首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of cholesterol on the dynamics and the structural properties of two different spin probes, the sterol type CSL and the phospholipid type 16-PC, in POPC/cholesterol oriented multilayer model membranes were examined. Our results are consistent with a nonideal solution containing cholesterol-rich clusters created by the self association of cholesterol in POPC model membranes. The lateral diffusion coefficient D of the spin probes was measured over the temperature range of 15 to 60 degrees C and over the concentration range of 0 to 30 mol% of cholesterol in the model membrane by the electron spin resonance (ESR) imaging method. The rotational diffusion coefficients (including R perpendicular) and the order parameter S were determined utilizing a nonlinear least square ESR spectral simulation method. D, R perpendicular and S of CSL deviate considerably from linear dependence on mole percent cholesterol. The D of CSL was decreased by a factor of four at 15 degrees C and a factor of two at 60 degrees C for concentrations of cholesterol over 10 mol %, whereas those of 16-PC were hardly affected. Cholesterol decreased R perpendicular by a factor of 10 at 30 mol % of cholesterol, but it increased slightly that of 16-PC. A significant increase of S for CSL due to the presence of cholesterol was observed. It is shown how the difference in variation of S for CSL vs. 16-PC with composition may be interpreted in terms of their respective activity coefficients, and how a single universal linear relation is obtained for the S of both probes in terms of a scaled temperature. Simple but general correlations of D and of R perpendicular with S were also found, which aid in the interpretation of these diffusion coefficients.  相似文献   

2.
Recently, developments in time-resolved spin-label electron spin resonance (ESR) spectroscopy have contributed considerably to the study of biomembranes. Two different applications of electron spin echo spectroscopy of spin-labelled phospholipids are reviewed here: (1) the use of partially relaxed echo-detected ESR spectra to study the librational lipid-chain motions in the low-temperature phases of phospholipid bilayers; (2) the use of electron spin echo envelope modulation spectroscopy to determine the penetration of water into phospholipid membranes. Results are described for phosphatidylcholine bilayer membranes, with and without equimolar cholesterol, that are obtained with phosphatidylcholine spin probes site-specifically labelled throughout the sn-2 chain.  相似文献   

3.
G B Birrell  O H Griffith 《Biochemistry》1976,15(13):2925-2929
The extrinsic membrane protein cytochrome c binds to lipid mixtures containing negatively charged phospholipids such as diphosphatidylglycerol (DPG). In this study the effect of cytochrome c on the lipid distribution in a DPG-steroid spin-label (3-doxyl-5alpha-cholestane) model membrane system is examined. The electron spin resonance (ESR) line-shape changes indicate that cytochrome c induces lateral phase separation at room temperature. The resulting two-dimensional lipid distribution is nonrandom, consisting of clusters of phospholipids bound to cytochrome c and patches of steroid spin-label molecules. Phase separations are also observed in the three-component system: DPG, phosphatidylcholine, and 3-doxyl-5alpha-cholestane.  相似文献   

4.
Electron paramagnetic resonance (EPR) spin-labeling methods were used to study the organization of cholesterol and phospholipids in membranes formed from Chol/POPS (cholesterol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine) mixtures, with mixing ratios from 0 to 3. It was confirmed using the discrimination by oxygen transport and polar relaxation agent accessibility methods that the immiscible cholesterol bilayer domain (CBD) was present in all of the suspensions when the mixing ratio exceeded the cholesterol solubility threshold (CST) in the POPS membrane. The behavior of phospholipid molecules was monitored with phospholipid analogue spin labels (n-PCs), and the behavior of cholesterol was monitored with the cholesterol analogue spin labels CSL and ASL. Results indicated that phospholipid and cholesterol mixtures can form a membrane suspension up to a mixing ratio of ~2. Additionally, EPR spectra for n-PC, ASL, and CSL indicated that both phospholipids and cholesterol exist in these suspensions in the lipid-bilayer-like structures. EPR spectral characteristics of n-PCs (spin labels located in the phospholipid cholesterol bilayer, outside the CBD) change with increase in the cholesterol content up to and beyond the CST. These results present strong evidence that the CBD forms an integral part of the phospholipid bilayer when formed from a Chol/POPS mixture up to a mixing ratio of ~2. Interestingly, CSL in cholesterol alone (without phospholipids) when suspended in buffer does not detect formation of bilayer-like structures. A broad, single-line EPR signal is given, similar to that obtained for the dry film of cholesterol before addition of the buffer. This broad, single-line signal is also observed in suspensions formed for Chol/POPS mixtures (as a background signal) when the Chol/POPS ratio is much greater than 3. It is suggested that the EPR spin-labeling approach can discriminate and characterize the fraction of cholesterol that forms the CBD within the phospholipid bilayer.  相似文献   

