首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A short single-stranded tail on one end of an otherwise duplex DNA molecule enables recA protein, in the presence of ATP and MgCl2, to form a complex with the DNA which extends into the duplex portion of the molecule. Nuclease protection studies at a concentration of MgCl2 which permits homologous pairing showed that cleavage by restriction endonucleases at sites throughout the duplex region was inhibited, whereas digestion by DNase I was not affected. These results indicate that recA protein binds to the duplex portion of tailed DNA allowing access by DNase I to a random sample of the many sites at which it cleaves, but providing limited protection of the relatively rare restriction sites. Electron microscopy revealed that the recA nucleoprotein complex with duplex DNA is indeed a segmented or interrupted filament that, with time, extends further from the single-stranded tail into the duplex region. recA protein binding extended into the duplex region more rapidly for duplexes with 5' tails than for those with 3' tails. These observations show that recA protein translocates from a single-stranded region into duplex DNA in the form of a segmented filament by a mechanism that is not strongly polarized.  相似文献   

2.
recA protein forms stable filaments on duplex DNA at low pH. When the pH is shifted above 6.8, recA protein remains stably bound to nicked circular DNA, but not to linear DNA. Dissociation of recA protein from linear duplex DNA proceeds to a non-zero endpoint. The kinetics and final extent of dissociation vary with several experimental parameters. The instability on linear DNA is most readily explained by a progressive unidirectional dissociation of recA protein from one end of the filament. Dissociation of recA protein from random points in the filament is eliminated as a possible mechanism by several observations: (1) the requirement for a free end; (2) the inverse and linear dependence of the rate of dissociation on DNA length (at constant DNA base-pair concentration); and (3) the kinetics of exposure of a restriction endonuclease site in the middle of the DNA. Evidence against another possible mechanism, ATP-mediated translocation of the filament along the DNA, is provided by a novel effect of the non-hydrolyzable ATP analog, ATP gamma S, which generally induces recA protein to bind any DNA tightly and completely inhibits ATP hydrolysis. We find that very low, sub-saturating levels of ATP gamma S completely stabilize the filament, while most of the ATP hydrolysis continues. If these levels of ATP gamma S are introduced after dissociation has commenced, further dissociation is blocked, but re-association does not occur. These observations are inconsistent with movement of recA protein along DNA that is tightly coupled to ATP hydrolysis. The recA nucleoprotein filament is polar and the protein binds the two strands asymmetrically, polymerizing mainly in the 5' to 3' direction on the initiating strand of a single-stranded DNA tailed duplex molecule. A model consistent with these results is presented.  相似文献   

3.
In an effort to clarify the requirement for ATP in the recA protein-promoted renaturation of complementary DNA strands, we have analyzed the mutant recA1 protein which lacks single-stranded DNA-dependent ATPase activity at pH 7.5. Like the wild type, the recA1 protein binds to single-stranded DNA with a stoichiometry of one monomer per approximately four nucleotides. However, unlike the wild type, the mutant protein is dissociated from single-stranded DNA in the presence of ATP or ADP. The ATP analogue adenosine 5'-O-3' (thiotriphosphate) appears to stabilize the binding of recA1 protein to single-stranded DNA but does not elicit the stoichiometry of 1 monomer/8 nucleotides or the formation of highly condensed protein-DNA networks that are characteristic of the wild type recA protein in the presence of this analogue. The recA1 protein does not catalyze DNA renaturation in the presence of ATP, consistent with the dissociation of recA1 protein from single-stranded DNA under these conditions. However, it does promote a pattern of Mg2+-dependent renaturation identical to that found for wild type recA protein.  相似文献   

4.
B C Schutte  M M Cox 《Biochemistry》1987,26(18):5616-5625
As a first step in DNA strand exchange, recA protein forms a filamentous complex on single-stranded DNA (ssDNA), which contains stoichiometric (one recA monomer per four nucleotides) amounts of recA protein. recA protein monomers within this complex hydrolyze ATP with a turnover number of 25 min-1. Upon introduction of linear homologous duplex DNA to initiate strand exchange, this rate of ATP hydrolysis drops by 33%. The decrease in rate is complete in less than 2 min, and the rate of ATP hydrolysis then remains constant during and subsequent to the strand exchange reaction. This drop is completely dependent upon homology in the duplex DNA. In addition, the magnitude of the drop is linearly dependent upon the length of the homologous region in the linear duplex DNA. Linear DNA substrates in which pairing is topologically restricted to a paranemic joint also follow this relationship. Taken together, these properties imply that all of the available homology in the incoming duplex DNA is detected very early in the DNA strand exchange reaction, with the linear duplex DNA paired paranemically with the homologous ssDNA in the complex throughout its length. The results indicate that paranemic joints can extend over thousands of base pairs. We note elsewhere [Pugh, B. F., & Cox, M. M. (1987b) J. Biol. Chem. 262, 1337-1343] that this duplex acquires resistance to digestion by DNase with a much slower time course (30 min), which parallels the progress of strand exchange. Together these results imply that the duplex DNA is paired with the ssDNA but remains outside the nucleoprotein filament. Finally, the results also support the notion that ATP hydrolysis occurs throughout the recA nucleoprotein filament.  相似文献   

