首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An adenosine 3':5'-monophosphate (cyclic AMP)-binding protein in the human erythrocyte plasma membrane was isotopically labeled using a photoaffinity analog of cyclic AMP, N6-(ethyl 2-diazomalonyl) cyclic [3H]AMP. The cyclic AMP-binding site is located in a polypeptide chain having a molecular weight of 48,000. Cyclic AMP-binding protein and cyclic AMP-dependent protein kinase were solubilized with 0.5% Triton X-100 in 56 mM sodium borate, pH 8, but 32P-labeled membrane phosphoproteins were retained in the Triton-insoluble fraction, suggesting that the membrane-associated binding protein is not a primary substrate for protein kinase. Triton-solubilized and membrane-associated protein kinase activities were stimulated 15- and 17-fold by cyclic AMP, suggesting that the degree of association between the catalytic anc cyclic AMP-binding components was very similar in both preparations. Fractionation and characterization of membrane phosphoproteins have shown that protein III and a co-migrating minor protein are substrates for protein kinase but membrane sialoglycoproteins are not phosphorylated.  相似文献   

2.
Purified preparations of human polymorphonuclear leucocytes contain a protein kinase in the cytosol which is stimulated by cyclic AMP and cyclic IMP but not by other cyclic nucleotides. The holoenzyme had a molecular weight of 66000 estimated by gel filtration; when it was incubated with histone or cyclic AMP, it dissociated into two smaller subunits of molecular weight 45000 and 30000; the former remained cyclic AMP-sensitive, whereas the latter had become independent of added cyclic AMP. By means of substrate-affinity chromatography on histone-Sepharose 4B, cyclic [3H5AMP-binding activity (regulatory or R subunit) could be resolved into two peaks of enzyme activity, one again independent of added cyclic AMP, with a molecular weight of 30000 (catalytic or C subunit). Also by means of substrate-affinity chromatography it was possible to resolve 'specific' polymorphonuclear leukocyte histone phosphatases from 'non-specific' phosphomonesterases capable of dephosphorylating histone previously phosphorylated by the protein kinase. Specific histone phosphatase displayed greatest affinity for histone-Sepharose 4B, followed by acid p-nitrophenyl phosphatase, and the unretained acid beta-glucerophosphatase. Polymorphonuclear leucocyte histone phosphatase, purified approx. 40-fold, was further resolved from the other phosphatases by gel filtration on Sephadex G-150 from which it was eluted with apparent molecular weights of 45000 and 18700. The apparent Km values for dephosphorylation of histone are 4.3 X 10-6M and 3.6 X 10-6M. Most (69%) of cytoplasmic histone phosphatase was found in the cell sap, whereas 20% remained tightly associated with polymorphonuclear leucocyte lysosomes from which it could not be solubilized by treatments (Triton X-100, freeze-thawing) that released approx. 70% of lysosomal beta-glucuronidase or acid phosphatases. Although both soluble and particulate enzymes required 5-10 mM-Mn2 for maximal activation, and showed a pH maximum of 6.5-7.0, only the particulate enzyme was partly inhibited by ammonium molybdate. Polymorphonuclear leucocyte histone phosphatases were neither inhibited nor stimulated by those cyclic nucleotides that greatly stimulate the protein kinase of the same subcellular fraction  相似文献   

3.
The ontogeny of protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) and cyclic AMP-binding activity in subcellular fractions of liver was examined during prenatal and postnatal development of the male rat. 1. Protein kinase activity and cyclic AMP-binding activity were found in the nuclear, microsomal, lysosomal-mitochondrial, and soluble liver fractions. 2. The protein kinase activity of the soluble (105 000 X g supernatant) fraction measured with histone F1 as substrate was stimulated by cyclic AMP. Cyclic AMP did not stimulate the protein kinase activity of the particulate fractions. 3. The protein kinase activity of all subcellular fractions increased rapidly from the activity observed in prenatal liver (3-4 days before birth) to reach maximal activity in 2-day-old rats. Thereafter, the protein kinase activity declined more slowly and regained the prenatal levels at 10 days after birth. 4. Considerable latent protein kinase activity was associated with liver microsomal fractions which could be activated by treatment of microsomes with Triton X-100. The latent microsomal protein kinase activity was highest in prenatal liver, at the time of birth, and 2 days after birth. During the subsequent postnatal development the latent microsomal protein kinase activity gradually declined to insignificantly low levels. 5. During the developmental period examined (4 days before birth to age 60-90 days) marked alterations of the cyclic AMP-binding activity were determined in all subcellular fractions of rat liver. In general, cytosol, microsomal, and lysosomal-mitochondrial cyclic AMP-binding activity was highest in 10-11 day-old rats. Nuclear cyclic AMP-binding activity was highest 3-4 days before birth and declined at birth and during the postnatal period. There was no correlation between the developmental alteration of cyclic AMP-binding activity and cyclic AMP dependency of the protein kinase activity in any of the subcellular fractions. This suggests that the measured cyclic AMP-binding activity does not reflect developmental alterations of the cyclic AMP-binding regulatory subunit of cyclic AMP-dependent protein kinase.  相似文献   