5.
The fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles is a function of the physical state of the lipid. Below the phase transition, the polarization approaches the theoretical maximum for total immobilization while above the phase transition the fluorescence becomes nearly completely depolarized. The discontinuity in the temperature dependence of polarization occurs within a temperature range under 5 degrees C in the case of pure phospholipids, but for mixed phospholipids occurs over a temperature range greater than 20 degrees C. From these data, phase diagrams describing the gel-sol equilibrium can be constructed; the phase diagrams correspond well with those described in the literature which were constructed using spin-label probes or from x-ray diffraction patterns. The marked change in polarization at the phase transition may be related to the packing of the probe molecule into the lipid bilayer: fluorescence measurements on oriented bilayers indicate that below the phase transition the long axis of the probe is oriented perpendicular to the plane of the membrane while above the transition the probe is oriented randomly relative to the plane of the membrane.  相似文献   

6.
Through the analysis of the ESR spectra of spin labels, we investigated the thermotropic properties of dioctadecyl dimethylammonium bromide (DODAB) liposomes, in low and high ionic strength, with different cholesterol contents. The cationic lipid gel phase is stabilized by the presence of ions, the bilayer having a higher gel/fluid transition temperature (Tm) in high ionic strength. As found for low ionic strength [Benatti, C.R., Feitosa, E., Fernandez, R.M., Lamy-Freund, M.T., 2001. Structural and thermal characterization of dioctadecyldimethylammonium bromide dispersions by spin labels. Chem. Phys. Lipids, 111, 93-104], high salt DODAB membranes also present a clear coexistence of the two phases around Tm. Cholesterol solubility in DODAB bilayers seems to be rather low, as the coexistence of DODAB and cholesterol-rich domains can be clearly detected by spin labels, for cholesterol concentration as low as 15 mol% of the total lipid. For lower cholesterol concentrations, the effect of cholesterol in DODAB bilayers is similar to that in phospholipids. For concentrations at or above 45 mol% of cholesterol, spin labels do not detect the coexistence of structurally different domains.  相似文献   

7.
A new version of the ESR spin probe partitioning method is developed and applied to the study of hydration properties of dimyristoyl-phosphatidylglycerol (DMPG) and dimyristoyl-phosphatidylcholine (DMPC) vesicles as functions of salt concentration and temperature above the lipid phase transition. The small spin probe di-tert-butyl nitroxide (DTBN) is used in order to achieve motionally narrowed Electron Spin Resonance (ESR) spectra which may be analyzed with high precision. The new method relies on the use of the second harmonic display of the ESR spectrum followed by spectral line fitting. Spectral fitting yields precise ESR parameters giving detailed information on the surroundings of the spin probe in both phospholipid and aqueous phases. The nitrogen hyperfine coupling constant of DTBN arising from those probes occupying the vesicles is used to study the hydration of the vesicle surface. The hydration properties of the negatively charged vesicle surface of DMPG vesicles are affected by the addition of salt at all temperatures. In contrast, the hydration of DMPC vesicles does not change with salt concentration at the low temperatures. However, at higher temperatures the hydration properties of DMPC vesicle are affected by salt which is interpreted to be due to the faster motion of the phospholipid molecules. The partitioning of the spin probe increases with salt concentration for both DMPG and DMPC vesicles, while water penetration decreases simultaneously. The spin probe in the phospholipid bilayer exhibits anisotropic motion and the extent of the anisotropy is increased at the higher salt concentrations.  相似文献   

