首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bradykinin (BK), generated from high-molecular-weight kininogen (HK) is the major mediator of swelling attacks in hereditary angioedema (HAE), a disease associated with C1-inhibitor deficiency. Plasma kallikrein, activated by factor XIIa, is responsible for most of HK cleavage. However other proteases, which activate during episodes of angioedema, might also contribute to BK production. The lectin pathway of the complement system activates after infection and oxidative stress on endothelial cells generating active serine proteases: MASP-1 and MASP-2. Our aim was to study whether activated MASPs are able to digest HK to release BK. Initially we were trying to find potential new substrates of MASP-1 in human plasma by differential gel electrophoresis, and we identified kininogen cleavage products by this proteomic approach. As a control, MASP-2 was included in the study in addition to MASP-1 and kallikrein. The proteolytic cleavage of HK by MASPs was followed by SDS-PAGE, and BK release was detected by HPLC. We showed that MASP-1 was able to cleave HK resulting in BK production. MASP-2 could also cleave HK but could not release BK. The cleavage pattern of MASPs is similar but not strictly identical to that of kallikrein. The catalytic efficiency of HK cleavage by a recombinant version of MASP-1 and MASP-2 was about 4.0×10(2) and 2.7×10(2) M(-1) s(-1), respectively. C1-inhibitor, the major inhibitor of factor XIIa and kallikrein, also prevented the cleavage of HK by MASPs. In all, a new factor XII- and kallikrein-independent mechanism of bradykinin production by MASP-1 was demonstrated, which may contribute to the pro-inflammatory effect of the lectin pathway of complement and to the elevated bradykinin levels in HAE patients.  相似文献   

2.
Hereditary angioedema is characterized by recurrent skin swelling, abdominal pain attacks, and potentially life-threatening upper airway obstruction. The two classic types are both caused by mutations within the complement C1 inhibitor gene. A recently described new type does not show a deficiency of C1 inhibitor and affects almost exclusively women. We screened twenty unrelated index patients with this new type of hereditary angioedema for mutations in the coagulation factor XII gene. Two different missense mutations were identified in exactly the same position within exon 9 of the F12 gene. 'Mutation 1' (1032C-->A), encountered in five patients, predicts a threonine-to-lysine substitution (Thr309Lys). 'Mutation 2' (1032C-->G), observed in one patient, results in a threonine-to-arginine substitution (Thr309Arg). The predicted structural and functional impact of the mutations, their absence in 145 healthy controls, and their co-segregation with the phenotype in five families provide strong support that they cause disease.  相似文献   

3.
Plasma kallikrein (pKal) proteolytically cleaves high molecular weight kininogen to generate the potent vasodilator and the pro-inflammatory peptide, bradykinin. pKal activity is tightly regulated in healthy individuals by the serpin C1-inhibitor, but individuals with hereditary angioedema (HAE) are deficient in C1-inhibitor and consequently exhibit excessive bradykinin generation that in turn causes debilitating and potentially fatal swelling attacks. To develop a potential therapeutic agent for HAE and other pKal-mediated disorders, we used phage display to discover a fully human IgG1 monoclonal antibody (DX-2930) against pKal. In vitro experiments demonstrated that DX-2930 potently inhibits active pKal (Ki = 0.120 ± 0.005 nm) but does not target either the zymogen (prekallikrein) or any other serine protease tested. These findings are supported by a 2.1-Å resolution crystal structure of pKal complexed to a DX-2930 Fab construct, which establishes that the pKal active site is fully occluded by the antibody. DX-2930 injected subcutaneously into cynomolgus monkeys exhibited a long half-life (t½ ∼12.5 days) and blocked high molecular weight kininogen proteolysis in activated plasma in a dose- and time-dependent manner. Furthermore, subcutaneous DX-2930 reduced carrageenan-induced paw edema in rats. A potent and long acting inhibitor of pKal activity could be an effective treatment option for pKal-mediated diseases, such as HAE.  相似文献   

4.
The polymerase chain reaction and nucleotide sequence analysis have been used to characterize a point mutation in the seventh exon of one allele of the C1-inhibitor gene in a family with type I hereditary angioedema. A single base change (C→T) at nucleotide 1482 in C1-inhibitor converted the codon for Gln-339 to a premature translation termination codon, TAG. Family studies suggest that this mutation is reponsible for type I hereditary angioedema in a studied pedigree. Received: 19 March 1996  相似文献   

