首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oxidative stress and TGFβ-induced disturbance of cells and tissues are implicated in initiation and progression of pathophysiology of cells/tissues. Using primary human Trabecular Meshwork (TM) cells from normal and glaucomatous subjects, this study demonstrated that peroxiredoxin (PRDX) 6, an antioxidant, offsets the deleterious effects of oxidative stress on TM cells by optimizing ROS and TGFβ levels. An analysis of glaucomatous TM cells revealed a reduced expression of PRDX6 mRNA and protein. Biochemical assays disclosed enhanced levels of ROS, as well as high levels of TGFβs and these cells expressed elevated extracellular matrix (ECM) and Tsp1 proteins with reduced MMP2; conditions implicated in the pathophysiology of glaucoma. Non-glaucomatous TM cells exposed to TGFβs/ROS showed similar features as in glaucomatous cells. The abnormalities induced were reversed by delivery of PRDX6. The data provide evidence that oxidative stress-induced abnormality in TM may be related to reduced PRDX6 expression and provide a foundation for antioxidant-based therapeutics for treating glaucoma.  相似文献   

3.
AimsHyperglycemia-induced oxidative stress is implicated in pericyte apoptosis seen in diabetic retinopathy. The six mammalian Peroxiredoxins (PRDXs) comprise a novel family of antioxidative proteins that negatively regulate oxidative stress-induced apoptosis by controlling reactive oxygen species (ROS) levels.Main methodsSprague–Dawley rats were used to detect the retinal expressions of PRDXs1–6. Pig pericytes cultured in high-glucose medium were used to monitor the protective effect of PRDX5 and 6 against high-glucose-associated change. Recombinant PRDX5 and 6 proteins were linked to the Trans-Activating Transduction (TAT) domain from HIV-1 TAT protein for their efficient delivery into cells/tissues.Key findingsWe found higher expression of PRDX5 and 6 mRNAs and PRDX5 and 6 proteins in retina than the other Prdxs (Prdx1–4). Western blotting affirmed the intracellular presence of TAT-linked proteins and revealed the efficient transduction of TAT-HA-PRDX5 and 6 in these cells. Extrinsic supply of TAT-HA-PRDX5 and 6 proteins inhibited the oxidative stress-induced DNA damage after high-glucose exposure in pig pericytes. The cell survival and apoptosis assay revealed that extrinsic supply of TAT-HA-PRDX5 and 6 proteins was responsible for inhibiting hyperglycemia-induced pericyte apoptosis.SignificanceResults suggest that delivery of PRDX5 and 6 might protect hyperglycemia-induced pericyte loss to inhibit oxidative stress.  相似文献   

4.
Injury to lens epithelial cells (LECs) leads to epithelial–mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α‐smooth muscle actin (α‐SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up‐regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non‐cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α‐SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm‐based inhibitors for postponing PCO and cataractogenesis.  相似文献   

5.
Kwon HS  Bae YJ  Moon KA  Lee YS  Lee T  Lee KY  Kim TB  Park CS  Moon HB  Cho YS 《Life sciences》2012,90(13-14):502-508
AimsOxidative stress is involved in the pathogenesis of asthma, and peroxiredoxins (PRDX) may be critical in controlling intracellular oxidative stress. The aim of this study was to evaluate expressions of PRDX and their hyperoxidized forms in asthmatic individuals.Main methodsThe levels of expression of PRDX1, PRDX2, PRDX3, and PRDX6 and their hyperoxidized forms (PRDX-SO3) were measured in PBMCs from asthma patients and control subjects. In addition, cells from these subjects were treated with hydrogen peroxide (H2O2) and their intracellular concentrations of reactive oxygen species (ROS) were measured.Key findingsThe ratios of hyperoxidized to total PRDX (PRDX-SO3/PRDX) in PBMCs were significantly higher in asthma patients than in normal subjects and were correlated with disease severity, with the highest ratio seen in patients with severe asthma. Furthermore, H2O2 treatment of PBMCs, particularly lymphocytes, increased intracellular ROS concentrations with greater and more persistent increases observed in cells from asthmatic than from control subjects.SignificanceHyperoxidation of PRDX may serve as a biomarker of asthma severity and may predict enhanced susceptibility to oxidative stress load in PBMCs of asthmatics.  相似文献   