8.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

9.
A detailed electron spin resonance (ESR) study of spin-labeled-oriented multilayers of L alpha-dipalmitoylphosphatidylcholine (DPPC) water systems for low water content (2-10% by weight) is reported with the purpose of characterizing the dynamical and structural properties of model membrane systems. Emphasis is placed on the value of combining such experiments with detailed simulations based on current slow-motional theories. Information is obtained regarding ordering and anisotropic rotational diffusion rates via ESR lineshape analysis over the entire motional range, from the fast motional region through the moderately slow and slow to the rigid limit. This includes the low-temperature gel phase, the liquid crystalline L alpha (1) phase and what appears to be a third high-temperature phase above the L alpha phase. Cholestane (CSL) and spin-labeled DPPC (5-PC, 8-PC, and 16-PC) have been used to probe different depths of the bilayer. While CSL and 5-PC both reflect the high ordering of the bilayer close to the lipid-water interface, CSL appears to be located close enough to the water for the nitroxide to be involved in hydrogen bonding with water molecules. 16-PC reflects the relatively low ordering near the tail of the hydrocarbon chain in the bilayer. Quantitative estimates of ordering and motion are obtained for these cases. The results from CSL indicate that close to the lipid-water interface the DPPC molecule is oriented approximately perpendicular to the bilayer in these low water-content systems. However, all three labeled lipid probes indicate that the hydrocarbon chain of DPPC may be bent away from the bilayer normal by as much as 30 degrees and this evidence is stronger at low temperatures. When cholesterol is added to the DPPC-water system at a concentration greater than or equal to 2.5 mol %, the ordering is greatly increased although the rotational diffusion rate remains almost unaffected in the gel phase. Electron spin echoes (ESE) are observed for the first time from oriented lipid-water multilayers. Results obtained from cw ESR lineshape analysis are correlated with data from ESE experiments, which give a more direct measurement of relaxation times. These results indicate that for detection of very slow motions (close to the rigid limit) ESE experiments are more sensitive to dynamics than continuous wave ESR for which inhomogeneous broadening becomes a major problem.  相似文献   

10.
Most peripheral cells generate cholesterol-rich high-density lipoprotein (HDL) with exogenous apolipoprotein as one of the mechanisms for the maintenance of cellular cholesterol homeostasis. Astrocytes isolated from fetal rat brain showed a unique behavior in this reaction. Consistent with previous findings, the astrocytes synthesized apolipoprotein (apo) E and generated cholesterol-rich pre-beta-HDL-like lipoprotein with this apoE, and cellular cholesterol and phospholipids. When exogenous apoA-I and E were added to the medium, they caused generation of additional HDL with cellular phospholipid. It is interesting that this additional part was very poor in cholesterol except for the generation of relatively cholesterol-rich HDL only in the initial few hours of the incubation. The mobilization of intracellular cholesterol for this reaction was also very limited, reflecting the poor cholesterol incorporation into the HDL. Thus, the results demonstrated a unique profile of HDL generation and cholesterol efflux by apolipoproteins in rat astrocytes, with endogenous apoE producing cholesterol-rich HDL and exogenous apolipoproteins producing cholesterol-poor HDL. These lipoproteins may play differential roles in cholesterol transport in the CNS.  相似文献   

11.
Y K Shin  D E Budil    J H Freed 《Biophysical journal》1993,65(3):1283-1294
A method for obtaining the thermodynamic activity of each membrane component in phosphatidylcholine (PC)/cholesterol mixtures, that is based upon ESR spin labeling is examined. The thermodynamic activity coefficients, gamma PC and gamma chol, for the PC and cholesterol, respectively, are obtained from the measured orientational order parameters, SPC and S(chol), as a function of cholesterol content for a spin-labeled PC and the sterol-type cholestane spin probe (CSL), respectively, and the effects of water concentration are also considered. At water content of 24 weight%, the thermodynamics of DMPC/cholesterol/water mixtures in the liquid-crystalline state may be treated as a two-component solution ignoring the water, but at lower water content the role of water is important, especially at lower cholesterol concentrations. At lower water content (17 wt%), gamma chol decreases with increasing cholesterol content which implies aggregation. However, at higher water content (24 wt%), gamma chol is found initially to increase as a function of cholesterol content before decreasing at higher cholesterol content. This implies a favorable accommodation for the cholesterol in the membrane at high water and low cholesterol content. Good thermodynamic consistency according to the Gibbs-Duhem equation was obtained for gamma PC and gamma chol at 24 wt% water. The availability of gamma chol (and gamma PC) as a function of cholesterol concentration permits the estimate of the boundary for phase separation. The rotational diffusion coefficients of the labeled PC and of CSL were also obtained from the ESR spectra. A previously proposed universal relation for the perpendicular component of the rotational diffusion tensor, R perpendicular, for CSL in PC/cholesterol mixtures (i.e., R perpendicular = R0 perpendicular exp(-AS2chol/RT)) is confirmed. A change in composition of cholesterol or of water for DMPC/cholesterol/water mixtures affects R perpendicular only through the dependence of S(chol) on the composition. In particular, the amount of water affects the membrane fluidity, monitored by R perpendicular for CSL, solely by the structural changes it induces in the membrane for the compositions studied. Rotational diffusion for the labeled PC is found to be more complex, most likely due to the combined action of the internal modes of motion of the flexible chain and of the overall molecular reorientation.  相似文献   

