首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Bacillus stearothermophilus phosphatase PhoE is a member of the cofactor-dependent phosphoglycerate mutase superfamily possessing broad specificity phosphatase activity. Its previous structural determination in complex with glycerol revealed probable bases for its efficient hydrolysis of both large, hydrophobic, and smaller, hydrophilic substrates. Here we report two further structures of PhoE complexes, to higher resolution of diffraction, which yield a better and thorough understanding of its catalytic mechanism. The environment of the phosphate ion in the catalytic site of the first complex strongly suggests an acid-base catalytic function for Glu83. It also reveals how the C-terminal tail ordering is linked to enzyme activation on phosphate binding by a different mechanism to that seen in Escherichia coli phosphoglycerate mutase. The second complex structure with an unusual doubly covalently bound trivanadate shows how covalent modification of the phosphorylable His10 is accompanied by small structural changes, presumably to catalytic advantage. When compared with structures of related proteins in the cofactor-dependent phosphoglycerate mutase superfamily, an additional phosphate ligand, Gln22, is observed in PhoE. Functional constraints lead to the corresponding residue being conserved as Gly in fructose-2,6-bisphosphatases and Thr/Ser/Cys in phosphoglycerate mutases. A number of sequence annotation errors in databases are highlighted by this analysis. B. stearothermophilus PhoE is evolutionarily related to a group of enzymes primarily present in Gram-positive bacilli. Even within this group substrate specificity is clearly variable highlighting the difficulties of computational functional annotation in the cofactor-dependent phosphoglycerate mutase superfamily.  相似文献   

2.
It is now established that the mitochondrial production of formate is a major process in the endogenous generation of folate-linked one-carbon groups. We have developed an in vivo approach involving the constant infusion of [13C]formate until isotopic steady state is attained to measure the rate of endogenous formate production in rats fed on either a folate-replete or folate-deficient diet. Formate was produced at a rate of 76 μmol·h−1·100 g of body weight−1 in the folate-replete rats, and this was decreased by 44% in folate-deficient rats. This decreased formate production was confirmed in isolated rat liver mitochondria where formate production from serine, the principal precursor of one-carbon groups, was decreased by 85%, although formate production from sarcosine and dimethylglycine (choline metabolites) was significantly increased. We attribute this unexpected result to the demonstrated production of formaldehyde by sarcosine dehydrogenase and dimethylglycine dehydrogenase from their respective substrates in the absence of tetrahydrofolate and subsequent formation of formate by formaldehyde dehydrogenase. Comparison of formate production with the ingestion of dietary formate precursors (serine, glycine, tryptophan, histidine, methionine, and choline) showed that ∼75% of these precursors were converted to formate, indicating that formate is a significant, although underappreciated end product of choline and amino acid oxidation. Ingestion of a high protein diet did not result in increased production of formate, suggesting a regulation of the conversion of these precursors at the mitochondrial level to formate.  相似文献   

3.
The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5′-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from l-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in ΔcsdA and ΔsufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号