首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingolipids are a class of structural membrane lipids involved in membrane trafficking and cell polarity. Functional analysis of the ceramide synthase family in Arabidopsis thaliana demonstrates the existence of two activities selective for the length of the acyl chains. Very-long-acyl-chain (C > 18 carbons) but not long-chain sphingolipids are essential for plant development. Reduction of very-long-chain fatty acid sphingolipid levels leads in particular to auxin-dependent inhibition of lateral root emergence that is associated with selective aggregation of the plasma membrane auxin carriers AUX1 and PIN1 in the cytosol. Defective targeting of polar auxin carriers is characterized by specific aggregation of Rab-A2(a)- and Rab-A1(e)-labeled early endosomes along the secretory pathway. These aggregates correlate with the accumulation of membrane structures and vesicle fragmentation in the cytosol. In conclusion, sphingolipids with very long acyl chains define a trafficking pathway with specific endomembrane compartments and polar auxin transport protein cargoes.  相似文献   

2.
Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an asymmetric apical and basolateral membrane surface, rafts have been proposed as a sorting principle for apical resident proteins, following their biosynthesis. However, raft-mediated trafficking is ubiquitous in cells. Also, sphingolipids per se, which are strongly enriched in the apical domain, are subject to sorting in polarity development. Next to the trans Golgi network, a subapical compartment called SAC or common endosome appears instrumental in regulating these sorting events.  相似文献   

3.
Bhat P  Snooks MJ  Anderson DA 《Journal of virology》2011,85(23):12474-12481
Viruses commonly utilize the cellular trafficking machinery of polarized cells to effect viral export. Hepatocytes are polarized in vivo, but most in vitro hepatocyte models are either nonpolarized or have morphology unsuitable for the study of viral export. Here, we investigate the mechanisms of trafficking and export for the hepadnaviruses hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) in polarized hepatocyte-derived cell lines and primary duck hepatocytes. DHBV export, but not replication, was dependent on the development of hepatocyte polarity, with export significantly abrogated over time as primary hepatocytes lost polarity. Using Transwell cultures of polarized N6 cells and adenovirus-based transduction, we observed that export of both HBV and DHBV was vectorially regulated and predominantly basolateral. Monitoring of polarized N6 cells and nonpolarized C11 cells during persistent, long-term DHBV infection demonstrated that newly synthesized sphingolipid and virus displayed significant colocalization and fluorescence resonance energy transfer, implying cotransportation from the Golgi complex to the plasma membrane. Notably, 15% of virus was released apically from polarized cells, corresponding to secretion into the bile duct in vivo, also in association with sphingolipids. We conclude that DHBV and, probably, HBV are reliant upon hepatocyte polarity to be efficiently exported and this export is in association with sphingolipid structures, possibly lipid rafts. This study provides novel insights regarding the mechanisms of hepadnavirus trafficking in hepatocytes, with potential relevance to pathogenesis and immune tolerance.  相似文献   

4.
To maintain cell membrane homeostasis, lipids must be dynamically redistributed during the formation of transport intermediates, but the mechanisms driving lipid sorting are not yet fully understood. Lowering sphingolipid concentration can reduce the bending energy of a membrane, and this effect could account for sphingolipid depletion along the retrograde pathway. However, sphingolipids and cholesterol are enriched along the anterograde pathway, implying that other lipid sorting mechanisms, such as protein-mediated sorting, can dominate. To characterize the influence of protein binding on the lipid composition of highly curved membranes, we studied the interactions of the B-subunit of Shiga toxin (STxB) with giant unilamellar vesicles containing its glycosphingolipid receptor [globotriaosylceramide (Gb3)]. STxB binding induced the formation of tubular membrane invaginations, and fluorescence microscopy images of these highly curved membranes were consistent with co-enrichment of Gb3 and sphingolipids. In agreement with theory, sorting was stronger for membrane compositions close to demixing. These results strongly support the hypothesis that proteins can indirectly mediate the sorting of lipids into highly curved transport intermediates via interactions between lipids and the membrane receptor of the protein.  相似文献   

