首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moulis A 《Peptides》2006,27(5):1153-1165
The ever-growing RFamide neuropeptide superfamily has members in all animal phyla. Their effects in molluscs, on both smooth and cardiac muscle as well as on neurons, has been studied in detail. These neuropeptides exert a variety of functions: excitatory, inhibitory or even biphasic. Firstly, the literature on the excitatory effect of the RFamide neuropeptides on molluscan muscle and neurons has been reviewed, with greater emphasis and examples from the gastropods Buccinum undatum and Busycon canaliculatum. The peptides seem to be potent activators of contraction, sometimes generating slow tonic force and other times twitch activity. Secondly, the literature on the inhibitory effect of the superfamily has been reviewed. These peptides can exert an inhibitory effect, hyperpolarizing the cells rather than depolarizing them. Thirdly, the neuropeptides may play a variety of other roles, such as contributing to the regulation or maturation process of the animals. There have been cases recorded of RFamide neuropeptides acting as potent venoms in members of the Conus sp. The pathway of action of these multiple roles, their interaction with the parent neurotransmitters acetylcholine and serotonin, as well as the calcium dependency of the RFamide neuropeptides has been discussed, again with special reference to the above mentioned gastropods. A better understanding of the mode of action, the effects, and the importance of the RFamide neuropeptides on molluscan physiology and pharmacology has been attempted by reviewing the existing literature, recognizing the importance of the RFamide neuropeptide actions on molluscs.  相似文献   

2.
FMRFamide and the related tetrapeptide FLRFamide are highly excitatory in molluscan non-cardiac smooth muscle. They are also exceptionally excitatory in the atrium and internally perfused ventricle of Busycon canaliculatum. These two peptides, usually thought of as classic molluscan cardio-acceleratory agents are in fact simply two members of a large and ever growing superfamily, the RFamide family, whose phylogenetic distribution has been so elegantly mapped by Walker. Members of this family, often with extended peptide chains (e.g. penta, hepta and decapeptides), stretch in their known distribution from the cnidaria to the chordates. The effects of some of the members of this superfamily (FMRFamide. FLRFamide, YMRFamide, TNRNFLRFamide, SDPFLRFamide, LMS) were examined. The neuropeptides were found to be very potent at very low concentrations (10(-9) M) in the ventricle of both Buccinium and Busycon. Other neuropeptides (HFMRdFamide, SCPb, NLERFamide and pEGRFamide) were found to be without any effect. The Ca2+ dependency of these neuropeptides was also tested. The peptides appear to induce contraction of the ventricles by release of Ca2+ from internal pools. The neuropeptides appear to stimulate contraction in these cardiac muscles through a completely different pathway to Serotonin (the main excitatory neurotransmitter for the cardiac muscle). When the peptides were applied together with Serotonin an additive effect was observed clearly indicating the release of Ca2+ through different pathways. The nature of the RFamide receptor was also tested. It appears that the RFamide neuropeptides mobilize the 2nd messenger IP3 (Inositol trisphosphate), since the IP3 blocker Neomycin Sulphate inhibited the response of the neuropeptides.  相似文献   

3.
In the present study, a possible sertraline action on cerebral pre-synaptic Na(+) channels was investigated. For this purpose, the effect of sertraline on responses induced by the Na(+) channel opener, veratridine, namely the increase in Na(+) and in neurotransmitter release in hippocampus-isolated nerve endings was investigated. Results show that sertraline in the low μM range (1.5-25?μM) progressively inhibits the rise in Na(+) and the release of pre-loaded [(3) H]Glu as well as the release of endogenous 5-HT, Glu and GABA (detected by HPLC) induced by veratridine depolarization either under external Ca(2+) -free conditions or in the presence of external Ca(2+) . In addition, under non-depolarized conditions, sertraline (25 μM) increased the external concentration of 5-HT at expense of its internal concentration, and unchanged the external and internal concentrations of the amino acid neurotransmitters and of the 5-HT main metabolite, 5-HIAA. This result is consistent with the sertraline inhibitory action of the serotonin transporter. However, sertraline is unlikely to inhibit pre-synaptic Na(+) channels permeability by increasing external 5-HT. Because 5-HT in a wide concentration range (1-1000 μM) did not change the veratridine-induced increase in Na(+) . In summary, present findings demonstrate that besides the inhibition of 5-HT reuptake, sertraline is an effective inhibitor of pre-synaptic Na(+) channels controlling neurotransmitter release.  相似文献   