5.
The IncF plasmid protein TraI functions during bacterial conjugation as a site- and strand-specific DNA transesterase and a highly processive 5' to 3' DNA helicase. The N-terminal DNA transesterase domain of TraI localizes the protein to nic and cleaves this site within the plasmid transfer origin. In the cell the C-terminal DNA helicase domain of TraI is essential for driving the 5' to 3' unwinding of plasmid DNA from nic to provide the strand destined for transfer. In vitro, however, purified TraI protein cannot enter and unwind nicked plasmid DNA and instead requires a 5' tail of single-stranded DNA at the duplex junction. In this study we evaluate the extent of single-stranded DNA adjacent to the duplex that is required for efficient TraI-catalyzed DNA unwinding in vitro. A series of linear partial duplex DNA substrates containing a central stretch of single-stranded DNA of defined length was created and its structure verified. We found that substrates containing >or=27 nucleotides of single-stranded DNA 5' to the duplex were unwound efficiently by TraI, whereas substrates containing 20 or fewer nucleotides were not. These results imply that during conjugation localized unwinding of >20 nucleotides at nic is necessary to initiate unwinding of plasmid DNA strands.  相似文献   

6.
The complete exchange of strands between circular single-stranded and full length linear duplex DNAs promoted by the recA protein of Escherichia coli is dependent upon the hydrolysis of ATP and is strongly stimulated by the single-stranded DNA binding protein (SSB). In the presence of SSB, stable complexes of recA protein and single-stranded DNA are formed as an early step in the reaction. These complexes dissociate when the ADP/ATP ratio approaches a value of 0.6-1.5, depending upon reaction conditions. Thus, ATP hydrolysis never proceeds to completion but stops when 40-60% of the input ATP has undergone hydrolysis. recA protein can participate in a second round of strand exchange upon regeneration of the ATP. While 100-200 mol of ATP are hydrolyzed/mol of heteroduplex base pair formed under standard reaction conditions in the presence of SSB, this value is reduced to 16 at levels of ADP lower than that required to dissociate the complexes. ATP hydrolysis appears to be completely irreversible since efforts to detect exchange reactions using 18O probes have been unsuccessful.  相似文献   

7.
Formation of D-loops during the exchange of strands between a circular single-stranded DNA and a completely homologous linear duplex proceeds optimally when the duplex DNA is added to the complex of recA protein and single-stranded DNA formed in the presence of single-stranded DNA-binding protein and ATP. D-loops are undetectable when 200 microM adenosine 5'-O-(thiotriphosphate) is substituted for ATP. D-loops can be formed in the presence of adenosine 5'-O-(thiotriphosphate) if recA protein is the last component added to the reaction. However, these D-loops, which depend upon homologous sequences, are unstable upon deproteinization and are formed to a more limited extent than the structures formed with ATP. This finding indicates that D-loops formed under these conditions may be largely nonintertwined paranemic structures rather than plectonemic structures in which two of the strands are interwoven. When adenosine 5'-O-(thiotriphosphate) is added to an ongoing reaction containing ATP, formation of plectonemic structures and ATP hydrolysis is inhibited to an equivalent extent. We, therefore, conclude that ATP hydrolysis is required for the formation of plectonemic structures.  相似文献   