5.
The concentration of bradykinin in human plasma depends on its relative rates of formation and destruction. Bradykinin is destroyed by two enzymes: a plasma carboxypeptidase (anaphylatoxin inactivator) removes the COOH-terminal arginine to yield an inactive octapeptide, and a dipeptidase (identical to the angiotensin-converting enzyme) removes the COOH-terminal Phe-Arg to yield a fragment of seven amino acids that is further fragmented to an end product of five amino acids. Formation of bradykinin is initiated on binding of Hageman factor (HF) to certain negatively charged surfaces on which it autoactivates by an autodigestion mechanism. Initiation appears to depend on a trace of intrinsic activity present in HF that is at most 1/4000 that of activated HF (HFa); alternatively traces of circulating HFa could subserve the same function. HFa then converts coagulation factor XI to activated factor XI (XIa) and prekallikrein to kallikrein. Kallikrein then digests high-molecular-weight kininogen (HMW-kininogen) to form bradykinin. Prekallikrein and factor XI circulate bound to HMW-kininogen and surface binding of these complexes is mediated via this kininogen. In the absence of HMW-kininogen, activation of prekallikrein and factor XI is much diminished; thus HMW-kininogen has a cofactor function in kinin formation and coagulation. Once a trace of kallikrein is generated, a positive feedback reaction occurs in which kallikrein rapidly activates HF. This is much faster than the HF autoactivation rate; thus most HFa is formed by a kallikrein-dependent mechanism. HMW-kininogen is also therefore a cofactor for HF activation, but its effect on HF activation is indirect because it occurs via kallikrein formation. HFa can be further digested by kallikrein to form an active fragment (HFf), which is not surface bound and acts in the fluid phase. The activity of HFf on factor XI is minimal, but it is a potent prekallikrein activator and can therefore perpetuate fluid phase bradykinin formation until it is inactivated by the C1 inhibitor. In the absence of C1 inhibitor (hereditary angioedema) HFf may also interact with C1 and activate it enzymatically. The resultant augmented bradykinin formation and complement activation may account for the pathogenesis of the swelling characteristic of hereditary angioedema and the serologic changes observed during acute attacks.  相似文献   

6.
Plasma C1 inhibitor (C1INH) is a natural inhibitor of complement and contact system proteases. Heterozygosity for C1INH deficiency results in hereditary angioedema, which is mediated by bradykinin. Treatment with plasma C1INH is effective not only in patients with hereditary angioedema, but also in a variety of other disease models, in which such therapy is accompanied by diminished neutrophil infiltration. The underlying mechanism has been explained primarily as a result of the inhibition of the complement and contact systems. We have shown that C1INH expresses the sialyl-Lewis(x) tetrasaccharide on its N-linked glycan, via which it binds to E- and P-selectins and interferes with leukocyte-endothelial adhesion in vitro. Here we show that both native C1INH and reactive center cleaved C1INH significantly inhibit selectin-mediated leukocyte adhesion in several in vitro and in vivo models, whereas N-deglycosylated C1INH loses such activities. The data support the hypothesis that C1INH plays a direct role in leukocyte-endothelial cell adhesion, that the activity is mediated by carbohydrate, and that it is independent of protease inhibitory activity. Direct involvement of C1INH in modulation of selectin-mediated cell adhesion may be an important mechanism in the physiologic suppression of inflammation, and may partially explain its utility in therapy of inflammatory diseases.  相似文献   

7.
C1酯酶抑制剂(C1 esterase inhibitor,C1INH)属于丝氨酸蛋白酶抑制剂家族,能够调节补体系统、激肽释放系统、纤溶系统和凝血系统。目前在临床上主要用于遗传性血管性水肿的治疗。但最近的研究表明C1INH除丝氨酸蛋白酶抑制作用外,还具有多种非蛋白酶抑制功能,如抗炎和抗凋亡作用。而且很多动物实验和临床试验显示C1INH对脓毒症(sepsis)、心肌缺血等疾病也有治疗作用。本文主要综述C1INH的非蛋白酶抑制功能的最新研究进展。  相似文献   

8.
Hereditary angioedema (HAE) is predominantly caused by a deficiency in C1 esterase inhibitor (C1INH) (HAE-C1INH). C1INH inhibits activated factor XII (FXIIa), activated factor XI (FXIa), and kallikrein. In HAE-C1INH patients the thrombotic risk is not increased even though activation of the contact system is poorly regulated. Therefore, we hypothesized that contact activation preferentially leads to kallikrein formation and less to activation of the coagulation cascade in HAE-C1INH patients. We measured the levels of C1INH in complex with activated contact factors in plasma samples of HAE-C1INH patients (N=30, 17 during remission and 13 during acute attack) and healthy controls (N=10). We did not detect differences in enzyme-inhibitor complexes between samples of controls, patients during remission and patients during an acute attack. Reconstitution with C1INH did not change this result. Next, we determined the potential to form enzyme-inhibitory complexes after complete in vitro activation of the plasma samples with a FXII trigger. In all samples, enzyme-C1INH levels increased after activation even in patients during an acute attack. However, the levels of FXIIa-C1INH, FXIa-C1INH and kallikrein-C1INH were at least 52% lower in samples taken during remission and 70% lower in samples taken during attack compared to samples from controls (p<0.05). Addition of C1INH after activation led to an increase in levels of FXIIa-C1INH and FXIa-C1INH (p<0.05), which were still lower than in controls (p<0.05), while the levels of kallikrein-C1INH did not change. These results are consistent with constitutive activation and attenuated depletion of the contact system and show that the ongoing activation of the contact system, which is present in HAE-C1INH patients both during remission and during acute attacks, is not associated with preferential generation of kallikrein over FXIa.  相似文献   

