首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ureaplasma urealyticum (U. urealyticum), belonging to the class Mollicutes, is a human pathogen colonizing the urogenital tract and causes among other things respiratory diseases in premature infants. We have studied the salvage of pyrimidine deoxynucleosides in U. urealyticum and cloned a key salvage enzyme, thymidine kinase (TK) from U. urealyticum. Recombinant Uu-TK was expressed in E. coli, purified and characterized with regards to substrate specificity and feedback inhibition. Uu-TK efficiently phosphorylated thymidine (dThd) and deoxyuridine (dUrd) as well as a number of pyrimidine nucleoside analogues. All natural ribonucleoside/deoxyribonucleoside triphosphates, except dTTP, served as phosphate donors, while dTTP was a feedback inhibitor. The level of Uu-TK activity in U. urealyticum extracts increased upon addition of dUrd to the growth medium. Fluoropyrimidine nucleosides inhibited U. urealyticum and M. pneumoniae growth and this inhibitory effect could be reversed by addition of dThd, dUrd or deoxytetrahydrouridine to the growth medium. Thus, the mechanism of inhibition was most likely the depletion of dTTP, either via a blocked thymidine kinase reaction and/or thymidylate synthesis step and these metabolic reactions should be suitable targets for antimycoplasma chemotherapy.  相似文献   

2.
3.
Thymidine kinase from Herpes simplex virus type 1 (TK) was crystallized in an N-terminally truncated but fully active form. The structures of TK complexed with ADP at the ATP-site and deoxythymidine-5'-monophosphate (dTMP), deoxythymidine (dT), or idoxuridine-5'-phosphate (5-iodo-dUMP) at the substrate-site were refined to 2.75 A, 2.8 A, and 3.0 A resolution, respectively. TK catalyzes the phosphorylation of dT resulting in an ester, and the phosphorylation of dTMP giving rise to an anhydride. The presented TK structures indicate that there are only small differences between these two modes of action. Glu83 serves as a general base in the ester reaction. Arg163 parks at an internal aspartate during ester formation and binds the alpha-phosphate of dTMP during anhydride formation. The bound deoxythymidine leaves a 35 A3 cavity at position 5 of the base and two sequestered water molecules at position 2. Cavity and water molecules reduce the substrate specificity to such an extent that TK can phosphorylate various substrate analogues useful in pharmaceutical applications. TK is structurally homologous to the well-known nucleoside monophosphate kinases but contains large additional peptide segments.  相似文献   

4.
Deoxyribonucleoside kinases are feedback inhibited by the final products of the salvage pathway, the deoxyribonucleoside triphosphates. In the present study, the mechanism of feedback inhibition is presented based on the crystal structure of a complex between the fruit fly deoxyribonucleoside kinase and its feedback inhibitor deoxythymidine triphosphate. The inhibitor was found to be bound as a bisubstrate inhibitor with its nucleoside part in the nucleoside binding site and with its phosphate groups partially occupying the phosphate donor site. The overall structure of the enzyme--inhibitor complex is very similar to the enzyme--substrate complexes with deoxythymidine and deoxycytidine, except for a conformational change within a region otherwise directly involved in catalysis. This conformational change involves a magnesium ion, which is coordinated in the inhibitor complex to the phosphates and to the primary base, Glu52, that normally is positioned close to the 5'-OH of the substrate deoxyribose.  相似文献   