6.
Localization of neutral and acidic glycosphingolipids in rat lens   总被引:2,自引:2,他引:0  
Rat lens was found to contain several neutral and acidic glycosphingolipidsin lens epithelia, cortex and nucleus, and showed developmentalchanges in their content and localization. TLC-immunostainingof gangliosides revealed the enrichment of some ganglio-seriesgangliosides (GM3, GM1, GD3 and GD1b) in lens epithelia andthe presence of GM3 and GD3 in the lens nucleus. Immunohistochemicalstudies confirmed the distribution of GM3 and GM1 in anteriorlens epithelial cells and the cortex, with expression decreasingtoward the lens nucleus. Immunoreaction to GD3 was more intensein the lens nucleus than in epithelial cells. In contrast, theexpression of neolacto-series glycosphingolipids was restrictedto the lens nucleus. In order to investigate the pathologicalchanges of glycosphingolipids in cataract, galactose-inducedcataractous lenses were examined. However, no significant changeswere observed in the content and composition of glycosphingolipids.In addition, Lewisx epitopes found in human cataractous lenseswere not detected in the cataractous lenses of galactosaemicrats and hereditary cataractous Emory mice. cataract gangliosides glcosphingolipids Lewisx rat lens  相似文献   

7.
Baicalein is the flavonoids with multiple pharmacological activities. The aim of our study was to investigate the effects of baicalein on colorectal cancer (CRC) and to recognize the targets of baicalein treatment. To better understand baicalein's target, proteomic approaches were used to purify and identify the protein substrates using 2D difference gel electrophoresis (2D SDS-PAGE) to elucidate proteins differential display. Results from this study investigate that baicalein treatment of CRC cells results in reduced cell proliferation. As a result, differential protein displays between baicalein-treated and untreated CRC were determined and validated. There were 11 differentially expressed proteins between baicalein-treated and untreated CRC. Furthermore, we demonstrate that baicalein inhibits cancer cell proliferation and reduced reactive oxygen species (ROS) by up-regulating the levels of peroxiredoxin-6 (PRDX6). Knockdown of PRDX6 in baicalein-treated CRC cells by specific small interfering RNA resulted in ROS production and proliferation, opposite of the baicalein treatment scenario as indicated by cell cycle distribution. These results illustrate that baicalein up-regulates the expression of PRDX6, which attenuates the generation of ROS and inhibits the growth of CRC cells, whereas baicalein treatment have no effect on normal epithelial cells.  相似文献   

8.
Conformational changes in human lens proteins in cataract   总被引:5,自引:4,他引:1  
The reactivity of protein thiol groups in human lens and the susceptibility of the proteins to tryptic digestion were investigated. Both were found to be greater in some cataractous lenses, indicating that lens proteins have unfolded during cataractogenesis. Almost all the tyrosine in the proteins of the normal human lens reacts with tetranitromethane and is therefore probably on the outside of the major lens proteins.  相似文献   

9.
10.
Formation of lanthionine, a dehydroalanine crosslink, is associated with aging of the human lens and cataractogenesis. In this study we investigated whether modification of lens proteins by glutathione could proceed through an alternative pathway: that is, by the formation of a nonreducible thioether bond between protein and glutathione. Direct ELISA of the reduced water-soluble and water-insoluble lens proteins from human cataractous, aged and bovine lenses showed a concentration-dependent immunoreactivity toward human nonreducible glutathionyl-lens proteins only. The reduced water-insoluble cataractous lens proteins showed the highest immunoreactivity, while bovine lens protein exhibited no reaction. These data were confirmed by dot-blot analysis. The level of this modification ranged from 0.7 to 1.6 nmol/mg protein in water-insoluble proteins from aged and cataractous lenses. N-terminal amino acid determination in the reduced and alkylated lens proteins, performed by derivatization of these preparations with dansyl chloride followed by an exhaustive dialysis, acid hydrolysis and fluorescence detection of dansylated amino acids by RP-HPLC, showed that N-terminal glutamic acid was present in concentration of approximately 0.2 nmol/mg of lens protein. This evidence points out that at least some of the N-terminal amino groups of nonreducible glutathione in the reduced human lens proteins are not involved in a covalent bond formation. Since disulfides were not detected in the reduced and alkylated human lens proteins, GSH is most likely attached to lens proteins through thioether bonds. These results provide, for the first time, evidence that glutathiolation of human lens proteins can occur through the formation of nonreducible thioether bonds.  相似文献   

