首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The role of podocytes in the development and progression of glomerular disease has been extensively investigated in the past decade. However, the importance of glomerular endothelial cells in the pathogenesis of proteinuria and glomerulosclerosis has been largely ignored. Recent studies have demonstrated that endothelial nitric oxide synthatase (eNOS) deficiency exacerbates renal injury in anti-GBM and remnant kidney models and accelerates diabetic kidney damage. Increasing evidence also demonstrates the importance of the glomerular endothelium in preventing proteinuria. We hypothesize that endothelial dysfunction can initiate and promote the development and progression of glomerulopathy. Administration of adriamycin (ADR) to C57BL/6 mice, normally an ADR resistant strain, with an eNOS deficiency induced overt proteinuria, severe glomerulosclerosis, interstitial fibrosis and inflammation. We also examined glomerular endothelial cell and podocyte injury in ADR-induced nephropathy in Balb/c mice, an ADR susceptible strain, by immunostaining, TUNEL and Western blotting. Interestingly, down-regulation of eNOS and the appearance of apoptotic glomerular endothelial cells occurred as early as 24 hours after ADR injection, whilst synaptopodin, a functional podocyte marker, was reduced 7 days after ADR injection and coincided with a significant increase in the number of apoptotic podocytes. Furthermore, conditioned media from mouse microvascular endothelial cells over-expressing GFP-eNOS protected podocytes from TNF-α-induced loss of synaptopodin. In conclusion, our study demonstrated that endothelial dysfunction and damage precedes podocyte injury in ADR-induced nephropathy. Glomerular endothelial cells may protect podocytes from inflammatory insult. Understanding the role of glomerular endothelial dysfunction in the development of kidney disease will facilitate in the design of novel strategies to treat kidney disease.  相似文献   

2.
Nicorandil exhibits a protective effect in the vascular system, which is thought to be due to vasodilatation from opening ATP-dependent potassium channels and donation of nitric oxide. Recently, nicorandil was shown to be renoprotective in models of acute kidney injury and glomerulonephritis. However, the specific mechanisms of renoprotection are unclear. We evaluated the effect of nicorandil on the rat remnant kidney model of chronic kidney disease. Blood pressure was unchanged by a 10-wk course of nicorandil, while albuminuria was significantly reduced. Glomerular injury and tubulointerstitial injury were also ameliorated by nicorandil. Oxidative stress, as noted by renal nitrotyrosine level and urine 8-hydroxy-2'-deoxyguanosine, were elevated in this model and was significantly reduced by nicorandil treatment. Treatment was associated with maintenance of the mitochondrial antioxidant, manganese SOD, in podocytes and with suppression of xanthine oxidase expression in infiltrating macrophages. Interestingly, these two cell types express sulfonylurea receptor 2 (SUR2), a binding site of nicorandil in the ATP-dependent K channel. Consistently, we found that stimulating SUR2 with nicorandil prevented angiotensin II-mediated upregulation of xanthine oxidase in the cultured macrophage, while xanthine oxidase expression was rather induced by blocking SUR2 with glibenclamide. In conclusion, nicorandil reduces albuminuria and ameliorates renal injury by blocking oxidative stress in chronic kidney disease.  相似文献   

3.
Glomerular podocytes are pivotal in maintaining glomerular filtration barrier function. As severe podocyte injury results in proteinuria in patients with diabetic nephropathy, determining the pathogenesis of podocyte injury may contribute to the development of new treatments. We recently showed that autophagy is involved in the pathogenesis of diabetes-related podocyte injury. Insufficient podocyte autophagy and podocyte loss are observed in diabetic patients with massive proteinuria. Podocyte loss and massive proteinuria occur in high-fat diet-induced diabetic mice with podocyte-specific autophagy deficiency, with podocytes of these mice and of diabetic rats having huge damaged lysosomes. Sera from diabetic patients and from rodents with massive proteinuria cause autophagy insufficiency, resulting in lysosome dysfunction and apoptosis of cultured podocytes. These findings suggest the importance of autophagy in maintaining lysosome homeostasis in podocytes under diabetic conditions. Impaired autophagy may be involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy.  相似文献   

4.

Background

Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes.