5.
In polarized HepG2 cells, the sphingolipids glucosylceramide and sphingomyelin (SM), transported along the reverse transcytotic pathway, are sorted in subapical compartments (SACs), and subsequently targeted to either apical or basolateral plasma membrane domains, respectively. In the present study, evidence is provided that demonstrates that these sphingolipids constitute separate membrane domains at the luminal side of the SAC membrane. Furthermore, as revealed by the use of various modulators of membrane trafficking, such as calmodulin antagonists and dibutyryl-cAMP, it is shown that the fate of these separate sphingolipid domains is regulated by different signals, including those that govern cell polarity development. Thus under conditions that stimulate apical plasma membrane biogenesis, SM is rerouted from a SAC-to-basolateral to a SAC-to-apical pathway. The latter pathway represents the final leg in the transcytotic pathway, followed by the transcytotic pIgR-dIgA protein complex. Interestingly, this pathway is clearly different from the apical recycling pathway followed by glucosylceramide, further indicating that randomization of these pathways, which are both bound for the apical membrane, does not occur. The consequence of the potential coexistence of separate sphingolipid domains within the same compartment in terms of "raft" formation and apical targeting is discussed.  相似文献   

6.
The central aspect of epithelial cells is their polarized structure, characterized by two distinct domains of the plasma membrane, the apical and the basolateral membrane. Apical protein sorting requires various signals and different intracellular routes to the cell surface. The first apical targeting motif identified is the membrane anchoring of a polypeptide by glycosyl-phosphatidyl-inositol (GPI). A second group of apical signals involves N- and O-glycans, which are exposed to the luminal side of the sorting organelle. Sucrase-isomaltase (SI) and lactase-phlorizin hydrolase (LPH), which use separate transport platforms for trafficking, are two model proteins for the study of apical protein sorting. In contrast to LPH, SI associates with sphingolipid/cholesterol-enriched membrane microdomains or "lipid rafts". After exit form the trans-Golgi network (TGN), the two proteins travel in distinct vesicle populations, SAVs (SI-associated vesicles) and LAVs (LPH-associated vesicles) . Here, we report the identification of the lectin galectin-3 delivering non-raft-dependent glycoproteins in the lumen of LAVs in a carbohydrate-dependent manner. Depletion of galectin-3 from MDCK cells results in missorting of non-raft-dependent apical membrane proteins to the basolateral cell pole. This suggests a direct role of galectin-3 in apical sorting as a sorting receptor.  相似文献   

7.
Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.  相似文献   

8.
Polarity is a fundamental characteristic of most eukaryotic cells. The plasma membrane of such cells consists in two structurally and functionally different domains, i.e., the basolateral and the apical membrane, separated by tight junctions. The generation of the distinct molecular identity of both domains and its maintenance in spite of the dynamics of lipids and proteins at either surface requires sophisticated sorting and trafficking mechanisms. Recent progress in the field of polarized trafficking reveals that, for a detailed understanding of its mechanism and regulation, an integrated approach that includes the flow of both lipids and proteins is imperative. In this review, some recent progress in understanding mechanisms involved in protein sorting and trafficking is discussed. We focus on the role of lipid microdomains (Rafts) in trafficking of proteins to the apical surface of polarized cells.  相似文献   

9.
Detergent insoluble sphingolipid-cholesterol enriched 'raft'-like membrane microdomains have been implicated in a variety of biological processes including sorting, trafficking, and signaling. Mutant cells and knockout animals of sphingolipid biosynthesis are clearly useful to understand the biological roles of lipid components in raft-like domains. It is suggested that raft-like domains distribute in internal vacuolar membranes as well as plasma membranes. In addition to sphingolipid-cholesterol-rich membrane domains, recent studies suggest the existence of another lipid-membrane domain in the endocytic pathway. This domain is enriched with a unique phospholipid, lysobisphosphatidic acid (LBPA) and localized in the internal membrane of multivesicular endosome. LBPA-rich membrane domains are involved in lipid and protein sorting within the endosomal system. Possible interaction between sphingolipids and LBPA in sphingolipid-storage disease is discussed.  相似文献   

10.
High density lipoprotein (HDL) mediates reverse transport of cholesterol from atheroma foam cells to the liver, but the mechanisms of hepatic uptake and trafficking of HDL particles are poorly understood. In contrast to its accepted role as a cell surface receptor, scavenger receptor class B type 1 (SR-BI) is shown to be an endocytic receptor that mediates HDL particle uptake and recycling, but not degradation, in both transfected Chinese hamster ovary cells and hepatocytes. Confocal microscopy of polarized primary hepatocytes shows that HDL particles enter both the endocytic recycling compartment and the apical canalicular region paralleling the movement of SR-BI. In polarized epithelial cells (Madin-Darby canine kidney) expressing SR-BI, HDL protein and cholesterol undergo selective sorting with recycling of HDL protein from the basolateral membrane and secretion of HDL-derived cholesterol through the apical membrane. Thus, HDL particles, internalized via SR-BI, undergo a novel process of selective transcytosis, leading to polarized cholesterol transport. A distinct process not mediated by SR-BI is involved in uptake and degradation of apoE-free HDL in hepatocytes.  相似文献   