8.
The Escherichia coli primosome is a mobile multiprotein DNA replication-priming apparatus that assembles at a specific site (termed a primosome assembly site (PAS] on single-stranded DNA-binding protein-coated single-stranded DNA. The PRI A protein (factor Y, protein n') is a PAS sequence-specific (d)ATPase as well as a DNA helicase and is believed to direct the assembly of the primosome at a PAS. In this report, the PRI A DNA helicase reaction is dissected in vitro, by use of a strand displacement assay, into three steps with distinct ATP requirements. First, the PRI A protein gains entry to the DNA via an ATP-independent, PAS sequence-specific binding event. Second, the PRI A protein translocates along the single-stranded DNA in the 3'----5' direction at a maximal rate of 90 nucleotides/s. DNA translocation requires ATP hydrolysis. The ATP concentration required to support half of the maximal translocation rate is 100 microM, which is identical to the Km for ATP of the PRI A protein DNA-dependent ATPase activity. Finally, the PRI A protein unwinds duplex DNA. The ATP concentration required for duplex DNA unwinding depends upon the length of the duplex region to be unwound. Displacement of a 24-nucleotide long oligomer required no more ATP than that required for the translocation of PRI A protein along single-stranded DNA, whereas displacement of a 390-nucleotide long DNA fragment required a 10-fold higher concentration of ATP than that required for oligomer displacement.  相似文献   

9.
Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis.  相似文献   

10.
UvrD is a helicase that is widely conserved in gram-negative bacteria. A uvrD homologue was identified in Mycobacterium tuberculosis on the basis of the homology of its encoded protein with Escherichia coli UvrD, with which it shares 39% amino acid identity, distributed throughout the protein. The gene was cloned, and a histidine-tagged form of the protein was expressed and purified to homogeneity. The purified protein had in vitro ATPase activity that was dependent upon the presence of DNA. Oligonucleotides as short as four nucleotides were sufficient to promote the ATPase activity. The DNA helicase activity of the enzyme was only fueled by ATP and dATP. UvrD preferentially unwound 3'-single-stranded tailed duplex substrates over 5'-single-stranded ones, indicating that the protein had a duplex-unwinding activity with 3'-to-5' polarity. A 3' single-stranded DNA tail of 18 nucleotides was required for effective unwinding. By using a series of synthetic oligonucleotide substrates, we demonstrated that M. tuberculosis UvrD has an unwinding preference towards nicked DNA duplexes and stalled replication forks, representing the likely sites of action in vivo. The potential role of M. tuberculosis UvrD in maintenance of bacterial genomic integrity makes it a promising target for drug design against M. tuberculosis.  相似文献   

11.
When recA protein pairs linear duplex DNA with a homologous duplex molecule that has a single-stranded tail, it produces a recombination intermediate called the Holliday structure and causes reciprocal or symmetric strand exchange, whereas the pairing of a linear duplex molecule with fully single-stranded DNA leads to an asymmetric exchange. To study the location of recA protein on DNA molecules undergoing symmetric exchange, we labeled individually each end of the four strands involved and looked for protection against DNase I or restriction endonucleases. As expected, because of its preferred binding to single-stranded DNA, recA protein protected the single-stranded tails of either substrates, or products. In addition however, strong protection extended into the newly formed heteroduplex DNA along the strand to which recA protein was initially bound. Experiments with uniformly labeled DNA showed a corresponding homology-dependent asymmetry in the protection of the tailed substrate versus its fully duplex partner. Restriction experiments showed that protection extended 50-75 base pairs beyond the point where strand exchange was blocked by a long region of heterology. When compared with earlier observations (Chow, S. A., Honigberg, S. M., Bainton, R. J., and Radding, C. M. (1986) J. Biol. Chem. 261, 6961-6971), the present experiments reveal a pattern of association of recA protein with DNA that suggests a common mechanism of asymmetric and symmetric strand exchange.  相似文献   

12.
We examined the equilibrium binding of Escherichia coli RecBC and RecBCD helicases to duplex DNA ends possessing pre-existing single-stranded (ss) DNA ((dT)(n)) tails varying in length (n=0 to 20 nucleotides) in order to determine the contributions of both the 3' and 5' single strands to the energetics of complex formation. Protein binding was monitored by the fluorescence enhancement of a reference DNA labeled at its end with a Cy3 fluorophore. Binding to unlabeled DNA was examined by competition titrations with the Cy3-labeled reference DNA. The affinities of both RecBC and RecBCD increase as the 3'-(dT)(n) tail length increases from zero to six nucleotides, but then decrease dramatically as the 3'-(dT)(n) tail length increases from six to 20 nucleotides. Isothermal titration calorimetry experiments with RecBC show that the binding enthalpy is negative and increases in magnitude with increasing 3'-(dT)(n) tail length up to n=6 nucleotides, but remains constant for n > or =6. Hence, the decrease in binding affinity for 3'-(dT)(n) tail lengths with n > or =6 is due to an unfavorable entropic contribution. RecBC binds optimally to duplex DNA with (dT)6 tails on both the 3' and 5'-ends while RecBCD prefers duplex DNA with 3'-(dT)6 and 5'-(dT)10 tails. These data suggest that both RecBC and RecBCD helicases can destabilize or "melt out" six base-pairs upon binding to a blunt DNA duplex end in the absence of ATP. These results also provide the first evidence that a loop in the 3'-ssDNA tail can form upon binding of RecBC or RecBCD with DNA duplexes containing a pre-formed 3'-ssDNA tail with n > or =6 nucleotides. Such loops may be representative of those hypothesized to form upon interaction of a Chi site contained within the unwound 3' ss-DNA tail with the RecC subunit during DNA unwinding.  相似文献   