5.
Antiherpes therapies are principally targeted at viral thymidine kinases and utilize nucleoside analogs, the triphosphates of which are inhibitors of viral DNA polymerase or result in toxic effects when incorporated into DNA. The most frequently used drug, aciclovir (Zovirax), is a relatively poor substrate for thymidine kinase and high-resolution structural information on drugs and other molecules binding to the target is therefore important for the design of novel and more potent chemotherapy, both in antiherpes treatment and in gene therapy systems where thymidine kinase is expressed. Here, we report for the first time the binary complexes of HSV-1 thymidine kinase (TK) with the drug molecules aciclovir and penciclovir, determined by X-ray crystallography at 2.37 Å resolution. Moreover, from new data at 2.14 Å resolution, the refined structure of the complex of TK with its substrate deoxythymidine (R = 0.209 for 96% of all data) now reveals much detail concerning substrate and solvent interactions with the enzyme. Structures of the complexes of TK with four halogen-containing substrate analogs have also been solved, to resolutions better than 2.4 Å. The various TK inhibitors broadly fall into three groups which together probe the space of the enzyme active site in a manner that no one molecule does alone, so giving a composite picture of active site interactions that can be exploited in the design of novel compounds. Proteins 32:350–361, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined. Four isoenzymes at pI 4.1, 5.3, 6.9 and 8.3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pI 8.3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other. All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

7.
Abstract. Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined.
Four isoenzymes at pi 41, 5-3, 6–9 and 8-3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pi 8-3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other.
All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

8.
Summary The two thymidine kinases, TK 1 and TK 2, found in phytohemagglutinin-stimulated human lymphocytes and the thymidine kinase, TK 2N, found in unstimulated human lymphocytes were purified and characterized. All three kinases had molecular weights between 70000 and 75000 which increased to 170000–200000 in the presence of 2 mM ATP.Studies on the kinetic properties of the enzymes with thymidine and ATP as the substrates and dTTP as the inhibitor showed clear differences between TK 1 and TK 2, but a close similarity between TK 2 and TK 2N. With thymidine as the variable substrate, TK 1 showed Michaelis-Menten kinetics, whereas TK 2 and TK 2N showed characteristic biphasic kinetics. With ATP as the variable substrate, all three enzymes showed positive cooperative kinetics, but TK 2 and TK 2N lost the cooperativity in the presence of dTTP. The results from inhibition studies showed, that dTTP was a cooperative inhibitor of TK 1 but a non-cooperative inhibitor of TK 2 and TK 2N.  相似文献   

9.
Kinetic and crystallographic analyses of wild-type Herpes simplex virus type 1 thymidine kinase (TK(HSV1)) and its Y101F-mutant [TK(HSV1)(Y101F)] acting on the potent antiviral drug 2'-exo-methanocarba-thymidine (MCT) have been performed. The kinetic study reveals a 12-fold K(M) increase for thymidine processed with Y101F as compared to the wild-type TK(HSV1). Furthermore, MCT is a substrate for both wild-type and mutant TK(HSV1). Its binding affinity for TK(HSV1) and TK(HSV1)(Y101F), expressed as K(i), is 11 microM and 51 microM, respectively, whereas the K(i) for human cytosolic thymidine kinase is as high as 1.6 mM, rendering TK(HSV1) a selectivity filter for antiviral activity. Moreover, TK(HSV1)(Y101F) shows a decrease in the quotient of the catalytic efficiency (k(cat)/K(M)) of dT over MCT corresponding to an increased specificity for MCT when compared to the wild-type enzyme. Crystal structures of wild-type and mutant TK(HSV1) in complex with MCT have been determined to resolutions of 1.7 and 2.4 A, respectively. The thymine moiety of MCT binds like the base of dT while the conformationally restricted bicyclo[3.1.0]hexane, mimicking the sugar moiety, assumes a 2'-exo envelope conformation that is flatter than the one observed for the free compound. The hydrogen bond pattern around the sugar-like moiety differs from that of thymidine, revealing the importance of the rigid conformation of MCT with respect to hydrogen bonds. These findings make MCT a lead compound in the design of resistance-repellent drugs for antiviral therapy, and mutant Y101F, in combination with MCT, opens new possibilities for gene therapy.  相似文献   