4.
The solubilization of plasma membrane fractions FI and FII associated protein kinases has been attempted using monovalent salts of high ionic strength and various detergent treatments. Extraction of FI and FII plasma membranes with high ionic strength salt solutions did not release more than 20% of the protein kinase activity. Similarly, monovalent salts released little adenosine 3':5'-monophosphate (cyclic AMP) binding activity, but after extraction binding capacity of cyclic [3H]AMP to plasma membranes was increased about 150-200%. Triton X-100 was a better solubilizing agent that Lubrol WX or deoxycholate. In addition to solubilization, 0.1% Triton X-100 also stimulated the protein kinase activity 150-200%. The properties of Triton X-100 solubilized FI and FII and purified cytosol KII were characterized with respect to protein substrate specificity, effect of cyclic AMP, cyclic nucleotide specificity, effects of divalent metal ion and gonadotropins. Upon sucrose density gradient centrifugation, FI solubilized protein kinase and cyclic AMP binding activities co-sedimented with a sedimentation coefficient of 6.3 S. The FII solubilized protein kinase sedimented as two components with sedimentation coefficients of 7.7 S and 5.5 S. The cyclic AMP binding activity also sedimented as two components with sedimentation coefficient 6.7 S and 5.5 S. Cyclic AMP caused dissociation of solubilized protein kinase from FI into a single catalytic (4.8 S) and two cyclic AMP binding subunits (8.1 S and 6.7 S). FII solubilized enzyme was dissociated into one catalytic (4.8 S) and one cyclic AMP binding subunit (6.3 S). Fractionation of FI and FII solubilized enzymes on DEAE-cellulose column chromatography resolved them each into two peaks Ia, Ib and IIa, IIb, respectively. Peaks Ib and IIb were more sensitive to cyclic AMP STIMULATION THAN Ia and IIa peaks. From these studies it is concluded that the plasma-membrane associated and cytosol protein kinases have similar catalytic properties but differ in some of their physical properties.  相似文献   

5.
Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) activity for myelin basic protein was found to be present in the myelin fraction of rat brain. The enzyme activity was in a latent form and solubilized by 0.2% Triton X-100 treatment with about 50% increase of activity. The cytosol fraction from bovine brain also had phosphoprotein phosphatase activity for myelin basic protein, which was resolved into at least two peaks of activity on DEAE-cellulose column chromatography. Myelin basic protein was the best substrate for both the solubilized myelin fraction and the cytosol enzymes among the substrate proteins tested. The Km values of the solubilized myelin fraction were 4.2 muM for myelin basic protein, 7.4 muM for arginine-rich histone, 8.0 muM for histone mixture and 14.3 muM for protamine, respectively.  相似文献   