11.
Research carried out in mammalian epithelial cell systems over the past 25 years has delineated pathways and sorting signals involved in polarized delivery of plasma membrane proteins. Recently some progress has been made in the identification of mechanisms underlying this polarized trafficking and in the visualization of trafficking routes in live cells. A promising area of research is the study of trafficking functions of novel polarity genes identified in Drosophila and Caenorhabditis elegans.  相似文献   

12.
Neuronal differentiation in vitro and in vivo involves coordinated changes in the cellular cytoskeleton and protein trafficking processes. I review here recent progress in our understanding of the membrane trafficking aspects of neurite outgrowth of neurons in culture and selective microtubule-based polarized sorting in fully polarized neurons, focusing on the involvement of some key molecules. Early neurite outgrowth appears to involve the protein trafficking machineries that are responsible for constitutive trans-Golgi network (TGN) to plasma membrane exocytosis, utilizing transport carrier generation mechanisms, SNARE proteins, Rab proteins and tethering mechanisms that are also found in non-neuronal cells. This vectorial TGN-plasma membrane traffic is directed towards several neurites, but can be switch to concentrate on the growth of a single axon. In a mature neuron, polarized targeting to the specific axonal and dendritic domains appears to involve selective microtubule-based mechanisms, utilizing motor proteins capable of distinguishing microtubule tracks to different destinations. The apparent gaps in our knowledge of these related protein transport processes will be highlighted.  相似文献   

13.
The retinal pigment epithelium (RPE) forms a monolayer sheet separating the retina and choroid in vertebrate eyes. The polarized nature of RPE is maintained by distributing membrane proteins differentially along apico-basal axis. We found the distributions of these proteins differ in embryonic, post-natal, and mature mouse RPE, suggesting developmental regulation of protein trafficking. Thus, we deleted tumor susceptibility gene 101 (Tsg101), a key component of endosomal sorting complexes required for transport (ESCRT), in embryonic and mature RPE to determine whether ESCRT-mediated endocytic protein trafficking correlated with the establishment and maintenance of RPE polarity. Loss of Tsg101 severely disturbed the polarity of RPE, which forms irregular aggregates exhibiting non-polarized distribution of cell adhesion proteins and activation of epidermal growth factor receptor signaling. These findings suggest that ESCRT-mediated protein trafficking is essential for the development and maintenance of RPE cell polarity.  相似文献   

14.
In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and sphingomyelin, whereas the other involves basolateral to apical transcytosis of both sphingolipids. We show that these distinct routes display a different sensitivity toward nocodazole and cytochalasin D, implying a specific transport dependence on either microtubules or actin filaments, respectively. Thus, nocodazole strongly inhibited the direct route, whereas sphingolipid transport by transcytosis was hardly affected. Moreover, nocodazole blocked “hyperpolarization,” i.e., the enlargement of the apical membrane surface, which is induced by treating cells with dibutyryl-cAMP. By contrast, the transcytotic route but not the direct route was inhibited by cytochalasin D. The actin-dependent step during transcytotic lipid transport probably occurs at an early endocytic event at the basolateral plasma membrane, because total lipid uptake and fluid phase endocytosis of horseradish peroxidase from this membrane were inhibited by cytochalasin D as well. In summary, the results show that the two sphingolipid transport pathways to the apical membrane must have a different requirement for cytoskeletal elements.  相似文献   

15.
Sterols are essential membrane components of eukaryotic cells. Interacting closely with sphingolipids, they provide the membrane surrounding required for membrane sorting and trafficking processes. Altering the amount and/or structure of free sterols leads to defects in endocytic pathways in mammalian cells and yeast. Plasma membrane structures functioning in the internalization step in mammalian cells, caveolae and clathrin-coated pits, are affected by cholesterol depletion. Accumulation of improper plasma membrane sterols prevents hyperphosphorylation of a plasma membrane receptor in yeast. Once internalized, sterols still interact with sphingolipids and are recycled to the plasma membrane to keep an intracellular sterol gradient with the highest amount of free sterols at the cell periphery. Interestingly, cells from patients suffering from sphingolipid storage diseases show high intracellular amounts of free cholesterol. We propose that the balanced interaction of sterols and sphingolipids is responsible for protein recruitment to specialized membrane domains and their functionality in the endocytic pathway.  相似文献   

