首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron metabolism of bullfrog tadpoles during metamorphosis   总被引:2,自引:0,他引:2  
  相似文献   

2.
3.
We examined the interactive effects of predators and trematodes on Rana sybatica and Rana clamitans larvae. We hypothesized that exposure to predators would increase tadpole susceptibility to trematode infection, by reducing tadpole activity and thereby increasing time spent on the bottom. We further hypothesized that the tadpoles would experience reduced rates of growth and development in the presence of either predators or parasites, and that predator presence would stimulate both species to develop larger tails and smaller bodies. Rana clamilans and R. sybatica reduced their activity in the presence of both predators and trematode cercariae. In the longer running R. clamitans experiment, predator-exposed tadpoles developed significantly shallower tails and wider bodies, while trematode infection had no effect on growth, development, or shape. Most significantly, we found that extended exposure to caged fish predators made R. clamitans tadpoles more susceptible to trematode infection. A possible mechanism for this increased vulnerability is that reduced activity in the presence of predators increases tadpoles' proximity to cercariae. Our study suggests that various factors that decrease tadpole activity–predator presence, trematode cercariae and certain pesticides–may act synergistically to negatively impact tadpole populations.  相似文献   

4.
5.
6.
Experimental manipulations of the densities of two larval anurans, Pelodytes punctatus and Bufo bufo , showed that these species compete asymmetrically in semi-natural conditions. Growth, mass at metamorphosis, date of metamorphosis, and survival were used as measures of response to interspecific competition. A mechanistic approach was used to collect information on the behaviour of the two species in different conditions. The competitive superiority of Pelodytes at individual level was correlated with a larger body, faster growth rate, increased per capita competitive impact on conspecifics, and greater reduction in the availability of trophic and spatial resources. In the presence of Pelodytes, Bufo showed slower growth, smaller size at metamorphosis and reduced survival. In the interspecific treatments Bufo individuals modified their behaviour by increasing activity and use of the water column while Pelodytes did not change their foraging activity or space use in the aquaria. However, the presence of Bufo resulted in a reduced larval period and smaller size at metamorphosis. We hypothesise that the presence of Bufo act as a signal of environmental degradation and shorten the larval period of Pelodytes, a typical temporal pond breeder . The smaller Bufo tadpoles are potentially stronger competitors at population level because they use relatively large amounts of energy (greater densities and higher metabolic rates). Consequently, they use larger proportions of the shared resources than their larger competitor. A possible evolutionary response for larger tadpoles is the development of interference mechanisms or "escaping" from ephemeral ponds where mortality by drying represent a high risk.  相似文献   

7.
Environmental temperature can alter the composition, diversity, and function of ectothermic vertebrate gut microbial communities, which may result in negative consequences for host physiology, or conversely, increase phenotypic plasticity and persistence in harsh conditions. The magnitude of either of these effects will depend on the length of time animals are exposed to extreme temperatures, and how quickly the composition and function of the gut microbiota can respond to temperature change. However, the temporal effects of temperature on gut microbiota are currently unknown. Here, we investigated the length of time required for increased temperature to alter the composition of gut bacterial communities in tadpoles of two frog species, the green frog, Lithobates clamitans, and its congener, the globally invasive American bullfrog, L. catesbeianus. We also explored the potential functional consequences of these changes by comparing predicted metagenomic profiles across temperature treatments at the last experimental time point. Bullfrog‐associated microbial communities were more plastic than those of the green frog. Specifically, bullfrog communities were altered by increased temperature within hours, while green frog communities took multiple days to exhibit significant changes. Further, over ten times more bullfrog bacterial functional pathways were temperature‐dependent compared to the green frog. These results support our hypothesis that bullfrog gut microbial communities would respond more rapidly to temperature change, potentially bolstering their ability to exploit novel environments. More broadly, we have revealed that even short‐term increases in environmental temperature, expected to occur frequently under global climate change, can alter the gut microbiota of ectothermic vertebrates.  相似文献   