6.
Purified myelin fraction isolated from rat brain white matter contained Mg2+-dependent protein kinase capable of phosphorylation of myelin basic proteins. The Mg2+-supported kinase was markedly stimulated (two- to fivefold) by micromolar concentrations of free Ca2+ with and without Triton X-100 in the assay, the degree of stimulation being greater with the detergent present. Cyclic AMP, on the other hand, failed to show any effect on phosphorylation of myelin in the absence of Triton X-100 and in the presence of Triton caused only 25–30% stimulation. The phosphorylation reaction was temperature dependent and exhibited a pH optimum at pH 6.5. Apparent affinity toward MgATP2? was found to be about 70 μm and Ca2+ had no effect on this parameter. Dependence on MgCl2 of myelin phosphorylation indicated the presence of high- and low-affinity sites toward Mg2+; Ca2+ appeared to influence the low-affinity site. Maximal level of phosphorylation was attained by 10–15 min at 30 °C and it declined at longer incubation times due to phosphatase activity present in the preparation. Stimulatory effect of Ca2+ on phosphorylation was not due to inhibition of phosphatase activity. Dephosphorylation experiments showed that neither cyclic AMP nor Ca2+ influenced the myelin phosphatase activity. Autoradiographic analysis revealed that phosphorylation of myelin basic proteins accounted for nearly 90% of total myelin phosphorylation. This was supported by the observation that the HCl extract of myelin contained 85% of total activity and comigrated with purified myelin basic proteins. Basal and Ca2+-stimulated phosphorylation of basic proteins were due to phosphorylation of serines mainly, although threonine was phosphorylated to a minor extent. Within myelin, Ca2+ and cyclic AMP kinases are differentially bound. It appears that the myelin kinase (studied in vitro) is primarily influenced by Ca2+ rather than cyclic AMP. Inhibitors (Type I and Type II) of cyclic nucleotide-stimulated protein kinases had no effect on the Ca2+-stimulated phosphorylation although basal and cyclic AMP-stimulated phosphorylation was inhibited, indicating that the Ca2+ kinase is a separate and distinct enzyme from the cyclic AMP-stimulated and basal kinase(s). Also, leupeptin, a protease inhibitor, did not influence basal, cyclic AMP-stimulated, or Ca2+-stimulated myelin phosphorylation, indicating that under the conditions used protease(s) did not alter the myelin kinase activity. The potential significance of phosphorylation of myelin basic proteins and the stimulatory action of Ca2+ on this reaction are discussed.  相似文献   

7.
Synaptosomal plasma membrane fragments contain a tightly bound protein kinase which can catalyse the phosphorylation of endogenous protein the reaction bein stimulated by cyclic AMP. A fraction enriched in synaptic junctions, which can be isolated from Triton X-100-treated synaptosomal plasma membranes, is also enriched in the cyclic AMP stimulated intrinsic protein kinase. The location of the enzyme in the synaptic junction suggests that cyclic AMP-stimulated phosphorylation may have some role in synaptic transmission.  相似文献   

8.
Synaptosomal plasma membrane fragments contain a tightly bound protein kinase which can catalyse the phosphorylation of endogenous protein the reaction bein stimulated by cyclic AMP. A fraction enriched in synaptic junctions, which can be isolated from Triton X-100-treated synaptosomal plasma membranes, is also enriched in the cyclic AMP stimulated intrinsic protein kinase. The location of the enzyme in the synaptic junction suggest that cyclic AMP-stimulated phosphorylation may have some role in synaptic transmission.  相似文献   

9.
Adenosine 3′:5′-monophosphate-dependent protein kinase and phosphoprotein phosphatases were solubilized by Triton X-100, from a particulate fraction of bovine cerebral cortex enriched in synaptic membranes, and partially purified. The properties of these partially purified enzymes were studied using two substrates, Protein I and Protein II, prepared from the synaptic membrane fraction, as well as the substrates protamine and histone. The results suggest that the phosphorylation of Protein I and Protein II, as well as protamine and histone, are catalyzed by a single species of cAMP-deperident protein kinase. Thus, a single peak of protein kinase activity was observed, upon DEAE-cellulose hromatography of the Triton X-100 extract of the synaptic membrane preparation, which catalyzed the phosphorylation of all four substrate proteins. Moreover, the activity of this partially purified protein kinase toward the various substrate proteins was altered in a parallel fashion, either when the protein kinase preparation was subjected to heat inactivation or pH inactivation, or when the enzyme was assayed in the presence of various concentrations of cyclic nucleotides or of a protein kinase modulator. The individual protein substrates acted as competitive inhibitors with respect to one another. Upon sucrose density gradient centrifugation, the protein kinase activity toward the various substrates sedimented as a single peak. Finally, the relative specific activities toward the various substrates did not change significantly during a 2000-fold purification of the enzyme. In contrast to these observations with protein kinase, two peaks of protein phosphatase activity, with markedly different specificities toward Protein I and Protein II, were found upon DEAE-cellulose and Bio-Gel P-200 column chromatography of the Triton X-100 extract of the synaptic membrane fractions. One peak catalyzed the dephosphorylation of Phosphoprotein I but not of Phosphoprotein II, whereas the other peak catalyzed the dephosphorylation of Phosphoprotein II but not of Phosphoprotein I. The dephosphorylation of Phosphoprotein I by Phosphoprotein I phosphatase was not affected by adenosine 3':5'-monophosphate, whereas the dephosphorylation of Phosphoprotein II by Phosphoprotein II phosphatase required the presence of this nucleotide. Moreover, the two phosphatases differed from one another with respect to Stokes' radius as well as sedimentation coefficient.  相似文献   