4.
Physiological studies on functionally identified myenteric neurons are scarce because of technical limitations. We combined retrograde labeling, cell culturing, and fluorescent intracellular Ca(2+) concentration ([Ca(2+)](i)) signaling to study excitatory neurotransmitter responsiveness of myenteric motor neurons. 1, 1-Didodecyl-3,3,3',3'-tetramethyl indocarbocyanine (DiI) was used to label circular muscle motor neurons of the guinea pig ileum. DiI-labeled neurons were easily detectable in cultures prepared from these segments. The excitatory neurotransmitters (10(-5) M) acetylcholine, substance P, and serotonin induced a transient rise in [Ca(2+)](i) in subsets of DiI-labeled neurons (66.7, 56.5, and 84. 3%, respectively). DiI-labeled motor neurons were either inhibitory (23.8%) or excitatory (76.2%) as assessed by staining for nitric oxide synthase or choline acetyltransferase. Compared with excitatory motor neurons, significantly fewer inhibitory neurons in culture responded to acetylcholine (0 vs. 69%) and substance P (12.5 vs. 69.2%). We conclude that combining retrograde labeling and Ca(2+) imaging allows identification of differential receptor expression in functionally identified neurons in culture.  相似文献   

5.
In vitro studies show that microglia, the resident immune cells of the brain, express neurotransmitter and neuropeptide receptors which are linked to Ca(2+) signaling. Here we describe an approach to obtain Ca(2+) recordings from microglia in situ. We injected a retrovirus encoding a calcium sensor into the cortex of mice 2 days after stimulation of microglial proliferation by a stab wound injury. Microglial cells were identified with tomato lectin in acute slices prepared 3, 6, 21 and 42 days after the injury. The membrane current profile and the ameboid morphology indicated that microglial cells were activated at day 6 while at day 42 they resembled resting microglia. We recorded transient Ca(2+) responses to application of ATP, endothelin-1, substance P, histamine and serotonin. The fluorescence amplitude of ATP was increased only at day 6 compared to other time points, while responses to all other ligands did not vary. Only half of the microglial cells that responded to ATP also responded to endothelin-1, serotonin and histamine. Substance P, in contrast, showed a complete overlap with the ATP responding microglial population at day 6, at day 42 this population was reduced to 55%. Cultured cells were less responsive to these ligands. This study shows that in situ microglia consist of heterogeneous populations with respect to their sensitivity to neuropeptides and -transmitters.  相似文献   

6.
Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G protein-coupled receptors, neuropeptide actions increase the complexity by which the neural connectome can be activated or inhibited. Humans are estimated to have 90 plus neuropeptide genes; by contrast, nematodes, a relatively simple organism, have a slightly larger complement of neuropeptide genes. For instance, the nematode Caenorhabditis elegans has over 100 neuropeptide-encoding genes, of which at least 31 genes encode peptides of the FMRFamide family. To understand the function of this large FMRFamide peptide family, we isolated knockouts of different FMRFamide-encoding genes and generated transgenic animals in which the peptides are overexpressed. We assayed these animals on two basic behaviors: locomotion and reproduction. Modulating levels of different neuropeptides have strong as well as subtle effects on these behaviors. These data suggest that neuropeptides play critical roles in C. elegans to fine tune neural circuits controlling locomotion and reproduction.  相似文献   

7.
Twenty different RFamide neuropeptide analogues were examined for their relative potencies on the ventricles of Busycon canaliculatum and Buccinum undatum and on the atrium of Busycon to determine the essential requirements for activity at the RFamide receptor. None of the neuropeptide studies was inhibitory to natural cardiac rhythmicity or to FMRFamide (Phe-Met-Arg-Phe-NH2) or FLRFamide (Phe-Leu-Arg-Phe-NH2) responses. Two tripeptides studied were completely without effect, indicating that a minimum of four amino acids in the peptide chain length was essential for any activity. The original parent tetrapeptide FMRFamide was surprisingly less potent than many of the extended chain peptides such as the penta, hepta and decapeptides. These RFamide neuropeptides were strongly inotropic on both ventricles and the atrium, while on the latter they were strongly chronotropic despite several of these peptides being of a non-molluscan origin. Chain length seems to be of little importance for activity at the receptor. Surprisingly, SCPB (small cardioactive Peptide B) was not very effective in either Busycon or Buccinum ventricle. What was also clear was that the configuration of the carboxyl terminal was important for activity. Two neuropeptides in this study possessed an Arg-Met carboxyl terminal and were much less effective than FMRFamide, suggesting that an Arg-Phe terminal is most effective in receptor activation.Abbreviations Ala alanine - Arg arginine - Asn asparagine - Asp aspartic acid - FLRFamide Phe-Leu-Arg-Phe-NH2 - FMRFamide Phe-Met-Arg-Phe-NH2 - Glu glutamic acid - Gly glycine - His histidine - Leu leucine - LMS leucomyosuppressin - Met methionine - Nle norleucine - Phe phenylalanine - Pro proline - SCPB Small cardioactive peptide B - Ser serine - Thr threonine - Trp tryptophan - Tyr tyrosine - Val valineCommunicated by G. HeldmaierPart of this work was presented at the Society for Experimental Biology 1999 Annual conference (Huddart et al. 1999)  相似文献   