8.
The conversion of the larval to adult epidermis during metamorphosis of tadpoles of bullfrog, Rana catesbeiana, was investigated utilizing newly cloned Rana keratin cDNAs as probes. Rana larval keratin (RLK) cDNA (rlk) was cloned using highly specific antisera against Xenopus larval keratin (XLK). Tail skin proteins of bullfrog tadpoles were separated by 2-dimensional gel electrophoresis and subjected to Western blot analysis with anti-XLK antisera. The Rana antigen detected by this method was sequenced and identified as a type II keratin. We cloned rlk from tadpole skin by PCR utilizing primers designed from these peptide sequences of RLK. RLK predicted by nucleotide sequences of rlk was a 549 amino acid -long type II keratin. Subtractive cloning between the body and the tail skin of bullfrog tadpole yielded a cDNA (rak) of Rana adult keratin (RAK). RAK was a 433 amino acid-long type I keratin. We also cloned a Rana keratin 8 (RK8) cDNA (rk8) from bullfrog tadpole epidermis. RK8 was 502 amino acid-long and homologous to cytokeratin 8. Northern blot analyses and in situ hybridization experiments showed that rlk was actively expressed through prometamorphosis in larva-specific epidermal cells called skein cells and became completely inactive at the climax stage of metamorphosis and in the adult skin. RAK mRNA was expressed in basal cells of the tadpole epidermis and germinative cells in the adult epidermis. The expression of rlk and rak was down- and up-regulated by thyroid hormone (TH), respectively. In contrast, there was no change in the expression of RK8 during spontaneous and TH-induced metamorphosis. RK8 mRNA was exclusively expressed in apical cells of the larval epidermis. These patterns of keratin gene expression indicated that the expression of keratin genes is differently regulated by TH depending on the type of larval epidermal cells. The present study demonstrated the usefulness of these genes for the study of molecular mechanism of postembryonic epidermal development and differentiation.  相似文献   

9.
Birds free from nest predators for long periods may either lose the ability to recognize and respond to predators or retain antipredator responses if they are not too costly. How these alternate scenarios play out has rarely been investigated in an avian community whose members have different evolutionary histories. We presented models of two nest predators (rat and snake) and a negative control (tree branch) to birds on Hawai?i Island. Endemic Hawaiian birds evolved in the absence of terrestrial predators until rats were introduced approximately 1,000 years ago. Introduced birds evolved with diverse predator communities including mammals and snakes, but since their introduction onto the island approximately one century ago have been free from snake predation. We found that (a) endemic and introduced birds had higher agitation scores toward the rat model compared with the branch, and (b) none of the endemic birds reacted to the snake model, while one introduced bird, the Red‐billed Leiothrix (Leiothrix lutea), reacted as strongly to the snake as to the rat. Overall, endemic and introduced birds differ in their response to predators, but some endemic birds have the capacity to recognize and respond to introduced rats, and one introduced bird species retained recognition of snake predators from which they had been free for nearly a century, while another apparently lost that ability. Our results indicate that the retention or loss of predator recognition by introduced and endemic island birds is variable, shaped by each species' unique history, ecology, and the potential interplay of genetic drift, and that endemic Hawaiian birds could be especially vulnerable to introduced snake predators.  相似文献   

