroscopy in combination with circular dichroism spectroscopy and molecular modeling was employed to investigate the binding of 10-hydroxycamptothecin (HCPT) to human serum albumin (HSA) under simulative physiological conditions. The experiment results showed that the fluorescence quenching of HSA by HCPT was a result of the formation of HCPT–HSA complex. The corresponding association constants (K a) between HCPT and HSA at four different temperatures were determined according to the modified Stern–Volmer equation. The results of thermodynamic parameters ΔG, ΔH, and ΔS indicated that hydrogen bonds and van der Waals forces played major roles for HCPT–HSA association. Site marker competitive displacement experiment indicated that the binding of HCPT to HSA primarily took place in sub-domain IIA (site I). Molecular docking study further confirmed the binding mode and the binding site obtained by fluorescence and site marker competitive experiments. The conformational investigation showed that the presence of HCPT decreased the α-helical content of HSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of HSA molecules.  相似文献   

14.
The interaction of Pyronin Y with human serum albumin (HSA) has been investigated systematically by fluorescence, absorption, fluorescence decay lifetime measurements, FTIR, synchronous fluorescence spectroscopy, and molecular modeling method. The spectroscopic and fluorescence quenching experiments show that Pyronin Y may show a static quenching mechanism with HSA. The specific binding distance of 1.96 nm between HSA and Pyronin Y was obtained via Förster non-radiation energy transfer method. The thermodynamic parameters indicate that the electrostatic interactions play a significant role during the binding process. In addition, synchronous fluorescence and FT-IR spectra indicated that the conformation and microenvironment of HSA were not influenced with the addition of Pyronin Y. The obtained results can be of biological significance in photodynamic therapy.  相似文献   

15.
Human serum albumin (HSA) is the major transport protein affording endogenous and exogenous substances in plasma. It can affect the behavior and efficacy of chemicals in vivo through the binding interaction. AKR (3-O-α-l-arabinofuranosyl-kaempferol-7-O-α-l-rhamnopyranoside) is a flavonoid diglycoside with modulation of estrogen receptors (ERs). Herein, we investigated the binding interaction between AKR and HSA by multiple fluorescence spectroscopy and molecular modeling. As a result, AKR specifically binds in site I of HSA through hydrogen bonds, van der Waals force, and electrostatic interaction. The formation of AKR–HSA complex in binding process is spontaneously exothermic and leads to the static fluorescence quenching through affecting the microenvironment around the fluorophores. The complex also affects the backbone of HSA and makes AKR access to fluorophores. Molecular modeling gives the visualization of the interaction between AKR and HSA as well as ERs. The affinity of AKR with HSA is higher than the competitive site marker Warfarin. In addition, docking studies reveal the binding interaction of AKR with ERs through hydrogen bonds, van der Waals force, hydrophobic, and electrostatic interactions. And AKR is more favorable to ERβ. These results unravel the binding interaction of AKR with HSA and mechanism as an ERs modulator.  相似文献   

16.
The interaction between strictosamide (STM) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling under physiological pH 7.4. STM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding site number n and apparent binding constant Ka were determined at different temperatures by fluorescence quenching. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated as ?3.01 kJ/mol and 77.75 J/mol per K, respectively, which suggested that the hydrophobic force played major roles in stabilizing the HSA–STM complex. The distance r between donor and acceptor was obtained to be 4.10 nm according to Förster's theory. After the addition of STM, the synchronous fluorescence and three‐dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the circular dichroism spectral results showed that the α‐helix content of HSA decreased (from 61.48% to 57.73%). These revealed that the microenvironment and conformation of HSA were changed in the binding reaction. Furthermore, the study of molecular modeling indicated that STM could bind to site I of HSA and the hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Allura red (AR) is a widely used colorant in food industry, but may have a potential security risk. In this study, the properties of interaction between AR and human serum albumin (HSA) in vitro were determined by fluorescence, UV–Vis absorption and circular dichroism (CD) spectroscopy combining with multivariate curve resolution–alternating least squares (MCR–ALS) chemometrics and molecular modeling approaches. An expanded UV–Vis data matrix was resolved by MCR–ALS method, and the concentration profiles and pure spectra for the three reaction components (AR, HSA, and AR–HSA complex) of the system were then successfully obtained to evaluate the progress interaction of AR with HSA. The calculated thermodynamic parameters indicated that hydrogen binding and hydrophobic interactions played major roles in the binding process, and the interaction induced a decrease in the protein surface hydrophobicity. The competitive experiments revealed that AR mainly located in Sudlow’s site I of HSA, and this result was further supported by molecular modeling studies. Analysis of CD spectra found that the addition of AR induced the conformational changes of HSA. This study have provided new insight into the mechanism of interaction between AR and HSA.  相似文献   

18.
In this study, fluorescence spectroscopy and molecular modeling approaches were employed to investigate the binding of methotrexate to human serum albumin (HSA) under physiological conditions. From the mechanism, it was demonstrated that fluorescence quenching of HSA by methotrexate results from the formation of a methotrexate/HSA complex. Binding parameters calculated using the Stern–Volmer method and the Scatchard method showed that methotrexate binds to HSA with binding affinities in the order 104 L·mol?1. Thermodynamic parameter studies revealed that the binding reaction is spontaneous, and that hydrogen bonds and van der Waals interactions play a major role in the reaction. Site marker competitive displacement experiments and a molecular modeling approach demonstrated that methotrexate binds with appropriate affinity to site I (subdomain IIA) of HSA. Furthermore, we discuss some factors that influence methotrexate binding to HSA.  相似文献   

19.
The interaction of norgestrel with human serum albumin (HSA) was investigated by spectroscopy and molecular‐docking methods. Results of spectroscopy methods suggested that the quenching mechanism of norgestrel on HSA was static quenching and that the quenching process was spontaneous. Negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that hydrogen bonding and van der Waals forces dominated the binding between norgestrel and HSA. Three‐dimensional fluorescence spectrum and circular dichroism spectrum showed that the HSA structure was slightly changed by norgestrel. Norgestrel mainly bound with Sudlow site I based on a probe study, as confirmed by molecular‐docking results. Competition among similar structures indicated that ethisterone and norethisterone affected the binding of norgestrel with HSA. CH3 in R1 had little effect on norgestrel binding with HSA. The surface hydrophobicity properties of HSA, investigated using 8‐anilino‐1‐naphthalenesulfonic acid, was changed with norgestrel addition.  相似文献   

20.
Fluorescence spectroscopy and molecular simulation were explored to study the interaction between caffeic acid and human serum albumin (HSA). The experimental results indicated that the fluorescence quenching mechanism between caffeic acid and HSA is a static quenching, which was proved again by the analysis of fluorescence lifetime by time‐correlated single photon counting. The binding process is spontaneous and the hydrophobic force is the main force between caffeic acid and HSA. In addition, the binding of caffeic acid to HSA was modeled by molecular dynamics simulations. The root mean square deviations, root mean square fluctuations, radius of gyration and the number of hydrogen bonds of the molecular dynamic (MD) simulation process were analyzed. Both experimental and modeling results demonstrated strong binding between HSA and caffeic acid. HSA had a slight conformational change when it binds with caffeic acid. The obtained information is useful for HSA drug design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号