10.
11.
The human cytosolic thymidine kinase (TK) and structurally related TKs in prokaryotes play a crucial role in the synthesis and regulation of the cellular thymidine triphosphate pool. We report the crystal structures of the TK homotetramer from Thermotoga maritima in four different states: its apo-form, a binary complex with thymidine, as well as the ternary structures with the two substrates (thymidine/AppNHp) and the reaction products (TMP/ADP). In combination with fluorescence spectroscopy and mutagenesis experiments, our results demonstrate that ATP binding is linked to a substantial reorganization of the enzyme quaternary structure, leading to a transition from a closed, inactive conformation to an open, catalytic state. We hypothesize that these structural changes are relevant to enzyme function in situ as part of the catalytic cycle and serve an important role in regulating enzyme activity by amplifying the effects of feedback inhibitor binding.  相似文献   

12.
In eukaryotic cells deoxyribonucleoside kinases belonging to three phylogenetic sub-families have been found: (i) thymidine kinase 1 (TK1)-like enzymes, which are strictly pyrimidine deoxyribonucleoside-specific kinases; (ii) TK2-like enzymes, which include pyrimidine deoxyribonucleoside kinases and a single multisubstrate kinase from Drosophila melanogaster (Dm-dNK); and (iii) deoxycytidine/deoxyguanosine kinase (dCK/dGK)-like enzymes, which are deoxycytidine and/or purine deoxyribonucleoside-specific kinases. We cloned and characterized two new deoxyribonucleoside kinases belonging to the TK2-like group from the insect Bombyx mori and the amphibian Xenopus laevis. The deoxyribonucleoside kinase from B. mori (Bm-dNK) turned out to be a multisubstrate kinase like Dm-dNK. But uniquely for a deoxyribonucleoside kinase, Bm-dNK displayed positive cooperativity with all four natural deoxyribonucleoside substrates. The deoxyribonucleoside kinase from X. laevis (Xen-PyK) resembled closely the human and mouse TK2 enzymes displaying their characteristic Michaelis-Menten kinetic with deoxycytidine and negative cooperativity with its second natural substrate thymidine. Bm-dNK, Dm-dNK and Xen-PyK were shown to be homodimers. Significant differences in the feedback inhibition by deoxyribonucleoside triphosphates between these three enzymes were found. The insect multisubstrate deoxyribonucleoside kinases Bm-dNK and Dm-dNK were only inhibited by thymidine triphosphate, while Xen-PyK was inhibited by thymidine and deoxycytidine triphosphate in a complex pattern depending on the deoxyribonucleoside substrate. The broad substrate specificity and different feedback regulation of the multisubstrate insect deoxyribonucleoside kinases may indicate that these enzymes have a different functional role than the other members of the TK2-like group.  相似文献   

13.
Abstract

The synthesis and X-ray crystal structures of a series of 5-substituted-6-aza-2′-deoxyuridines is reported. These nucleoside analogues inhibit the phosphorylation of thymidine by HSV-1 TK but have no effect on the corresponding human enzyme. Detailed examination of one analogue proves it to be a competitive inhibitor of thymidine with a Ki of 0.34 μM and is a very poor substrate. The analogues are not substrates for the enzyme and also do not inhibit the degradation of thymidine by thymidine phosphorylase. Molecular modelling showed that the inhibitors fit well in the active site of HSV-1 TK, provided the conformation of the sugar moiety is the same for thymidine in the complex.  相似文献   

14.
Nucleoside analogues with modified sugar moieties have been examined for their substrate/inhibitor specificities towards highly purified deoxycytidine kinase (dCK) and thymidine kinases (tetrameric high-affinity form of TK1, and TK2) from human leukemic spleen. In particular, the analogues included the mono- and di-O'-methyl derivatives of dC, dU and dA, syntheses of which are described. In general, purine nucleosides with modified sugar rings were feebler substrates than the corresponding cytosine analogues. Sugar-modified analogues of dU were also relatively poor substrates of TK1 and TK2, but were reasonably good inhibitors, with generally lower Ki values vs TK2 than TK1. An excellent discriminator between TK1 and TK2 was 3'-hexanoylamino-2',3'-dideoxythymidine, with a Ki of approximately 600 microM for TK1 and approximately 0.1 microM for TK2. 3'-OMe-dC was a superior inhibitor of dCK to its 5'-O-methyl congener, consistent with possible participation of the oxygen of the (3')-OH or (3')-OMe as proton acceptor in hydrogen bonding with the enzyme. Surprisingly alpha-dT was a good substrate of both TK1 and TK2, with Ki values of 120 and 30 microM for TK1 and TK2, respectively; and a 3'-branched alpha-L-deoxycytidine analogue proved to be as good a substrate as its alpha-D-counterpart. Several 5'-substituted analogues of dC were good non-substrate inhibitors of dCK and, to a lesser extent, of TK2. Finally, some ribonucleosides are substrates of the foregoing enzymes; in particular C is a good substrate of dCK, and 2'-OMe-C is an even better substrate than dC.  相似文献   