9.
DNA structural changes responsible for hereditary angioedema were sought in the C1-inhibitor gene, which contains unusually dense clusters of Alu repeats in various orientations. Among patients belonging to 45 unrelated families, eight partial C1-inhibitor gene deletions and a partial duplication were found. Four deletions had one of the boundaries within the gene and the other in extragenic regions--in three cases 5' of the gene and in one case 3' of the gene. The boundaries of the partial duplication and of the remaining four deletions mapped instead within a few kilobases of exon 4. The same element--Alu 1--the first of three tandem Alu repeats preceding exon 4, contained one of the breakpoints of each of these five rearrangements. Moreover, these recombination breakpoints spread over the entire length of Alu 1, in contrast with the tight clustering observed near the 5' end of Alu sequences rearranged in other human genes. Thus, two uncommon recombinational biases are observed in the Alu rearrangements of hereditary angioedema patients; one promotes the occurrence of intragenic breakpoints in a single Alu repeat, and the other allows the breaks to be distributed over the entire Alu structure rather than within the hot spot of the left Alu monomer. A region of potential Z-DNA structure, located 1.7 kb upstream of Alu 1, may contribute to both peculiarities.  相似文献   

10.
Complement activation has been implicated in disease states such as hereditary angioedema, ischemia-reperfusion injury, acute respiratory distress syndrome, and acute transplant rejection. Even though the complement cascade provides several protein targets for potential therapeutic intervention only two complement inhibitors have been approved so far for clinical use including anti-C5 antibodies for the treatment of paroxysmal nocturnal hemoglobinuria and purified C1-esterase inhibitor replacement therapy for the control of hereditary angioedema flares. In the present study, optimization of potency and physicochemical properties of a series of thiophene amidine-based C1s inhibitors with potential utility as intravenous agents for the inhibition of the classical pathway of complement is described.  相似文献   

11.
Forty-five relatives of 4 families with hereditary angioneurotic edema (HANE) were studied. Twenty-five, including 11 asymptomatic kindreds with the disposition, showed typical changes in complement system compatible with HANE. Follow-up study of HANE patients showed that, even in remission period, complement, coagulation and fibrinolytic systems can be activated. During edema attacks, moderate haemoconcentration and neutrophilia were encountered and kallikrein-kinin system was found to be also activated. Replacement therapy with C 1-inhibitor preparation for an edema attack revealed that clinical improvement paralleled the increase in blood levels of high molecular weight kininogen. Thus, HANE attack is considered to be elicited in kindreds with the hereditary disposition by activation of plasma protease systems, particularly by that of kallikrein-kinin system. On the other hand, exogenous triggers that can initiate activation of the protease systems can be classified into 2, neuro-humoral (sympathetic nerve response) and physico-chemical, categories. Hence, the edema attack of kindreds with the hereditary disposition can at least be modified by the biosynthesis of plasma factors and the individual susceptibility to the liberated catecholamines. These two different reaction processes are considered to be linked by the release of plasminogen activator and/or Hageman factor activating enzyme.  相似文献   

12.
The authors discuss diagnostic difficulties in 12 cases of hereditary angioneurotic edema due to C1-esterase inhibitor (C1-INH deficiency). Emphasis is on the treatment of the acute attacks with intravenous infusions of C1-inhibitor concentrate (Boehring, West Germany). This proved to be a very efficient and safe therapy, leading to a prompt disappearance of all clinical symptoms. Throughout 12 months following the infusions, indices of the liver function remained within the normal range, and anti-Hbs and anti-HIV tests were negative.  相似文献   

13.
An enzyme-linked immunosorbent assay (ELISA) has been developed for the quantification of C1 inactivator-kallikrein (C1In-K) complexes. The formation of complexes assayed by this method parallelled the inhibition of plasma kallikrein esterase activity by C1 inactivator in purified systems. C1In-K complexes were detected when a final concentration of 5.7 nM plasma kallikrein was added to plasma, equivalent to the activation of 1% of the plasma prekallikrein. Exogenous Hageman factor fragment added to plasma induced the rapid formation of C1In-K complexes, whereas there was an appreciable delay when the plasma contact system was activated by the addition of kaolin. In both systems, the rate of formation and final amount of complex generated were directly related to the concentration of Hageman factor fragment or of kaolin added, indicating that this proteolytic pathway is tightly regulated. C1In-K complexes were not generated by kaolin in plasma congenitally deficient in Hageman factor or prekallikrein or by kallikrein in hereditary angioedema plasma deficient in C1 inactivator, thus confirming the specificity of the assay. Sucrose gradient ultracentrifugation studies showed plasma C1In-K complexes to have a molecular weight consistent with a 1:1 molar complex. In contrast, the complex displayed an anomalously high molecular weight on gel filtration chromatography. These data demonstrate that a sensitive and specific probe has been developed for documenting plasma kallikrein activation.  相似文献   