10.
Boone MD  Semlitsch RD 《Oecologia》2003,137(4):610-616
The effect of a contaminant on a community may not be easily predicted, given that complex changes in food resources and predator-prey dynamics may result. The objectives of our study were to determine the interactive effects of the insecticide carbaryl and predators on body size, development, survival, and activity of tadpoles of the bullfrog (Rana catesbeiana). We conducted the study in cattle tank mesocosm ponds exposed to 0, 3.5, or 7.0 mg/l carbaryl, and no predators or two red-spotted newts (Notophthalmus viridescens), bluegill sunfish (Lepomis macrochirus), or crayfish (Orconectes sp.). Carbaryl negatively affected predator survival by eliminating crayfish from all ponds, and by eliminating bluegill sunfish from ponds exposed to the highest concentration of carbaryl; carbaryl exposure did not effect survival of red-spotted newts. Because crayfish were eliminated by carbaryl, bullfrogs were released from predation and survival was near that of predator controls at low concentrations of carbaryl exposure. High concentrations of carbaryl reduced tadpole survival regardless of whether predators survived carbaryl exposure or not. Presence of crayfish and newts reduced tadpole survival, while bluegill sunfish appeared to facilitate bullfrog tadpole survival. Presence of carbaryl stimulated bullfrog tadpole mass and development. Our study demonstrates that the presence of a contaminant stress can alter community regulation by releasing prey from predators that are vulnerable to contaminants in some exposure scenarios.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

11.
Eggs and three different stages of premetamorphic tadpoles of moor frog Rana arvalis and common toad Bufo bufo were offered to the following potential predators in acidified lakes: newt Triturus vulgaris , water beetles Rhantus exoletus and Dytiscus lapponicus , dragonfly larvae Leucorrhinia dubia and Aeshna spp., water boatman Notonecta glauca and water bugs, Cymatia bonsdorffi, Glaenocorisa p. propinqua , and Corixa dentipes.
The predation pressure on eggs of R. arvalis was low due to thick jelly. The eggs of B. bufo were not attractive to predators with chewing mouth parts due to unpalatability but predators with sucking mouth parts were not repulsed. Tadpoles of R. arvalis were eaten by all predators but tadpoles of B. bufo were unpalatable to most predators. The predators used in the experiments are the new top predators in acidified fishless lakes. They may contribute to the reduction of populations of R. arvalis in acidified areas.  相似文献   

12.
Efforts to eradicate multiple mammal pests from offshore islands and fenced mainland ‘habitat islands’ often fail to remove mice, and such failures can result in a dramatic change in the food‐web whereby the removal of larger mammal pests facilitates a population explosion of mice through predator and competitor release. We investigated the ecological responses of house mice to the removal of mammalian predators from a 500‐ha fenced sanctuary at Tawharanui, northern New Zealand. Data on population structure and body condition of mice trapped in 2007, in four habitat types within the sanctuary, were compared with baseline data collected in 2001, before mammal control operations commenced. We hypothesized that: (i) in the absence of mammalian predators mouse densities would increase in all habitat types that provide vegetation cover, and (ii) in the absence of mammalian competitors mice would become heavier due to greater access to food resources. Mouse densities were significantly higher in 2007 than in 2001 in three habitat types. The high density of mice in forest – where none were trapped prior to control – suggests a competitive release, in which mice profited from the removal of ship rats. No mice were caught in the presence of ship rats on a forest trap‐line at a control site outside the sanctuary. Mice trapped in 2007 were significantly heavier than those trapped in 2001, and significantly heavier than mice trapped at the control site. Greater access to food in the absence of competing and predatory mammals probably explains the heavier body weight of Tawharanui mice. There has been a significant change in the mammalian food‐web at Tawharanui, such that the house mouse is now the primary pest. A rapid and dramatic increase in mouse numbers is likely to adversely impact invertebrates and seedling recruitment, which in turn could affect ecosystem functions.  相似文献   