15.
Abstract

Nucleoside analogues with modified sugar moieties have been examined for their substrate/inhibitor specificities towards highly purified deoxycytidine kinase (dCK) and thymidine kinases (tetrameric high-affinity form of TK1, and TK2) from human leukemic spleen. In particular, the analogues included the mono-and di-O′-methyl derivatives of dC, dU and dA, syntheses of which are described. In general, purine nucleosides with modified sugar rings were feebler substrates than the corresponding cytosine analogues. Sugar-modified analogues of dU were also relatively poor substrates of TK1 and TK2, but were reasonably good inhibitors, with generally lower Ki values vs TK2 than TK1. An excellent discriminator between TK1 and TK2 was 3′-hexanoylamino-2′,3′-dideoxythymidine, with a Ki of ~600 μM for TK1 and ~0.1 μM for TK2. 3′-OMe-dC was a superior inhibitor of dCK to its 5′-O-methyl congener, consistent with possible participation of the oxygen of the (3′)-OH or (3′)-OMe as proton acceptor in hydrogen bonding with the enzyme. Surprisingly α-dT was a good substrate of both TK1 and TK2, with Ki values of 120 and 30 μM for TK1 and TK2, respectively; and a 3′-branched α-L-deoxycytidine analogue proved to be as good a substrate as its α-D-counterpart. Several 5 ′-substituted analogues of dC were  相似文献   

16.
The first step for the intracellular retention of several anticancer or antiviral nucleoside analogues is the addition of a phosphate group catalysed by a deoxyribonucleoside kinase such as thymidine kinase 1 (TK1). Recently, human TK1 (HuTK1) has been crystallized and characterized using different ligands. To improve our understanding of TK1 substrate specificity, we performed a detailed, mutation-based comparative structure-function study of the active sites of two thymidine kinases: HuTK1 and Caenorhabditis elegans TK1 (CeTK1). Specifically, mutations were introduced into the hydrophobic pocket surrounding the substrate base. In CeTK1, some of these mutations led to increased activity with deoxycytidine and deoxyguanosine, two unusual substrates for TK1-like kinases. In HuTK1, mutation of T163 to S resulted in a kinase with a 140-fold lower K(m) for the antiviral nucleoside analogue 3'-azido-3'-deoxythymidine (AZT) compared with the natural substrate thymidine. The crystal structure of the T163S-mutated HuTK1 reveals a less ordered conformation of the ligand thymidine triphosphate compared with the wild-type structure but the cause of the changed specificity towards AZT is not obvious. Based on its highly increased AZT activity relative to thymidine activity this TK1 mutant could be suitable for suicide gene therapy.  相似文献   