16.
Sphingolipids are major components of the plasma membrane of eukaryotic cells and were once thought of merely as structural components of the membrane. We have investigated effects of inhibiting sphingolipid biosynthesis, both in germinating spores and growing hyphae of Aspergillus nidulans. In germinating spores, genetic or pharmacological inactivation of inositol phosphorylceramide (IPC) synthase arrests the cell cycle in G(1) and also prevents polarized growth during spore germination. However, inactivation of IPC synthase not only eliminates sphingolipid biosynthesis but also leads to a marked accumulation of ceramide, its upstream intermediate. We therefore inactivated serine palmitoyltransferase, the first enzyme in the sphingolipid biosynthesis pathway, to determine effects of inhibiting sphingolipid biosynthesis without an accumulation of ceramide. This inactivation also prevented polarized growth but did not affect nuclear division of germinating spores. To see if sphingolipid biosynthesis is required to maintain polarized growth, and not just to establish polarity, we inhibited sphingolipid biosynthesis in cells in which polarity was already established. This inhibition rapidly abolished normal cell polarity and promoted cell tip branching, which normally never occurs. Cell tip branching was closely associated with dramatic changes in the normally highly polarized actin cytoskeleton and found to be dependent on actin function. The results indicate that sphingolipids are essential for the establishment and maintenance of cell polarity via control of the actin cytoskeleton and that accumulation of ceramide is likely responsible for arresting the cell cycle in G(1).  相似文献   

17.
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B-dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.  相似文献   

18.
Segregation of the apical and basolateral plasma membrane domains is the key distinguishing feature of epithelial cells. A series of interrelated cues and processes follow this primary polarization event, resulting in the morphogenesis of the mammalian epithelium. This review focuses on the role of the interactions between the extracellular matrix and neighbouring cells during the initiation and establishment of epithelial polarity, and the role that membrane transport and polarity complexes play in this process. An overview of the formation of the apical junctional complexes is given in relation to the generation of distinct membrane domains characterized by the asymmetric distribution of phosphoinositides and proteins. The mechanisms and machinery utilized by the trafficking pathways involved in the generation and maintenance of this apical-basolateral polarization are expounded, highlighting processes of apical-directed transport. Furthermore, the current proposed mechanisms for the organization of entire networks of cells into a structured, polarized three-dimensional structure are described, with an emphasis on the proposed mechanisms for the formation and expansion of the apical lumen.  相似文献   

19.
In HepG2 cells, the subapical compartment (SAC) is involved in the biogenesis of membrane polarity. By contrast, direct apical transport originating from the trans-Golgi network (TGN), which may contribute to polarity establishment, has been poorly defined in these cells. Thus, although newly synthesized sphingolipids can be directly transported from the TGN to the apical membrane, numerous apical resident proteins are traveling via the transcytotic route. Here, we developed an in vitro transport assay and compared the molecular sorting of 6-[N-(7-nitrobenz-2-oxa-1,3 diazol-4-yl)amino] hexanoyl-sphingomyelin (C(6)NBD-SM) and C(6)NBD-glucosylceramide (C(6)NBD-GlcCer) in TGN and SAC. SM is released from both TGN and SAC in the lumenal leaflet of transport vesicles. This holds also for GlcCer released from the SAC but not for a substantial fraction that departed from the Golgi. Distinct transport vesicles, enriched in either SM or GlcCer are released from SAC, consistent with their rigid sorting in this compartment. Different vesicle populations could not be recovered from TGN, although in situ experiments reveal that GlcCer is preferentially transported to the apical membrane, reflecting different transport mechanisms. The results indicate that in HepG2 cells sphingolipids are mainly sorted in the SAC membrane and that the release of SM from SAC and TGN is differentially regulated.  相似文献   

20.
肝细胞是高度特化的极性上皮细胞,细胞质膜蛋白的分选和极性转运对于肝细胞极性的建立与维持至关重要.首先,膜蛋白在内质网中合成,随后经高尔基体加工修饰,再由反面高尔基体进一步分选,最后通过膜泡运输等不同的机制分别转运到胆汁腔面或窦状隙面,行使其特殊的功能.近些年来,细胞内负责转运的细胞器和主要的分选信号已逐步被揭示.特别是循环内体也被证明参与了胆汁腔面和窦状隙面膜蛋白的极性分选和转运.肝细胞的极性一旦遭到破坏,将会引起胆汁分泌障碍以及其他肝脏功能的损伤,从而可能导致肝脏糖脂代谢紊乱,甚至丧失正常的生理功能.因此,深入研究肝脏细胞极性的形成与维持机制,将为多种肝脏疾病的预防和治疗寻找到新的方向和靶点,具有重要的理论和临床实践意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号