8.
The potency (muscle force-generated) of a number of long-chain RFamide neuropeptides was examined in mechanical experiments with the radular-retractor and radular-sac muscles of gastropods Buccinum undatum and Neptunea antiqua. Many of the heptapeptides, octapeptides and the decapeptide LMS were found to induce greater contraction than FMRFamide in both smooth muscles and in both species. RFamide neuropeptides interacted with the neurotransmitter acetylcholine in an additive way and RFamide-induced contractions were inhibited by the neuromodulator serotonin. Pre-treatment with a calcium-free saline completely abolished acetylcholine-induced responses but only partially inhibited RFamide responses in the muscles, suggesting that acetylcholine acts to cause influx of extracellular calcium for contraction. In contrast, RFamide neuropeptides may mobilise intracellular calcium to maintain sustained tonic force in calcium-free conditions. This suggests that an additional involvement of a fast calcium channel may be present in the RFamide responses, since loss of the usual superimposed twitch activity is observed. Force regulation in these muscles appears to result from a complex interaction of RFamide neuropeptides with the primary transmitter acetylcholine and the neuromodulator serotonin.Abbreviations ACh acetylcholine - Ala alanine - Arg arginine - Asn asparagine - Asp aspartic acid - Cys cysteine - FLRFamide Phe-Leu-Arg-Phe-NH2 - FMRFamide Phe-Met-Arg-Phe-NH2 - Gln glutamine - Glu glutamic acid - Gly glycine - His histadine - Ile isoleucine - Leu leucine - LMS leucomyosuppressin - Met methionine - Nle norleucine - Phe phenylalanine - Pro proline - SCPB (small cardioactive peptide B) Met-Asn-Tyr-Leu-Ala-Phe-Pro-Arg-Met-NH2 - Ser serine - Val valine  相似文献   

9.
Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif similar to the C-terminal of GnIH, suggesting that GnIH and NPFF have diverged from a common ancestor. Because GnIH and NPFF belong to the RFamide peptide family in vertebrates, protochordate RFamide peptides may provide important insights into the evolutionary origin of GnIH and NPFF. In this study, we identified a novel gene encoding RFamide peptides and two genes of their putative receptors in the amphioxus Branchiostoma japonicum. Molecular phylogenetic analysis and synteny analysis indicated that these genes are closely related to the genes of GnIH and NPFF and their receptors of vertebrates. We further identified mature RFamide peptides and their receptors in protochordates. The identified amphioxus RFamide peptides inhibited forskolin induced cAMP signaling in the COS-7 cells with one of the identified amphioxus RFamide peptide receptors expressed. These results indicate that the identified protochordate RFamide peptide gene is a common ancestral form of GnIH and NPFF genes, suggesting that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. GnIH gene and NPFF gene may have diverged by whole-genome duplication in the course of vertebrate evolution.  相似文献   