10.
The occurrence of phospholipid-sensitive calcium-dependent protein kinase (referred to as C kinase) and its endogenous substrate proteins was examined in a membrane preparation from rat pancreatic zymogen granules. Using exogenous histone H1 as substrate, C kinase activity was found in the membrane fraction. The kinase was solubilized from membranes using Triton X-100 and partially purified using DEAE-cellulose chromatography. An endogenous membrane protein (Mr approximately equal to 18 000) was found to be specifically phosphorylated in the combined presence of Ca2+ and phosphatidylserine. Added diacylglycerol was effective in stimulating phosphorylation of exogenous histone by the partially purified C kinase, but had no effect upon phosphorylation of the endogenous 18 kDa protein by the membrane-associated C kinase. Phosphorylation of the 18 kDa protein was rapid (detectable within 30 s following exposure to Ca2+ and phosphatidylserine), and highly sensitive to Ca2+ (Ka = 4 microM in the presence of phosphatidylserine). These findings suggest a role for this Ca2+-dependent protein phosphorylation system in the regulation of pancreatic exocrine function.  相似文献   

11.
Synaptic-membrane fragments from ox cerebral cortex contain basal and cyclic AMP-stimulated protein kinase activity catalysing the phosphorylation of endogenous substrates. Extraction of membrane fragments with Triton X-100 solubilized less than 20% of the kinase activity and left the major part of the endogenous substrates in the insoluble fraction.  相似文献   

12.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

13.
Casein kinase and histone kinase(s) are solubilized from human erythrocyte membranes by buffered ionic solutions (0.1 mM EDTA and subsequent 0.8 M NaCl, pH 8) containing 0.2% Triton X-100. Casein kinase is separated from histone kinase(s) by submitting the crude extracts directly to chromatography on a phosphocellulose column, eluted with a continuous linear gradient of potassium phosphate buffer, pH 7.0, containing 0.2% Triton X-100. Under these conditions, the membrane-bound casein kinase activity is almost completely recovered into a quite stable preparation, free of histone kinase activity. In contrast, it undergoes a dramatic loss of activity when the extraction and the subsequent phosphocellulose chromatography are carried out with buffers which do not contain Triton X-100. Isolated spectrin, the most abundant membrane protein, is phosphorylated, in the presence of [gamma-32P]ATP, only by casein kinase while histone kinase is ineffective. Only the smaller subunit (band II) of isolated spectrin (and not the larger one (band I) is involved in such a phosphorylation process, as in the endogenous phosphorylation occurring in intact erythrocytes.  相似文献   

14.
15.
The phosphotransferase system of human central-nervous-system myelin was investigated. Evidence obtained indicated the presence of at least two different phosphotransferase systems (cyclic nucleotide-dependent and -independent) in myelin, which were found to be firmly associated with the membrane. The cyclic AMP-dependent kinase of myelin and white-matter cytosol preferentially phosphorylated certain histone fractions and displayed only modest activity with basic protein as substrate. On the other hand, the cyclic nucleotide-independent system showed specificity toward basic protein. Its activity was not only dependent on Mg2+ but it was greatly enhanced by this bivalent cation. Whereas the cyclic nucleotide-dependent kinase could be extracted with buffers containing Triton X-100, the bivalent cation-regulated kinase resisted solubilization from myelin under these conditions.  相似文献   