13.
Responses of innervated and denervated gut to whole-body hypoxia   总被引:1,自引:0,他引:1  
As a significant user of O2 at rest (20% of whole body), the gut may be subject to more severe limitation of O2 supply during global hypoxia than more vital areas because of preferential redistribution of blood flow. Accordingly, its accumulation of O2 deficit during hypoxia and its excess O2 use during normoxic recovery might be altered by extrinsic neural activity. We measured blood flow and O2 uptake in whole body (WB) and gut segments while anesthetized dogs were ventilated with 9% O2-91% N2 for 30 min followed by 30-min normoxic recovery. In six dogs extrinsic innervation to the gut segment was left intact and it was severed in another six animals. O2 deficit and excess were the accumulated differences from the normoxic O2 uptake for both gut and WB corrected for O2 stores changes. The intact gut, although only 4% body wt, incurred 22% of WB O2 deficit but contributed only 8% to WB O2 excess. The imbalance (gut excess was only 44% of gut deficit) implied that O2 using functions were curtailed during hypoxia without obligating an energy stores deficit. Denervation did not alter these quantitative relationships. Blood flow responses to transition between normoxia and hypoxia were only transiently altered. Extrinsic innervation apparently plays no major role in gut responses to WB hypoxia.  相似文献   

14.

1. 1.|Critical thermal maxima (CTMax) and minima (CTMin) were measured to evalute thermal hardening in Rana catesbeiana.

2. 2.|Tadpoles show heat hardening and CTMax acclimation, and both responses are influenced by developmental stage.

3. 3.|The first evidence of cold hardening in vertebrates is reported here.

4. 4.|Heat hardening significantly reduces cold tolerance, but there is otherwise no evidence of a cross-hardening effect.

Author Keywords: Thermal acclimation; thermal hardening; hardening; heat hardening; cold hardening; critical thermal maxima; critical thermal minima; developmental stage; metamorphosis; tadpoles; Rana catesbeiana  相似文献   


15.
The presence of predators can induce changes in both the morphology and behaviour of Anuran larvae, affecting both their size and developmental stage at metamorphosis and, consequently, the fitness of adult individuals. Tadpoles have been shown to be capable of finely tuning their defensive responses according to the actual risk perceived, which is expected to vary according to the prey-to-predator size ratio. In this study, we exposed common frog (Rana temporaria) tadpoles (Gosner stages 28–30), for a period of 2 weeks, to the non-lethal presence of dragonfly larvae (Anax imperator) and backswimmers (Notonecta glauca). In such a narrow window of time, we expected behavioural responses to be similar for both predators and exposure to predation risk to have negligible effects on tadpole development and weight. Overall, tadpoles increased hiding behaviour and were less active when predators were present in the experimental mesocosms, but behavioural responses were constrained to the early phase of the ontogeny and were no longer used when tadpoles reached a threshold size. Developmental rate slightly slowed down for predator treatments in comparison to controls, possibly as a consequence of energetic investment in unrecorded morphological defences. Although variation in laboratory conditions and protocols makes it hard to compare the results of different experiments, our results contribute to verify the consistency of behavioural responses in Anuran larvae.  相似文献   

16.
Synopsis Oxygen uptake (VO2) during graded hypoxia, rate of hypoxia acclimation, breathing frequency (fR), breath volume (VS, R) and gill ventilation (VG) were measured in Hoplias malabaricus. Normoxia and hypoxia acclimated fish had similar and constant VO2 and VG in a range of water PO2 from 150 to 25 mmHg. Hypoxia acclimated fish showed significantly higher VO2 in severe hypoxia (PO2 <15 mmHg). Normoxia acclimated fish showed symptoms similar to hypoxic coma after 1 h of exposure to water PO2 of 10 mmHg whereas the same symptoms were observed only at PO2 of 5 mmHg for fish acclimated to hypoxia. Fish required 14 days to achieve full acclimation to hypoxia (PO2 ≥25 mmHg). Lowering of water PO2 from 150 to 25 mmHg resulted in normoxic fish showing a 3–2 fold increase in VG. The increase was the result of an elevation in VS, R rather than fR. Among normoxia acclimated specimens, small fish showed a higher VG per unit weight than the large ones in both normoxia (PO2 =150 mmHg) and hypoxia (PO2 = 15 mmHg). A decrease in the ventilatory requirement (VG/VO2) with increased body weight was recorded in hypoxia (PO2 = 15 mmHg).  相似文献   