10.
Two neuropeptides have been isolated and identified from the secretions of the skin glands of the Stony Creek Frog Litoria lesueuri. The first of these, the known neuropeptide caerulein 1.1, is a common constituent of anuran skin secretions, and has the sequence pEQY(SO3)TGWMDF-NH2. This neuropeptide is smooth muscle active, an analgaesic more potent than morphine and is also thought to be a hormone. The second neuropeptide, a new peptide, has been named lesueurin and has the primary structure GLLDILKKVGKVA-NH2. Lesueurin shows no significant antibiotic or anticancer activity, but inhibits the formation of the ubiquitous chemical messenger nitric oxide from neuronal nitric oxide synthase (nNOS) at IC(50) (16.2 microm), and is the first amphibian peptide reported to show inhibition of nNOS. As a consequence of this activity, we have tested other peptides previously isolated from Australian amphibians for nNOS inhibition. There are three groups of peptides that inhibit nNOS (IC(50) at microm concentrations): these are (a) the citropin/aurein type peptides (of which lesueurin is a member), e.g. citropin 1.1 (GLFDVIKKVASVIGGL-NH(2)) (8.2 microm); (b) the frenatin type peptides, e.g. frenatin 3 (GLMSVLGHAVGNVLG GLFKPK-OH) (6.8 microm); and (c) the caerin 1 peptides, e.g. caerin 1.8 (GLFGVLGSIAKHLLPHVVPVIAEKL-NH(2)) (1.7 microm). From Lineweaver-Burk plots, the mechanism of inhibition is revealed as noncompetitive with respect to the nNOS substrate arginine. When the nNOS inhibition tests with the three peptides outlined above were carried out in the presence of increasing concentrations of Ca(2+) calmodulin, the inhibition dropped by approximately 50% in each case. In addition, these peptides also inhibit the activity of calcineurin, another enzyme that requires the presence of the regulatory protein Ca(2+) calmodulin. It is proposed that the amphibian peptides inhibit nNOS by interacting with Ca(2+)calmodulin, and as a consequence, blocks the attachment of this protein to the calmodulin domain of nNOS.  相似文献   

11.
Neuropeptide messenger plasticity in the CNS neurons following axotomy   总被引:2,自引:0,他引:2  
Neuronal peptides exert neurohormonal and neurotransmitter (neuromodulator) functions in the central nervous system (CNS). Besides these functions, a group of neuropeptides may have a capacity to create cell proliferation, growth, and survival. Axotomy induces transient (1–21 d) upregulation of synthesis and gene expression of neuropeptides, such as galanin, corticotropin releasing factor, dynorphin, calcitonin gene-related peptide, vasoactive intestinal polypeptide, cholecystokinin, angiotensin II, and neuropeptide Y. These neuropeptides are colocalized with “classic” neurotransmitters (acetylcholine, aspartate, glutamate) or neurohormones (vasopressin, oxytocin) that are downregulated by axotomy in the same neuronal cells. It is more likely that neuronal cells, in response to axotomy, increase expression of neuropeptides that promote their survival and regeneration, and may downregulate substances related to their transmitter or secretory activities.  相似文献   

12.
K(+) efflux through voltage-gated K(+) (Kv) channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca(2+) influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle (DCV)-mediated release. Here, we focus on endogenous Kv2.1 channels and show that disruption of their interaction with native syntaxin after ATP-dependent priming of the vesicles by Kv2.1 syntaxin-binding peptides inhibits Ca(2+) -triggered exocytosis of DCVs from cracked PC12 cells in a specific and dose-dependent manner. The inhibition cannot simply be explained by the impairment of the interaction of syntaxin with its SNARE cognates. Thus, direct association between endogenous Kv2.1 and syntaxin enhances exocytosis and in combination with the Kv2.1 inhibitory effect to hyperpolarize the membrane potential, could contribute to the known activity dependence of DCV release in neuroendocrine cells and in dendrites where Kv2.1 commonly expresses and influences release.  相似文献   

13.
Brain monoamines and peptides: role in the control of eating behavior   总被引:4,自引:0,他引:4  
Studies of brain monoamines and neuropeptides have provided extensive evidence in support of their role in the control of normal eating behavior. In this process, the medial and lateral portions of the hypothalamus, working in conjunction with forebrain and hindbrain sites and with peripheral autonomic-endocrine systems, have a critical responsibility in balancing signals for hunger and satiety. Via its rich and biologically active neurotransmitter substances, the hypothalamus monitors and integrates the complex sensory and metabolic input concerning the nutritional status of the organism and transduces this information into appropriate quantitative and qualitative adjustments in food intake. The specific neurotransmitters for which there is the most extensive evidence for a physiological function include the eating-stimulatory substances norepinephrine (alpha 2), opioid peptides, pancreatic polypeptides, growth hormone-releasing factor, and gamma-aminobutyric acid; the eating-inhibitory substances dopamine, epinephrine, serotonin, cholecystokinin, neurotensin, calcitonin, glucagon, and corticotropin-releasing factor; and possibly other gut-brain peptides. From biochemical, pharmacological, and anatomical studies, hypotheses have been generated to explain the role of these various monoamines and neuropeptides in controlling total energy intake, in determining the amount and pattern of macronutrient selection, and in maintaining normal energy and nutrient stores under fluctuating conditions within the external environment.  相似文献   