16.
The present study compared the properties of cholesterol ester hydrolase(s) in myelin and microsomes from rat, mouse and human brain. The results indicated that the enzyme activity in both myelin and microsomes from rat, mouse and human brain was optimal at pH 6.5 and required Triton X-100 for optimal activity. The enzyme activity in myelin was 3- to 4-fold higher in the presence of Trition X-100 than taurocholate. Addition of phosphatidyl serine enhanced (2 to 4 fold) the hydrolase activity in both myelin and microsomes. The properties of the enzyme in solubilized preparation of myelin were also similar to the properties of the enzyme in partially delipidated and solubilized preparations of microsomes. The activity was again optimal at pH 6.5, required Triton X-100 for optimal activity and was stimulated by phosphatidyl serine. These results indicate that the properties of cholesterol ester hydrolase in myelin are similar to those of the microsomal enzyme and that this is true for the fractions from both human and rodent brain. The data thus lead us to believe that the hydrolase activity in mammalian brain myelin and microsomes may reflect the distribution of a single enzyme in the two fractions rather than two distinct enzymes, one being specific to each fraction.  相似文献   

17.
The distribution of cyclic AMP-dependent protein kinase activity in porcine thyroid glands has been studied. Enzyme activity catalyzing phosphorylation of exogenous substrate (protamine) from ATP, and cyclic AMP binding were determined in parallel in subcellular fractions purified by differential centrifugation and flotation on sucrose density layers. Both activities were found in all the studied fractions; they were quantitatively the highest in the cytosol but particles showed the highest specific activities.Latent protein-kinase activity was unmasked by action of detergents on microsomes (× 5–10 fold) and solubilized (85 to 99 p. cent of the initial total activity). Cyclic AMP binding capacity was also recovered in detergent-treated microsomal extracts in spite of reduced cyclic AMP binding in the presence of detergent.Protein kinase activity and cyclic AMP-binding proteins were less represented in purified nuclei than in microsomes. Again both activities were unmasked by detergent.Preparations highly enriched in Golgi membranes were compared to rough microsomal preparations. Higher protein kinase activity was detected in rough microsomes as compared to Golgi membranes, whereas the reverse was true for cyclic AMP binding. Both activities were equalized after detergent treatment. Since unmasking of protein kinase activity was the highest in Golgi membranes, this fraction contains more enzyme activity and cyclic AMP binding capacity than rough microsomes.The localization of endogeneous protein substrates of cyclic AMP-dependent protein kinases was investigated using purified soluble protein kinase subcellular fractions. The better endogeneous substrates seemed to be localized in the rough microsomal and in the nuclear fractions.  相似文献   

18.
Rat liver microsomes contain a Triton X-100 solubilizable vitamin K-dependent carboxylase activity that converts specific glutamyl residues of a microsomal prothrombin precursor to gamma-carboxyglutamyl residues. This activity has been studied in partially (0.25% Triton X-100) and completely (1.0% Triton X-100) solubilized rat liver microsomal preparations. The rate of vitamin K-dependent carboxylation of endogenous microsomal protein precursors was very rapid in the completely solubilized liver microsomal preparation, and carboxylation of an exogenous peptide substrate (Phe-Leu-Glu-Glu-Leu) proceeded at the same time. In the partially solubilized liver microsomal preparation, the rate of protein carboxylation was greatly reduced, and a lag in carboxylation of the exogenous substrate was observed. When microsomal preparations which were depleted of endogenous precursors were used, this lag was eliminated. These data suggest that both substrates utilize the same microsomal pool of carboxylase and that the fraction of the carboxylase bound to the endogenous precursors is not immediately available to exogenous substrates.  相似文献   

19.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

20.
Several detergents were investigated for their ability to increase activity of 2':3'-cyclic nucleotide 3'-phosphodiesterase in isolated myelin. The ability of Triton X-100 and Sulfobetaine DLH to solubilize the enzyme was also examined. Solubilization with Triton X-100 was only effective in the presence of salt, for example with NaCl 51% of the activity was solubilized. A single extraction with Sulfobetaine DLH yielded slightly more solubilized enzyme and did not require added salt. Both activation and solubilization of 2':3'-cyclic nucleotide 3'-phosphodiesterase appeared to be similarly dependent on detergent concentration, suggesting a common action of the detergent in the two processes. Myelin basic protein was solubilized more readily than the enzyme. In contrast with the enzyme in myelin, 2':3'-cyclic nucleotide 3'-phosphodiesterase activity in C6 cells was not increased in the presence of Triton X-100, and was partially solubilized by either Triton X-100 or NaCl alone. No myelin basic protein could be detected in C6 cells by radioimmunoassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号