Methods

Male Sprague-Dawley rats (6 weeks old) were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days) to induce diabetes. Nicorandil (15 mg/kg/day) and tempol (20 mg/kg/day, superoxide dismutase mimetic) were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD) in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs) were treated with high glucose (35.6 mM, 24 h) and reactive oxygen species (ROS) production with or without L-NAME (300 μM), apocynin (100 μM) or nicorandil (100 μM) was measured using fluorescent probes.

Results

Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7). There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6). Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil suggesting that eNOS itself might serve as a superoxide source under high-glucose conditions and that nicorandil might prevent ROS production from eNOS.

Conclusions

These results suggest that nicorandil improved diabetes-induced endothelial dysfunction through antioxidative effects by inhibiting NADPH oxidase and eNOS uncoupling.  相似文献   

5.
Sahara M  Sata M  Morita T  Hirata Y  Nagai R 《PloS one》2012,7(3):e33367

Background

An antianginal KATP channel opener nicorandil has various beneficial effects on cardiovascular systems; however, its effects on pulmonary vasculature under pulmonary arterial hypertension (PAH) have not yet been elucidated. Therefore, we attempted to determine whether nicorandil can attenuate monocrotaline (MCT)-induced PAH in rats.

Materials and Methods

Sprague-Dawley rats injected intraperitoneally with 60 mg/kg MCT were randomized to receive either vehicle; nicorandil (5.0 mg·kg−1·day−1) alone; or nicorandil as well as either a KATP channel blocker glibenclamide or a nitric oxide synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME), from immediately or 21 days after MCT injection. Four or five weeks later, right ventricular systolic pressure (RVSP) was measured, and lung tissue was harvested. Also, we evaluated the nicorandil-induced anti-apoptotic effects and activation status of several molecules in cell survival signaling pathway in vitro using human umbilical vein endothelial cells (HUVECs).

Results

Four weeks after MCT injection, RVSP was significantly increased in the vehicle-treated group (51.0±4.7 mm Hg), whereas it was attenuated by nicorandil treatment (33.2±3.9 mm Hg; P<0.01). Nicorandil protected pulmonary endothelium from the MCT-induced thromboemboli formation and induction of apoptosis, accompanied with both upregulation of endothelial NOS (eNOS) expression and downregulation of cleaved caspase-3 expression. Late treatment with nicorandil for the established PAH was also effective in suppressing the additional progression of PAH. These beneficial effects of nicorandil were blocked similarly by glibenclamide and l-NAME. Next, HUVECs were incubated in serum-free medium and then exhibited apoptotic morphology, while these changes were significantly attenuated by nicorandil administration. Nicorandil activated the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) pathways in HUVECs, accompanied with the upregulation of both eNOS and Bcl-2 expression.

Conclusions

Nicorandil attenuated MCT-induced vascular endothelial damage and PAH through production of eNOS and anti-apoptotic factors, suggesting that nicorandil might have a promising therapeutic potential for PAH.  相似文献   

6.
Rationale: Recent studies have demonstrated that the loss of podocyte is a critical event in diabetic nephropathy (DN). Previously, our group have found that the mitotic arrest deficient protein MAD2B was involved in high glucose (HG)-induced podocyte injury by regulating APC/C activity. However, the exact mechanism of MAD2B implicated in podocyte injury is still lacking.Methods: The experiments were conducted by using kidney tissues from streptozotocin (STZ) induced diabetic mice with or without podocyte-specific deletion of MAD2B and the cultured podocytes exposed to different treatments. Glomerular pathological injury was evaluated by periodic acid-Schiff staining and transmission electron microscopy. The endogenous interaction between MAD2B and Numb was discovered by yeast two-hybrid analysis and co-immunoprecipitation assay. The expressions of MAD2B, Numb and related pathway were detected by western blot, immunochemistry and immunofluorescence.Results: The present study revealed that MAD2B was upregulated in diabetic glomeruli and cultured podocytes under hyperglycemic conditions. Podocyte-specific deletion of MAD2B alleviated podocyte injury and renal function deterioration in mice of diabetic nephropathy. Afterwards, MAD2B was found to interact with Numb, which was downregulated in diabetic glomeruli and HG-stimulated cultured podocytes. Interestingly, MAD2B genetic deletion could partly reverse the decline of Numb in podocytes exposed to HG and in diabetic mice, and the expressions of Numb downstream molecules such as NICD and Hes-1 were decreased accordingly. In addition, overexpression of Numb ameliorated HG-induced podocyte injury.Conclusions: The present findings suggest that upregulated MAD2B expression contributes to Numb depletion and activation of Notch 1 signaling pathway, which ultimately leads to podocyte injury during DN progression.  相似文献   