14.
Fukusumi S  Fujii R  Hinuma S 《Peptides》2006,27(5):1073-1086
Since the first discovery of a peptide with RFamide structure at its C-terminus (i.e., an RFamide peptide) from an invertebrate in 1977, numerous studies on RFamide peptides have been conducted, and a variety have been identified in various phyla throughout the animal kingdom. The first reported mammalian RFamide peptides were neuropeptide FF (NPFF) and neuropeptide AF (NPAF) in 1985. However, for many years after this, no new novel RFamide peptides were identified in mammals. A breakthrough in discovering mammalian RFamide peptides was made possible by reverse pharmacology on the basis of orphan G protein-coupled receptor (GPCR) research. The first report of an RFamide peptide identified from orphan GPCR research was prolactin (PRL)-releasing peptide (PrRP) in 1998. To date, a total of five RFamide peptide genes have been discovered in mammals. Orphan GPCR research has contributed considerably to the identification of these peptides and their receptor genes. This paper examines these mammalian RFamide peptides focusing especially on PrRP, RFamide-related peptides (RFRPs) and, the most recently identified, pyroglutamylated RFamide peptide (QRFP), the discovery of all of which the authors were at least partly involved in. We review here the strategies employed for the identification of these peptides and examine their characteristics, tissue distribution, receptors and functions.  相似文献   

15.
The availability of tools for probing the genome and proteome more efficiently has allowed for the rapid discovery of novel genes and peptides that play important, previously uncharacterized roles in neuroendocrine regulation. In this review, the role of a class of neuropeptides containing the C-terminal Arg-Phe-NH(2) (RFamide) in regulating the reproductive axis will be highlighted. Neuropeptides containing the C-terminal Phe-Met-Arg-Phe-NH(2) (FMRFamide) were first identified as cardioregulatory elements in the bi-valve mollusk Macrocallista nimbosa. During the past two decades, numerous studies have shown the presence of structurally similar peptides sharing the RFamide motif across taxa. In vertebrates, RFamide peptides have pronounced influences on opiatergic regulation and neuroendocrine function. Two key peptides in this family are emerging as important regulators of the reproductive axis, kisspeptin and gonadotropin-inhibitory hormone (GnIH). Kisspeptin acts as the accelerator, directly driving gonadotropin-releasing hormone (GnRH) neurons, whereas GnIH acts as the restraint. Recent evidence suggests that both peptides play a role in mediating the negative feedback effects of sex steroids. This review presents the hypothesis that these peptides share complementary roles by responding to internal and external stimuli with opposing actions to precisely regulate the reproductive axis.  相似文献   

16.
Vural IM  Ozturk GS  Ercan ZS  Sarioglu Y 《Life sciences》2007,80(12):1123-1127
Nicotine, a nicotinic acetylcholine receptors (nAChRs) agonist, has a role in modulation of the neurotransmitter release following nerve stimulation in both the central and peripheral nervous systems. The aim of this study was to determine whether electrical field stimulation (EFS)-evoked contractions are altered in rabbit bladder in the presence of nicotine and, if an alteration occurs, to investigate the effects of nitric oxide and prostaglandins on nicotine-induced alternation in isolated rabbit bladder. EFS-evoked contractile responses from rabbit bladder obtained were recorded with isometric force displacement transducers. Nicotine was added to preparations at various concentrations. The effects of hexamethonium, cadmium (Cd(2+)), indomethacin and N-nitro-L-arginine methyl ester (L-NAME) were tested on the EFS-evoked contractions in the presence of nicotine. Nicotine led to a dose-dependent increase in the amplitude of the EFS-evoked contractile responses. Cd(2+) and hexamethonium inhibited the nicotine-induced increase in EFS-evoked responses, whereas indomethacin and L-NAME had no effect. In conclusion, nicotine increased the EFS-evoked contractile responses possibly by facilitating release of neurotransmitters from nerve terminals by a mechanism dependent on the influx of Ca(2+) from voltage-gated Ca(2+) channels (VGCCs) via activation of nAChRs in isolated rabbit bladder. Nitric oxide and prostaglandins do not have a physiological role in the regulation of neurotransmitter release.  相似文献   