14.
C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation.  相似文献   

15.
Simple rapid procedures for identification and analysis of dysfunctional C1-inhibitor proteins mutated at the reactive-centre P1 residue have been developed and used to define structurally a C1-inhibitor protein, C1-inhibitor(At), isolated from an individual with hereditary angio-oedema. The observed mutation, Arg444----His, is compatible with a single base change in the codon used for Arg444 in the native protein.  相似文献   

16.
Hereditary angioedema (HAE) is an autosomal dominant disease that manifests as intermittent acute swellings of the skin and mucosal surfaces, which, in the gastrointestinal tract and larynx, may even be fatal. HAE results from functional deficiency of the C1 inhibitor (C1INH) protein, which plays a key role in the classical pathway of complement activation. C1INH is the sole inhibitor of the activated proteases C1r and C1s, and is the major regulator of activated coagulation Factor XII and plasma kallikrein, which limits the generation of the vasoactive peptide bradykinin. In this paper, we report on the genetic analysis of 173 families (including 326 members) with a clinical diagnosis of HAE. Direct sequencing, Southern blotting and quantitative PCR by the MLPA method were used to screen for mutations in C1INH (SERPING1). In 142 families (82.1%), a causative C1INH gene mutation could be identified. A total of 80 novel point mutations of C1INH not published previously were detected in 96 pedigrees (including 172 members). Our results corroborate C1INH (SERPING1) deficiency as a disease of extreme allelic heterogeneity with almost each individual family carrying their own mutation. Routine molecular genetic analysis is an effective way of confirming the clinical diagnosis and identifying mutation carriers early on before any clinical manifestation becomes apparent. It is, therefore, a valuable tool in prevention and adequate treatment of acute and life-threatening oedema.  相似文献   

17.
C1 inhibitor, a member of the serpin family, is a major down-regulator of inflammatory processes in blood. Genetic deficiency of C1 inhibitor results in hereditary angioedema, a dominantly inheritable, potentially lethal disease. Here we report the first crystal structure of the serpin domain of human C1 inhibitor, representing a previously unreported latent form, which explains functional consequences of several naturally occurring mutations, two of which are discussed in detail. The presented structure displays a novel conformation with a seven-stranded beta-sheet A. The unique conformation of the C-terminal six residues suggests its potential role as a barrier in the active-latent transition. On the basis of surface charge pattern, heparin affinity measurements, and docking of a heparin disaccharide, a heparin binding site is proposed in the contact area of the serpin-proteinase encounter complex. We show how polyanions change the activity of the C1 inhibitor by a novel "sandwich" mechanism, explaining earlier reaction kinetic and mutagenesis studies. These results may help to improve therapeutic C1 inhibitor preparations used in the treatment of hereditary angioedema, organ transplant rejection, and heart attack.  相似文献   

18.
RFLP analysis, the polymerase chain reaction and nucleotide sequencing have been used to characterise a C1-inhibitor gene mutation responsible for type I hereditary angio-oedema (HAE). A single base deletion (C-16698) from the eighth exon of the C1-inhibitor gene alters the reading frame of the exon and generates a premature translation termination codon. This represents the first report of this form of C1-inhibitor gene mutation in type I HAE.  相似文献   

19.
The polymerase chain reaction and nucleotide sequence analysis have been used to characterise a three nucleotide insertion in the eighth exon of one allele of the C1-inhibitor gene between nucleotides 16749 and 16750 in a kindred with type II hereditary angio-oedema (HAE). The effect of the resulting C1-inhibitor amino acid sequence alteration is discussed. This represents the first report of a nucleotide insertion in the C1-inhibitor gene causing type II HAE.  相似文献   

20.
The polymerase chain reaction and nucleotide sequence analysis have been used to characterise two point mutations in the eighth exon of one allele of the C1-inhibitor gene in a kindred with type II hereditary angio-oedema (HAE). The mutations comprise a G to A substitution at C1-inhibitor gene nucleotide 16789 and an upstream C to T substitution at nucleotide position 16765. This represents the first report of these two mutations in the same C1-inhibitor allele in type II HAE. The molecular genetic pathogenesis of HAE is discussed in the light of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号