12.
Rotational diffusion of cholestane spin-label (CSL), a sterol analogue, in various phosphatidylcholine (PC)-cholesterol membranes was systematically studied by computer simulation of steady-state ESR spectra as a function of chain length and unsaturation of alkyl chains, cholesterol mole fraction, and temperature for better understanding of phospholipid-cholesterol and cholesterol-cholesterol interactions. CSL motion in the membrane was treated as Brownian rotational diffusion of a rigid rod within the confines of a cone imposed by the membrane environment. The wobbling rotational diffusion constant of the long axis, its activation energy, and the cone angle of the confines are obtained for various membranes in the liquid-crystalline phase. The wobbling diffusion constant decreases in the order dilauroyl-PC greater than dimyristoyl-PC greater than dioleoyl-PC approximately dipalmitoyl-PC greater than distearoyl-PC greater than dioleoyl-PC/cholesterol = 3/1 greater than dioleoyl-PC/cholesterol = 1/1 membranes. Activation energy for the wobbling diffusion of the long axis of CSL is strongly dependent on alkyl chain length, unsaturation, and cholesterol mole fraction. It decreases with decrease in alkyl chain length and by introduction of unsaturation in the alkyl chains. In dioleoylphosphatidylcholine membranes, activation energy decreases by a factor of approximately 3 in the presence of 50 mol % cholesterol. Activation energy for wobbling diffusion of CSL in phosphatidylcholine membranes is smaller than the activation energy for translational diffusion of a phospholipid. The former is more dependent on alkyl chain length and unsaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The interaction between tetracaine and egg phosphatidylcholine (egg PC) multibilayers was examined. ESR spectra of an ester spin label indicate that at low uncharged anesthetic: lipid ratios, membrane organization decreases. At higher ratios, saturation and phase separation occur, as suggested by a second spectral component which appears when the water solubility of tetracaine is reached. However, experiments with the drug in the absence and in the presence of membranes, making use of a phospholipid spin label, suggest that the new phase does not consist of solid tetracaine alone. Location of the new phase in the membrane would require a change in partition coefficient, while its location outside would imply a mechanism whereby the anesthetic would come off the membrane as aggregate containing spin probe and phospholipid. Charged tetracaine forms micelles which disrupt-unilamellar egg PC vesicles (Fernandez, M.S. (1981) Biochim. Biophys. Acta 646, 27–30). Micellar tetracaine added to bilayers containing a PC spin probe changes the spectrum from one typical of a bilayer into one typical of micelles, indicating the formation of a tetracaine-egg PC mixed micelle. The effect is reversible upon dilution to concentrations below the critical micelle concentration of tetracaine. When membranes are prepared in the presence of a water-soluble spin label, TEMPOcholine, ascorbate destroys the signal of untrapped label; when mixed phospholipid-tetracaine are formed by addition of micellar tetracaine, this leads to a complete loss of the ESR signal. High drug concentrations are often used for anesthesia and could be related to morphological nerve damage caused by large doses of anesthetics.  相似文献   

14.
The interaction between tetracaine and egg phosphatidylcholine (egg PC) multibilayers was examined. ESR spectra of an ester spin label indicate that at low uncharged anesthetic: lipid ratios, membrane organization decreases. At higher ratios, saturation and phase separation occur, as suggested by a second spectral component which appears when the water solubility of tetracaine is reached. However, experiments with the drug in the absence and in the presence of membranes, making use of a phospholipid spin label, suggest that the new phase does not consist of solid tetracaine alone. Location of the new phase in the membrane would require a change in partition coefficient, while its location outside would imply a mechanism whereby the anesthetic would come off the membrane as an aggregate containing spin probe and phospholipid. Charged tetracaine forms micelles which disrupt-unilamellar egg PC vesicles (Fernandez, M.S. (1981) Biochim. Biophys. Acta 646, 27-30). Micellar tetracaine added to bilayers containing a PC spin probe changes the spectrum from one typical of a bilayer into one typical of micelles, indicating the formation of a tetracaine-egg PC mixed micelle. The effect is reversible upon dilution to concentrations below the critical micelle concentration of tetracaine. When membranes are prepared in the presence of a water-soluble spin label, TEMPOcholine, ascorbate destroys the signal of untrapped label; when mixed phospholipid-tetracaine are formed by addition of micellar tetracaine, this leads to a complete loss of the ESR signal. High drug concentrations are often used for anesthesia and could be related to morphological nerve damage caused by large doses of anesthetics.  相似文献   