17.
Quantifying the likely effects of offshore wind farms on wildlife is fundamental before permission for development can be granted by any Determining Authority. The effects on marine top predators from displacement from important habitat are key concerns during offshore wind farm construction and operation. In this respect, we present evidence for no significant displacement from a UK offshore wind farm for two broadly distributed species of conservation concern: common guillemot (Uria aalge) and harbor porpoise (Phocoena phocoena). Data were collected during boat‐based line transect surveys across a 360 km2 study area that included the Robin Rigg offshore wind farm. Surveys were conducted over 10 years across the preconstruction, construction, and operational phases of the development. Changes in guillemot and harbor porpoise abundance and distribution in response to offshore wind farm construction and operation were estimated using generalized mixed models to test for evidence of displacement. Both common guillemot and harbor porpoise were present across the Robin Rigg study area throughout all three development phases. There was a significant reduction in relative harbor porpoise abundance both within and surrounding the Robin Rigg offshore wind farm during construction, but no significant difference was detected between the preconstruction and operational phases. Relative common guillemot abundance remained similar within the Robin Rigg offshore wind farm across all development phases. Offshore wind farms have the potential to negatively affect wildlife, but further evidence regarding the magnitude of effect is needed. The empirical data presented here for two marine top predators provide a valuable addition to the evidence base, allowing future decision making to be improved by reducing the uncertainty of displacement effects and increasing the accuracy of impact assessments.  相似文献   

18.
J. C. Touchon  K. M. Warkentin 《Oikos》2008,117(4):634-640
Many prey species, including amphibian larvae, can adaptively alter coloration and morphology to become more or less conspicuous to predators. Despite abundant research on predator-induced plasticity in tadpoles, the combination of color and morphological responses to predators remains largely unexplored. We measured predator-induced morphological and color plasticity in tadpoles. We reared tadpoles of the neotropical treefrog Dendropsophus ebraccatus with dragonfly nymph or fish predators, or in a predator-free control. After 10 days, we digitally photographed tadpoles and measured eight morphometric variables and five tail color variables. Tadpoles reared with nymphs developed the largest and reddest tails, but incurred a developmental cost, being the smallest overall. Cues from fish induced an opposite tail phenotype in tadpoles, causing shallow achromatic tails. Control tadpoles developed intermediate tail phenotypes. This provides the first experimental evidence that tadpoles can shift both color and morphology in opposite, predator-specific directions in response to a fish and an odonate predator. Despite mean differences, however, there was substantial variation in the degree of phenotype induction across treatments. Tail redness was correlated with tail spot size, but not perfectly, indicating that color and morphology may be partially decoupled in D. ebraccatus . Balancing selection from multiple conflicting predators may result in genetic variation for developmental plasticity.  相似文献   

19.
20.
When confronted by signals of predators presence, many aquatic organisms modify their phenotype (e.g., behaviour or morphology) to reduce their risk of predation. A principal means by which organisms assess predation risk is through chemical cues produced by the predators and/or prey during predation events. Such responses to predation risk can directly affect prey fitness and indirectly affect the fitness of species with which the prey interacts. Accurate assessment of the cue will affect the adaptive nature, and hence evolution, of the phenotypic response. It is therefore, important to understand factors affecting the assessment of chemical cues. Here I examined the effect of the age of chemical cues arising from an invertebrate predator, a larval dragonfly (Anax junius), which was fed bullfrog tadpoles, on the behavioural response (activity level and position) of bullfrog tadpoles. The bullfrog response to chemical cues declined as a function of chemical cue age, indicating the degradation of the chemical cue was on the order of 2–4 days. Further, the decay occurred more rapidly when the chemical cue was placed in pond water rather than well water. These results indicate a limitation of the tadpoles to interpret factors that affect the magnitude of the chemical cue and hence accurately assess predation risk. These findings also have implications for experimental design and the adaptation of phenotypic responses to chemical cues of predation risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号