13.
RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced (+) strand of the duplex within a 15-base pair region of the heterology/homology junction. Breakage also requires recA protein, ATP hydrolysis, and homologous sequences 3' to the heterology. Although the location of the breaks and the observed requirements clearly indicate a major role for recA protein in this phenomenon, the molecular mechanism is not yet clear. The breakage may reflect a DNA structure and/or some form of structural stress within the DNA during recA protein-mediated DNA pairing which either exposes the DNA at this precise position to the action of a contaminating nuclease or induces a direct mechanical break. We also find that when heterology is located at the 3' end of the linear duplex, strand exchange is halted (without DNA breakage) about 500 base pairs from the homology/heterology junction.  相似文献   

14.
The pairing of single- and double-stranded DNA molecules at homologous sequences promoted by recA and single-stranded DNA-binding proteins of Escherichia coli follows apparent first-order kinetics. The initial rate and first-order rate constant for the reaction are maximal at approximately 1 recA protein/3 and 1 single-stranded DNA-binding protein/8 nucleotides of single-stranded DNA. The initial rate increases with the concentration of duplex DNA; however, the rate constant is independent of duplex DNA concentration. Both the rate constant and extent of reaction increase linearly with increasing length of duplex DNA over the range 366 to 8623 base pairs. In contrast, the rate constant is independent of the size of the circular single-stranded DNA between 6,400 and 10,100 nucleotides. No significant effect on reaction rate is observed when a single-stranded DNA is paired with 477 base pairs of homologous duplex DNA joined to increasing lengths of heterologous DNA (627-2,367 base pairs). Similarly, heterologous T7 DNA has no effect on the rate of pairing. These findings support a mechanism in which a recA protein-single-stranded DNA complex interacts with the duplex DNA to produce an intermediate in which the two DNA molecules are aligned at homologous sequences. Conversion of the intermediate to a paranemic joint then occurs in a rate-determining unimolecular process.  相似文献   

15.
When recA protein binds cooperatively to single-stranded DNA to form filamentous nucleoprotein complexes, it becomes competent to hydrolyze ATP. No correlation exists between the ends of such complexes and the rate of ATP hydrolysis. ATP hydrolysis is not, therefore, restricted to the terminal subunits on cooperatively bound recA oligomers, but occurs throughout the complex. Similarly, during recA protein-promoted branch migration (during DNA strand exchange), ATP hydrolysis is not restricted to recA protein monomers at the branch point. DNA cofactors of lengths varying from 16 bases to over 12,000 bases support ATP hydrolysis. The maximum value of kcat at infinite DNA concentration is about 29/min independent of the length of the DNA cofactor. The apparent dissociation constant, however, is a strong function of DNA length, providing evidence for a minimum site size of 30-50 bases for efficient binding of recA protein.  相似文献   

16.
The product of the cloned recA+ gene of Proteus mirabilis substitutes for a defective recA protein in Escherichia coli recA- mutants and restores recombination, repair, and prophage induction functions to near normal levels (Eitner, G., Adler, B., Lanzov, V. A., and Hofemeister, J. (1982) Mol. Gen. Genet. 185, 481-486). In this paper, we report the purification to near homogeneity of the P. mirabilis recA protein (recApm). The polypeptide has a molecular weight similar to that of E. coli recA protein (recAec) and shows partial identity with recAec when reacted against antibodies specific for the E. coli recA protein. recApm catalyzes the hydrolysis of ATP in the presence of single-stranded but not double-stranded DNA. We have compared the recombination-like activities of recApm with those of recAec and found them to be similar. In the presence of ATP and Mg2+, stoichiometric amounts of recApm promote the complete reciprocal exchange of strands between gapped circular and linear duplex DNA molecules. The enzyme also efficiently promotes the formation of D-loops from circular duplex DNA and homologous single-stranded fragments. However, although recApm and recAec share the above physical and functional similarities, they differ in their ability to interact with the E. coli single strand binding protein to catalyze the transfer of one DNA strand from a linear duplex to a single-stranded circle.  相似文献   