7.
AimsIdentifying the mechanisms that underlie progression from endothelial damage to podocyte damage, which leads to massive proteinuria, is an urgent issue that must be clarified to improve renal outcome in diabetic kidney disease (DKD). We aimed to examine the role of dynamin-related protein 1 (Drp1)-mediated regulation of mitochondrial fission in podocytes in the pathogenesis of massive proteinuria in DKD.MethodsDiabetes- or albuminuria-associated changes in mitochondrial morphology in podocytes were examined by electron microscopy. The effects of albumin and other diabetes-related stimuli, including high glucose (HG), on mitochondrial morphology were examined in cultured podocytes. The role of Drp1 in podocyte damage was examined using diabetic podocyte-specific Drp1-deficient mice treated with neuraminidase, which removes endothelial glycocalyx.ResultsNeuraminidase-induced removal of glomerular endothelial glycocalyx in nondiabetic mice led to microalbuminuria without podocyte damage, accompanied by reduced Drp1 expression and mitochondrial elongation in podocytes. In contrast, streptozotocin-induced diabetes significantly exacerbated neuraminidase-induced podocyte damage and albuminuria, and was accompanied by increased Drp1 expression and enhanced mitochondrial fission in podocytes. Cell culture experiments showed that albumin stimulation decreased Drp1 expression and elongated mitochondria, although HG inhibited albumin-associated changes in mitochondrial dynamics, resulting in apoptosis. Podocyte-specific Drp1-deficiency in mice prevented diabetes-related exacerbation of podocyte damage and neuraminidase-induced development of albuminuria. Endothelial dysfunction-induced albumin exposure is cytotoxic to podocytes. Inhibition of mitochondrial fission in podocytes is a cytoprotective mechanism against albumin stimulation, which is impaired under diabetic condition. Inhibition of mitochondrial fission in podocytes may represent a new therapeutic strategy for massive proteinuria in DKD.  相似文献   

8.
Nicorandil (N-(2-hydroxyethyl)nicotinamide nitrate) is an antianginal drug, which activates guanylyl cyclase and opens the ATP-dependent K+ channels, actions that have been suggested to mediate its vasodilator activity. We synthesized nicorandil and its two isomers, which vary in the positions of the side chain containing the nitric oxide (NO) donor, and also their corresponding denitrated metabolites. The activities of these compounds were evaluated in an experimental model of pain in mice. Pharmacokinetic parameters of nicorandil and its isomers, as well as the plasma concentrations of the corresponding denitrated metabolites and also nicotinamide and nitrite were determined. Nicorandil exhibited the highest antinociceptive activity, while the ortho-isomer was the least active. Nicorandil and para-nicorandil, which induced higher plasma concentrations of nitrite, exhibited higher antinociceptive activity, which suggests that the release of NO may mediate this activity.  相似文献   

9.
10.
Podocyte injuries are associated with progression of diabetic nephropathy (DN). Apelin, an adipocyte‐derived peptide, has been reported to be a promoting factor for DN. In this study, we aim to determine whether apelin promotes progression of DN by inducing podocyte dysfunction. kk‐Ay mice were used as models for DN. Apelin and its antagonist, F13A were intraperitoneally administered for 4 weeks, respectively. Renal function and foot process proteins were analysed to evaluate the effects of apelin on kk‐Ay mice and podocytes. Apelin increased albuminuria and decreased podocyte foot process proteins expression in kk‐Ay mice, which is consistent with the results that apelin receptor (APLNR) levels increased in glomeruli of patients or mice with DN. In cultured podocytes, high glucose increased APLNR expression and apelin administration was associated with increased permeability and decreased foot process proteins levels. All these dysfunctions were associated with decreased 26S proteasome activities and increased polyubiquitinated proteins in both kk‐Ay mice and cultured podocytes, as demonstrated by 26S proteasome activation with cyclic adenosine monophosphate (cAMP) or oleuropein. These effects seemed to be related to endoplasmic reticulum (ER) stress, as apelin increased C/EBP homologous protein (CHOP) and peiFα levels while cAMP or oleuropein reduced it in high glucose and apelin treated podocytes. These results suggest that apelin induces podocyte dysfunction in DN through ER stress which was induced by decreased proteasome activities in podocytes.  相似文献   