15.
Electron spin resonance (ESR) studies were conducted on human platelet plasma membranes using 5-nitroxide stearate, I(12,3). The polarity-corrected order parameter S and polarity-uncorrected order parameters S(T parallel) and S(T perpendicular) were independent of probe concentration at low I(12.3)/membrane protein ratios. At higher ratios, S and S(T perpendicular) decreased with increasing probe concentration while S(T parallel) remained unchanged. This is the result of enhanced radical interactions due to probe clustering. A lipid phase separation occurs in platelet membranes that segregates I(12,3) for temperatures less than 37 degrees C. As Arrhenius plots of platelet acid phosphatase activity exhibit a break at 35 to 36 degrees C, this enzyme activity may be influenced by the above phase separation. Similar experiments were performed on native [cholesterol/phospholipid ratio (C/P) = 0.71] and cholesterol-enriched [C/P = 0.85] rat liver plasma membranes. At 36 degrees C, cholesterol loading reduces I(12,3) flexibility and decreases the probe ratio at which radical interactions are apparent. The latter effects are attributed to the formation of cholesterol-rich lipid domains, and to the inability of I(12,3) to partition into these domains because of steric hinderance. Cholesterol enrichment increases both the high temperature onset of the phase separation occurring in liver membranes from 28 degrees to 37 degrees C and the percentage of probe-excluding, cholesterol-rich lipid domains at elevated temperatures. A model is discussed attributing the lipid phase separation in native liver plasma membranes to cholesterol-rich and -poor domains. As I(12,3) behaves similarly in cholesterol-enriched liver and human platelet plasma membranes, cholesterol-rich and -poor domains probably exist in both systems at physiologic temperatures.  相似文献   

16.
The effect of bacteriorhodopsin (BR) on the percolation properties of dimyristoylphosphatidylcholine/distearoylphosphatidylcholine bilayers was examined by studying the quenching of a lipid-bound fluorophore by a lipid-bound quencher, and by spin-spin interactions of a nitroxide-labeled lipid using electron spin resonance (ESR). At the low concentrations of BR used, differential scanning calorimetry showed that although the transition enthalpy was reduced in a concentration-dependent manner by incorporation of BR, the solidus and fluidus phase boundaries and overall shape of the heat capacity profiles were essentially unchanged. However, fluorescence quenching and spin-label ESR data showed that the domain topology, as reflected in the percolation properties, is strongly affected by the protein. In contrast to our previous fluorescence data for the pure lipid mixtures, quenching in the coexistence region is independent of the fluid phase fraction when BR is present. In addition, the percolation threshold estimated by spin-label ESR is shifted in the presence of BR to a higher gel phase fraction at a given lipid composition. Both the fluorescence quenching and spin-label ESR data, together with the results of earlier simulations, strongly suggest that the fluid phase domains are substantially larger and/or less ramified in the presence of BR than in its absence. We have previously reported a similar effect of a transmembrane peptide, pOmpA (Escherichia coli outer membrane protein A signal peptide), on fluid domain connectivity in binary phosphatidylcholine mixtures.  相似文献   

17.
Examination of the thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures by high-sensitivity scanning calorimetry has revealed that the phospholipid gel to liquid-crystalline phase transition consists of two components. One, a relatively sharp transition centered at 39.6-40.7 degrees C, exhibits a transition enthalpy change which decreases linearly with increasing cholesterol content, approaching zero at a cholesterol content of about 25 mol %. The other, a broad, lower intensity transition centered at approximately 41.5 degrees C for cholesterol concentrations of 20 mol %, displays an enthalpy change which is maximal at about 20-25 mol % cholesterol and which decreases as the cholesterol content decreases to zero or increases above 25 mol %. The origin of these two transitions is discussed in terms of a separation of these lipid mixtures into cholesterol-rich and cholesterol-poor domains.  相似文献   