17.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

18.
The herpes simplex virus, type I origin-binding protein, OBP, is a superfamily II DNA helicase encoded by the UL9 gene. OBP binds in a sequence-specific and cooperative way to the viral origin of replication oriS. OBP may unwind partially and introduce a hairpin into the double-stranded origin of replication. The formation of the novel conformation referred to as oriS* also requires the single-stranded DNA-binding protein, ICP8, and ATP hydrolysis. OBP forms a stable complex with oriS*. The hairpin in oriS* provides a site for sequence-specific attachment, and a single-stranded region triggers ATP hydrolysis. Here we use Escherichia coli exonuclease I to map the binding of the C-terminal domain of OBP to the hairpin and the helicase domains to the single-stranded tail. The helicase domains cover a stretch of 23 nucleotides of single-stranded DNA. Using streptavidin-coated magnetic beads, we show that OBP may bind two copies of double-stranded DNA (one biotin-labeled and the other one radioactively labeled) but only one copy of oriS*. It is the length of the single-stranded tail that determines the stoichiometry of OBP.DNA complexes. OBP interacts with the bases of the single-stranded tail, and ATP hydrolysis is triggered by position-specific interactions between OBP and bases in the single-stranded tail of oriS*.  相似文献   

19.
The adenovirus DNA-binding protein (DBP) is a multifunctional protein that is essential for viral DNA replication. DBP binds both single-stranded and double-stranded DNA as well as RNA in a sequence-independent manner. Previous studies showed that DBP does not promote melting of duplex poly(dA-dT) in contrast to prokaryotic single-strand-binding proteins. However, here we show that DBP can displace oligonucleotides annealed to single-stranded M13 DNA. Depending upon the DBP concentration, strands of at least 200 nucleotides can be unwound. Although unwinding of short (17-bp), fully duplex DNA is facilitated by DBP, unwinding of larger (28-bp) duplexes is only possible if single-stranded protruding ends are present. These protruding ends must be at least 4 nucleotides long for optimal unwinding, and both 5' and 3' single-stranded overhangs suffice. DBP-promoted strand displacement is sensitive to MgCl2 and NaCl and not dependent upon ATP. Our results suggest that DBP, through formation of a protein chain on the displaced strand, may destabilize duplex DNA ahead of the replication fork, thereby assisting in strand displacement during replication.  相似文献   

20.
The helicase of hepatitis C virus (HCV) unwinds nucleic acid using the energy of ATP hydrolysis. The ATPase cycle is believed to induce protein conformational changes to drive helicase translocation along the length of the nucleic acid. We have investigated the energetics of nucleic acid binding by HCV helicase to understand how the nucleotide ligation state of the helicase dictates the conformation of its nucleic acid binding site. Because most of the nucleotide ligation states of the helicase are transient due to rapid ATP hydrolysis, several compounds were analyzed to find an efficient unhydrolyzable ATP analog. We found that the beta-gamma methylene/amine analogs of ATP, ATPgammaS, or [AlF4]ADP were not effective in inhibiting the ATPase activity of HCV helicase. On the other hand, [BeF3]ADP was found to be a potent inhibitor of the ATPase activity, and it binds tightly to HCV helicase with a 1:1 stoichiometry. Equilibrium binding studies showed that HCV helicase binds single-stranded nucleic acid with a high affinity in the absence of ATP or in the presence of ADP. Upon binding to the ATP analog, a 100-fold reduction in affinity for ssDNA was observed. The reduction in affinity was also observed in duplex DNA with 3' single-stranded tail and in RNA but not in duplex DNA. The results of this study indicate that the nucleic acid binding site of HCV helicase is allosterically modulated by the ATPase reaction. The binding energy of ATP is used to bring HCV helicase out of a tightly bound state to facilitate translocation, whereas ATP hydrolysis and product release steps promote tight rebinding of the helicase to the nucleic acid. On the basis of these results we propose a Brownian motor model for unidirectional translocation of HCV helicase along the nucleic acid length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号