11.
Wu Y  Zhang C  Dong Y  Wang S  Song P  Viollet B  Zou MH 《PloS one》2012,7(4):e35508
The aim of the present study was to test the hypothesis that the cardiovascular-protective effects of eicosapentaenoic acid (EPA) may be due, in part, to its ability to stimulate the AMP-activated protein kinase (AMPK)-induced endothelial nitric oxide synthase (eNOS) activation. The role of AMPK in EPA-induced eNOS phosphorylation was investigated in bovine aortic endothelial cells (BAEC), in mice deficient of either AMPKα1 or AMPKα2, in eNOS knockout (KO) mice, or in Apo-E/AMPKα1 dual KO mice. EPA-treatment of BAEC increased both AMPK-Thr172 phosphorylation and AMPK activity, which was accompanied by increased eNOS phosphorylation, NO release, and upregulation of mitochondrial uncoupling protein-2 (UCP-2). Pharmacologic or genetic inhibition of AMPK abolished EPA-enhanced NO release and eNOS phosphorylation in HUVEC. This effect of EPA was absent in the aortas isolated from either eNOS KO mice or AMPKα1 KO mice fed a high-fat, high-cholesterol (HFHC) diet. EPA via upregulation of UCP-2 activates AMPKα1 resulting in increased eNOS phosphorylation and consequent improvement of endothelial function in vivo.  相似文献   

12.
13.
Inflammatory bowel disease (IBD) is a chronic inflammatory condition with an unknown etiology. Nicorandil, a potassium channel opener, has been used for many years for the treatment of angina. Recently, it has been shown that nicorandil possesses some novel traits such as anti-apoptotic, gastroprotective, free radical scavenging, and anti-inflammatory properties. Therefore, we set out to examine the possible beneficial effect of nicorandil in a rat model of IBD. Colitis was induced by rectal administration of 2,4,6-trintrobenzene sulphonic acid (TNBS) into rats. Groups of animals used in this study were sham, control, and exposure to dexamethasone, nicorandil, glibenclamid (a pure adenosine triphosphate sensitive potassium channel (KATP) blocker), or nicorandil plus glibenclamid. Drugs were administered by gavage and animals were sacrificed after 7 days. Biochemical markers, including TNF-α and IL-1β, ferric reducing/antioxidant power (FRAP), myeloperoxidase (MPO) activity and thiobarbitoric acid-reactive substance (TBARS), were measured in the homogenate of colonic tissue. Results indicate that nicorandil significantly reduces macroscopic and histological damage induced by TNBS. Nicorandil diminishes MPO activity and levels of TBARS, TNF-∢, and IL-1β in damaged colonic tissue with a concomitant increase in FRAP value (P<0.01). These effects were not reversed by coadministration of glibenclamide. In conclusion, nicorandil is able to ameliorate experimental IBD with a dose in which it does not show any anti-hypertensive effect, and the mechanism of which is partially or totally independent from KATP channels. It is hypothesized that nitric oxide donation and free-radical scavenging properties of nicorandil upregulate endothelial nitric oxide synthase may be responsible for this phenomenon. These findings suggest that nicorandil can be useful in treatment of IBD, although further investigations are needed to elucidate the mechanisms involved.  相似文献   

14.
Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/-)) is associated with activation of the platelet derived growth factor (PDGF) signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/-) mice. Moreover, nitric oxide (NO) negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.  相似文献   