17.
A Drosophila gene (capability, capa) at 99D on chromosome 3R potentially encodes three neuropeptides: GANMGLYAFPRV-amide (capa-1), ASGLVAFPRV-amide (capa-2), and TGPSASSGLWGPRL-amide (capa-3). Capa-1 and capa-2 are related to the lepidopteran hormone cardioacceleratory peptide 2b, while capa-3 is a novel member of the pheromone biosynthesis-activating neuropeptide/diapause hormone/pyrokinin family. By immunocytochemistry, we identified four pairs of neuroendocrine cells likely to release the capa peptides into the hemolymph: one pair in the subesophageal ganglion and the other three in the abdominal neuromeres. In the Malpighian (renal) tubule, capa-1 and capa-2 increase fluid secretion rates, stimulate nitric oxide production, and elevate intracellular Ca(2+) and cGMP in principal cells. Capa-stimulated fluid secretion, but not intracellular Ca(2+) concentration rise, is inhibited by the guanylate cyclase inhibitor methylene blue. The actions of capa-1 and capa-2 are not synergistic, implying that both act on the same pathways in tubules. The capa gene is thus the first to be shown to encode neuropeptides that act on renal fluid production through nitric oxide.  相似文献   

18.
Astrocytes play an important role in chemical signalling, acting as receptive as well as secretory elements. They can express receptors for essentially all classical neurotransmitter substances and for a large variety of peptides. Recent evidence indicates that astrocytes are involved in the information processing within the nervous system. Astrocytes respond to various neurotransmitters with elevations in intracellular calcium which can either be long-duration Ca(2+) spikes or oscillations in Ca(2+) levels. Astrocytic excitation can be propagated to adjacent astrocytes in the form of Ca(2+) waves. Due to their intimate spatial relationship with synaptic contacts, astrocytes can directly respond to synaptically released messengers and communicate, via signalling substances, with neurons in a reciprocal manner. Cultured astrocytes and astroglioma cells express synaptic vesicle proteins and members of the synaptic SNARE complex. Astrocytes can release a variety of messenger substances via receptor-mediated mechanisms implicating their potential for regulated exocytosis and the participation of proteins of the SNARE complex.  相似文献   

19.
This study demonstrates the presence of a rich plexus of neuropeptide Y (NPY) immunoreactive fibers in the hypothalamus and in the intermediate lobe of the pituitary of Xenopus laevis. During superfusion of neurointermediate lobe tissue, synthetic NPY induces a rapid, powerful and dose-dependent inhibition of in vitro release of MSH, endorphin and other proopiomelanocortin (POMC) derived peptides. Therefore, NPY undoubtedly is one of the growing number of neuropeptides that are likely involved in control of the amphibian MSH cells. Although a number of stimulatory neuropeptides have been found, this is the first neuropeptide to apparently function through an inhibitory mechanism. In that a 2-hr treatment with NPY did not influence POMC biosynthesis, nor processing of this prohormone to smaller peptides, we conclude that the primary action of NPY is a direct effect on the secretory process of the MSH cell.  相似文献   

20.
Among the RFamide peptide groups, PQRFamide peptides, such as neuropeptide FF (NPFF) and neuropeptide AF (NPAF), share a common C-terminal Pro-Gln-Arg-Phe-NH(2) motif. LPXRFamide (X = L or Q) peptides, such as gonadotropin-inhibitory hormone (GnIH), frog growth hormone-releasing peptide (fGRP), goldfish LPXRFamide peptide and mammalian RFamide-related peptides (RFRPs), also share a C-terminal Leu-Pro-Leu/Gln-Arg-Phe-NH(2) motif. Such a similar C-terminal structure suggests that these two groups may have diverged from a common ancestral gene. In this study, we sought to clarify the evolutionary origin and divergence of these two groups, by identifying novel RFamide peptides from the brain of sea lamprey, one of only two extant groups of the oldest lineage of vertebrates, Agnatha. A novel lamprey RFamide peptide was identified by immunoaffinity purification using the antiserum against LPXRFamide peptide. The lamprey RFamide peptide did not contain a C-terminal LPXRFamide motif, but had the sequence SWGAPAEKFWMRAMPQRFamide (lamprey PQRFa). A cDNA of the precursor encoded one lamprey PQRFa and two related peptides. These related peptides, which also had the C-terminal PQRFamide motif, were further identified as mature endogenous ligands. Phylogenetic analysis revealed that lamprey PQRFamide peptide precursor belongs to the PQRFamide peptide group. In situ hybridization demonstrated that lamprey PQRFamide peptide mRNA is expressed in the regions predicted to be involved in neuroendocrine and behavioral functions. This is the first demonstration of the presence of RFamide peptides in the agnathan brain. Lamprey PQRFamide peptides are considered to have retained the most ancestral features of PQRFamide peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号