17.
Summary Two thymidine kinase isoenzymes, TK 3 and TK 4, from mononuclear leucocytes from a patient with acute monocytic leukemia, were purified and characterized in regard to the molecular weights and kinetic properties.The molecular weights of TK 3 and TK 4 were 60 000 and 45 000, respectively. In the presence of 2 mM ATP, the molecular weight of TK 3 increased to 200 000, whereas the molecular weight of TK 4 was unchanged.Studies of the kinetic properties showed clear differences between TK 3 and TK 4. With thymidine as substrate, TK 3 showed biphasic kinetics with a Km of 22 µM, and TK 4 showed Michaelis-Menten kinetics with a Km of 0.33 µM With ATP as substrate, TK 3 showed Michaelis-Menten kinetics with a Km of 100 µM, and TK 4 showed biphasic kinetics with a Km of 3.5 µM. With dTTP as inhibitor, TK 3 showed cooperative inhibition kinetics, and TK 4 showed non-cooperative competitive inhibition kinetics. The dTTP concentration at 50% inhibition was 75 µM for TK 3 but 380 µM for TK 4.Comparison of the molecular weights and the kinetic properties of TK 3 and TK 4 with the corresponding data previously obtained for TK 1 and TK 2 from normal human lymphocytes indicate the existence of four thymidine kinase isoenzymes in human leucocytes.  相似文献   

18.
Identification of the ATP-binding domain of vaccinia virus thymidine kinase   总被引:5,自引:0,他引:5  
Although small in size (20 kDa), the vaccinia virus (VV) thymidine kinase protein (EC 2.7.1.21 TK) is a relatively complex enzyme which must contain domains involved in binding both substrates (ATP and thymidine) and a feedback inhibitor (dTTP), as well as sequences directing the association of individual protein monomers into a functional tetrameric enzyme. Alignment of predicted amino acid sequences of the thymidine kinase genes from a variety of sources was used to identify highly conserved regions as a first step toward locating potential regions housing essential domains. A conserved domain (domain I) near the amino terminus of VV TK protein had characteristics consistent with a nucleotide-binding site. Analysis of the nucleotide substrate specificity of VV TK indicated that ATP acts as the major phosphate donor for thymidine phosphorylation while GTP, CTP, and UTP were inefficient substrates. Site-directed mutagenesis was performed on domain I to generate 11 mutant enzymes. Comparison of the wild-type and mutant proteins with regard to enzyme activity revealed that two of the mutant enzymes, T18 and S19, exhibited enhanced enzyme activity (3.73-fold and 1.35-fold, respectively) relative to the control. The other mutations introduced led to greatly reduced levels of enzyme activity which correlated with a reduced or altered ability of the mutant enzymes to bind ATP as determined by ATP-agarose affinity chromatography. Wild-type VV TK bound to an ATP affinity column could also be eluted with dTTP. Glycerol gradient separation of wild-type TK in the presence or absence of dTTP indicated that dissociation of the tetrameric complex was not the means by which enzymatic inhibition was achieved. Taken together, these results suggest that (i) domain I (amino acids 11-22) of the VV TK corresponds to the ATP-binding site, and (ii) that dTTP is able to interfere with ATP binding, either directly or indirectly, and thereby inhibit enzymatic activity without dissociating the native enzyme.  相似文献   

19.
Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ‐phosphate of ATP to 2′‐deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C‐terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine‐derived nucleotides. In addition, we report the X‐ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design.  相似文献   

20.
Understanding the functional and mechanistic properties of the multi-substrate herpes simplex virus type-1 thymidine kinase (HSV-1 TK) remains critical to defining its role as a major pharmacological target in herpesvirus and gene therapies for cancer. An inherent limitation of the activity of HSV-TK is the >70-fold difference in the K(m)s for phosphorylation of thymidine over the pro-drug ganciclovir (GCV). To engineer an HSV-1 TK isoform that is specific for GCV as the preferred substrate, 16 site-specific mutants were generated. The mutations were concentrated at conserved residues involved in nucleoside base binding, Gln125 and near sites 3 and 4 involved in catalysis and substrate binding. The substrate preferences of each mutant enzyme were compared with wild-type HSV-1 TK. One mutant, termed Q7530 TK, had a lower K(m) for GCV than thymidine. Expression of the Q7530 TK in tumor cells indicated comparable metabolism to and improved sensitivity to GCV over wild-type HSV-1 TK, with minimal thymidine phosphorylation activity. A molecular modeling simulation of the different HSV-1 TK active-sites was done for GCV and thymidine binding. It was concluded that mutations at Gln125 and near site 4, especially at Ala168, were responsible for loss of deoxypyrimidine substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号