18.
We have investigated the feasibility of the various possible magnetic resonance probes of lipids which form non-bilayer phases. As a model system we have used equimolar mixtures of phosphatidylethanolamine (PE) and cholesterol, which exhibit a thermotropic transition from a bilayer to a hexagonal phase. Variable temperature electron spin resonance (ESR) spin probe spectra were obtained using random dispersion and oriented lipid systems. Simultations of the ESR spectra were performed in order to aid in the interpretation of the experimental results for the oriented system. 31P- and 2H-nuclear magnetic resonance (NMR) studies were carried out using a deuterated PE. The ESR spin probes in the random dispersions show essentially no effect attributable to the phase transition. However, there are large, reversible effects in the temperature-dependent behaviour for the oriented system. The orientation dependence of the spectra above the transition temperature indicate that the hexagonal phase lipids may spontaneously assume a macroscopic organization on a flat surface. We find, however, that such an organization cannot be unambiguously assigned from the ESR spin probe spectra, and point out a potential difficulty in the interpretation of spin probe spectra in oriented systems. In contrast, the 2H-NMR method provides a reliable monitor of the phase transformation. Taken together, the 2H and 31P data indicate that the structure of the headgroup in PE is quite similar in both the bilayer and hexagonal phase. 2H-NMR should be very useful in probing the structural and dynamic characteristics of lipids in non-bilayer phases.  相似文献   

19.
The importance of water in the molecular dynamics of large unilamellar vesicle (LUV) suspensions, in which increasing portions of the water were replaced by 2H2O, was investigated. Determinations of the ultrasonic absorption coefficient per wavelength, alpha lambda, were performed as a function of temperature and frequency for LUVs (LUVs: 4:1 (w/w) mixture of dipalmitoylphosphatidylcholine, DPPC, and dipalmitoylphosphatidylglycerol, DPPG) in the vicinity of their phospholipid phase transition, using a double crystal acoustic interferometer. Electron spin resonance (ESR) and differential scanning calorimetry (DSC) were also employed to probe this system. When increasing portions of the aqueous content of the LUV suspensions were replaced by 2H2O the phase transition temperature increased from 42.0 degrees C to 42.9 degrees C (indicating an increase in the activation energy of the transition), and the amplitude of alpha lambda at the phase transition increased. However, alpha lambda max as a function of frequency at the phase transition did not change with the addition of 2H2O, indicating that the relaxation time of the event responsible for the absorption of ultrasound was unaffected. The increase in the activation energy of the transition with the addition of 2H2O suggested that the mobility of phospholipids near the membrane/aqueous interface was changed. Electron spin resonance (ESR) experiments on LUVs with nitroxide spin probes positioned at the membrane/aqueous interface (5-doxyl stearate and CAT16) showed that LUVs in 2H2O have a broader splitting, Amax, at the membrane/aqueous interface than do LUVs in H2O. These results suggest that 2H2O changes the mobility and/or structure of the phospholipids in the region of the membrane/aqueous interface. This difference in Amax was not seen for the probe PC-12-doxyl stearate, which resides at the C-12 position of the bilayer.  相似文献   

20.
Phospholipid hydroperoxides and phospholipid alcohols are two of the major forms of oxidatively modified phospholipids produced during oxidant stress and lipid peroxidation. The process of lipid peroxidation is known to affect the physiological function of membranes. We, therefore, investigated the effects of lipid peroxidation products on the molecular interactions in membranes. Our study was specifically focused on the effects of lipid peroxidation products on static membrane structure (molecular orientational order) and on the reorientational dynamics of the probe molecules in lipid bilayers. The study was done by performing angle-resolved fluorescence depolarization measurements (AFD) on the fluorescent probe diphenylhexatriene (DPH) and by performing angle-resolved electron spin resonance (A-ESR) measurements on cholestane (CSL) nitroxide spin probes embedded in macroscopically oriented planar bilayers consisting of 2-10% 1-palmitoyl-2-(9/13-hydroperoxylinoleoyl)phosphatidylcholine (PLPC-OOH) or 1-palmitoyl-2-(9/13-hydroxylinoleoyl)phosphatidylcholine (PLPC-OH) in 1-palmitoyl-2-linoleoylphosphatidylcholine (PLPC) or dilinoleoylphosphatidylcholine (DLPC). Both probe molecules have rigid cylindrical geometries and report on the overall molecular order and dynamics. However, being more polar, the nitroxide spin probe CSL is preferentially located near the surface of the membrane, while the less polar fluorescent probe DPH reports preferentially near the central hydrophobic region of the lipid bilayers. The results show that the presence of relatively small amounts of oxidatively modified phospholipids within the PLPC or DLPC membranes causes pronounced structural effects as the molecular orientational order of the probe molecules is strongly decreased. In contrast, the effect on membrane reorientational dynamics is minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号