15.
Podocyte injury is associated with albuminuria and the progression of diabetic nephropathy (DN). NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and NOX4 is up-regulated in podocytes in response to high glucose. In the present study, the effects of Salvianolate on DN and its underlying mechanisms were investigated in diabetic db/db mice and human podocytes. We confirmed that the Salvianolate administration exhibited similar beneficial effects as the NOX1/NOX4 inhibitor GKT137831 treated diabetic mice, as reflected by attenuated albuminuria, reduced podocyte loss and mesangial matrix accumulation. We further observed that Salvianolate attenuated the increase of Nox4 protein, NOX4-based NADPH oxidase activity and restored podocyte loss in the diabetic kidney. In human podocytes, NOX4 was predominantly localized to mitochondria and Sal B treatment blocked HG-induced mitochondrial NOX4 derived superoxide generation and thereby ameliorating podocyte apoptosis, which can be abrogated by AMPK knockdown. Therefore, our results suggest that Sal B possesses the reno-protective capabilities in part through AMPK-mediated control of NOX4 expression. Taken together, our results identify that Salvianolate could prevent glucose-induced oxidative podocyte injury through modulation of NOX4 activity in DN and have a novel therapeutic potential for DN.  相似文献   

16.
The kallikrein-kinin system (KKS) serves as the physiologic counterbalance to the renin-angiotensin system. This study was conducted to examine the changes in the expression of KKS components in podocytes under diabetic conditions and to elucidate the functional role of bradykinin (BK) in diabetes-associated podocyte apoptosis. Thirty-two rats were injected with either diluent (n = 16, C) or with streptozotocin intraperitoneally (n = 16, DM), and 8 rats from each group were treated with BK infusion for 6 weeks. Immortalized mouse podocytes were cultured in media containing 5.6 mmol/l glucose (NG), NG + 10(-7) mol/l AII (AII), or 30 mmol/l glucose (HG) with or without 10(-8) mol/l BK. Urinary albumin excretion was significantly higher in DM rats, and this increase was ameliorated by BK. Not only kininogen, kallikrein, and BK B1- and B2-receptor expression but also BK levels were significantly decreased in DM glomeruli and in cultured podocytes exposed to HG. The changes in the expressions of apoptosis-related molecules and the increase in the number of apoptotic cells in DM glomeruli as well as in HG- and AII-stimulated podocytes were significantly abrogated by BK. The suppressed KSS within podocytes under diabetic condition was associated with podocyte apoptosis, suggesting that BK may be beneficial in preventing podocyte loss in diabetic nephropathy.  相似文献   

17.
Systemic lupus erythematosus (SLE) patients display impaired endothelial nitric oxide synthase (eNOS) function required for normal vasodilatation. SLE patients express increased compensatory activity of inducible nitric oxide synthase (iNOS) generating excess nitric oxide that may result in inflammation. We examined the effects of genetic deletion of NOS2 and NOS3, encoding iNOS and eNOS respectively, on accelerated vascular disease in MRL/lpr lupus mouse model. NOS2 and NOS3 knockout (KO) MRL/lpr mice had higher plasma levels of triglycerides (23% and 35%, respectively), ceramide (45% and 21%, respectively), and sphingosine 1-phosphate (S1P) (21%) compared to counterpart MRL/lpr controls. Plasma levels of the anti-inflammatory cytokine interleukin 10 (IL-10) in NOS2 and NOS3 KO MRL/lpr mice were lower (53% and 80%, respectively) than counterpart controls. Nodule-like lesions in the adventitia were detected in aortas from both NOS2 and NOS3 KO MRL/lpr mice. Immunohistochemical evaluation of the lesions revealed activated endothelial cells and lipid-laden macrophages (foam cells), elevated sphingosine kinase 1 expression, and oxidized low-density lipoprotein immune complexes (oxLDL-IC). The findings suggest that advanced vascular disease in NOS2 and NOS3 KO MRL/lpr mice maybe mediated by increased plasma triglycerides, ceramide and S1P; decreased plasma IL-10; and accumulation of oxLDL-IC in the vessel wall. The results expose possible new targets to mitigate lupus-associated complications.  相似文献   

18.
Nicorandil exerts myocardial protection through its antihypoxia and antioxidant effects. Here, we investigated whether it plays an anti‐apoptotic role in diabetic cardiomyopathy. Sprague‐Dawley rats were fed with high‐fat diet; then single intraperitoneal injection of streptozotocin was performed. Rats with fasting blood glucose (FBG) higher than 11.1 mmol/L were selected as models. Eight weeks after the models were built, rats were treated with nicorandil (7.5 mg/kg day and 15 mg/kg day respectively) for 4 weeks. H9c2 cardiomyocytes were treated with nicorandil and then stimulated with high glucose (33.3 mmol/L). TUNEL assay and level of bcl‐2, bax and caspase‐3 were measured. 5‐HD was used to inhibit nicorandil. Also, PI3K inhibitor (Miltefosine) and mTOR inhibitor (rapamycin) were used to inhibit PI3K/Akt pathway. The results revealed that nicorandil (both 7.5 mg/kg day and 15mg/kg day) treatment can increase the level of NO in the serum and eNOS in the heart of diabetic rats compared with the untreated diabetic group. Nicorandil can also improve relieve cardiac dysfunction and reduce the level of apoptosis. In vitro experiments, nicorandil (100 µmol) can attenuate the level of apoptosis stimulated by high glucose significantly in H9C2 cardiomyocyte compared with the untreated group. The effect of nicorandil on apoptosis was blocked by 5‐HD, and it was accompanied with inhibition of the phosphorylation of PI3K, Akt, eNOS, and mTOR. After inhibition of PI3K/Akt pathway, the protective effect of nicorandil is restrained. These results verified that as a NO donor, nicorandil can also inhibit apoptosis in diabetic cardiomyopathy which is mediated by PI3K/Akt pathway.  相似文献   

19.
We attempted to clarify the effects of cyclohexenonic long-chain fatty alcohol (N-hexacosanol) on nitric oxide synthase (NOS) in streptozotocin-induced diabetic nephropathy. After induction of experimental diabetes with streptozotocin, rats were maintained for 8 weeks with or without treatment by N-hexacosanol (8 mg/kg i.p. every day). Urinary albumin excretion, blood chemistry, immunoblot analysis, and real-time polymerase chain reactions (real-time PCR) of endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS) were investigated. Although N-hexacosanol had no effects on serum glucose or insulin level, it normalized serum creatinine and urinary albumin excretion. N-hexacosanol was found to improve the diabetes-induced alterations in the eNOS, iNOS, and nNOS protein and their mRNA levels. Histologically, N-hexacosanol inhibited the progression to glomerular sclerosis. Our data suggest that N-hexacosanol improves diabetes-induced NOS alterations in the kidney, resulting in the amelioration of diabetic nephropathy.  相似文献   

20.
Diabetic nephropathy (DN) is the major cause of end-stage renal failure. Oxidative stress is implicated in the pathogenesis of DN. Nitrosonifedipine (NO-NIF) is a weak calcium channel blocker that is converted from nifedipine under light exposure. Recently, we reported that NO-NIF has potential as a novel antioxidant with radical scavenging abilities and has the capacity to treat vascular dysfunction by exerting an endothelial protective effect. In the present study, we extended these findings by evaluating the efficacy of NO-NIF against DN and by clarifying the mechanisms of its antioxidative effect. In a model of type 2 DN (established in KKAy mice), NO-NIF administration reduced albuminuria and proteinuria as well as glomerular expansion without affecting glucose metabolism or systolic blood pressure. NO-NIF also suppressed renal and systemic oxidative stress and decreased the expression of intercellular adhesion molecule (ICAM)-1, a marker of endothelial cell injury, in the glomeruli of the KKAy mice. Similarly, NO-NIF reduced albuminuria, oxidative stress, and ICAM-1 expression in endothelial nitric oxide synthase (eNOS) knockout mice. Moreover, NO-NIF suppressed urinary angiotensinogen (AGT) excretion and intrarenal AGT protein expression in proximal tubular cells in the KKAy mice. On the other hand, hyperglycemia-induced mitochondrial superoxide production was not attenuated by NO-NIF in cultured endothelial cells. These findings suggest that NO-NIF prevents the progression of type 2 DN associated with endothelial dysfunction through selective antioxidative effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号