11.
Peroxiredoxin 4 (PRDX4), a member of Peroxiredoxin (PRDX) family, is a typical 2-Cys PRDX. PRDX4 monitors the oxidative burden within cellular compartment and reduces hydrogen peroxide and alkyl hydroperoxide related to oxidative stress and apoptosis. Antioxidant, like PRDX4, may promote follicle development and participate in the pathophysiology of PCOS. In our previous study, we found that PRDX4 was expressed in mice oocyte cumulus oophorus complex, and that PRDX4 could be associated with follicle development. In this study, we explored the expression of PRDX4 in human follicles and possible role of PRDX4 in PCOS pathophysiology. Our data showed that PRDX4 was mainly expressed in granulosa cells in human ovaries. When compared to control group, both PRDX4 mRNA level and protein level decreased in PCOS group. The lowered levels of PRDX4 may relate to oxidative stress in the pathophysiologic progress of PCOS. Furthermore, expression of PRDX4 in the granulosa cells of in vivo or in vitro matured follicles was higher than that in immatured follicles, which suggested that PRDX4 may have a close relationship with follicular development. Altogether, our findings may provide new clues of the pathophysiologic mechanism of PCOS and potential therapeutic strategy using antioxidant, like PRDX4.  相似文献   

12.
Free radical mediated oxidative stress plays a crucial role in the pathogenesis of cataract and the present study was to determine the efficacy of luteolin in preventing selenite induced oxidative stress and cataractogenesis in vitro. Luteolin is a bioactive flavonoid, isolated and characterized from the leaves of Vitex negundo. Lenses were extracted from Sprague-Dawley strain rats and were organ cultured in DMEM medium. They were divided into three groups with eight lenses in each group as follows: lenses cultured in normal medium (G I), supplemented with 0.1mM sodium selenite (G II) and sodium selenite and 2 μg/ml luteolin (G III). Treatment was from the second to fifth day, while selenite administration was done on the third day. After the experimental period, lenses were taken out and various parameters were studied. The antioxidant potential of luteolin was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. In the selenite induced group, morphological examination of the lenses showed dense cortical opacification and vacuolization. Biochemical examinations revealed a significant decrease in activities of antioxidant enzymes and enzymes of the glutathione system. Additionally decreased glutathione level and increased reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) were observed. Luteolin treatment abated selenite induced oxidative stress and cataractogenesis by maintaining antioxidant status, reducing ROS generation and lipid peroxidation in the lens. These finding demonstrated the anticataractogenic effect of luteolin by virtue of its antioxidant property, which has been reported in this paper for the first time.  相似文献   

13.
Eye lenses from young rats or mice synthesize GSH from methionine or N-acetylcysteine. However, lenses from old animals do not synthesize GSH from methionine. This is due to the absence of cystathionase activity in old lenses. GSH monoethyl ester, but not free GSH, increases GSH content and protects the lens against experimental oxidative stress. The importance of these results in the prevention of cataractogenesis is discussed.  相似文献   

14.

Background

Dendritic cells (DCs), professional antigen-presenting cells with the unique ability to initiate primary T-cell responses, are present in atherosclerotic lesions where they are exposed to oxidative stress that generates cytotoxic reactive oxygen species (ROS). A large body of evidence indicates that cell death is a major modulating factor of atherogenesis. We examined antioxidant defence systems of human monocyte-derived (mo)DCs and monocytes in response to oxidative stress.

Methods

Oxidative stress was induced by addition of tertiary-butylhydroperoxide (tert-BHP, 30 min). Cellular responses were evaluated using flow cytometry and confocal live cell imaging (both using 5-(and-6)-chloromethyl-2,7-dichlorodihydrofluorescein diacetate, CM-H2DCFDA). Viability was assessed by the neutral red assay. Total RNA was extracted for a PCR profiler array. Five genes were selected for confirmation by Taqman gene expression assays, and by immunoblotting or immunohistochemistry for protein levels.

Results

Tert-BHP increased CM-H2DCFDA fluorescence and caused cell death. Interestingly, all processes occurred more slowly in moDCs than in monocytes. The mRNA profiler array showed more than 2-fold differential expression of 32 oxidative stress–related genes in unstimulated moDCs, including peroxiredoxin-2 (PRDX2), an enzyme reducing hydrogen peroxide and lipid peroxides. PRDX2 upregulation was confirmed by Taqman assays, immunoblotting and immunohistochemistry. Silencing PRDX2 in moDCs by means of siRNA significantly increased CM-DCF fluorescence and cell death upon tert-BHP-stimulation.

Conclusions

Our results indicate that moDCs exhibit higher intracellular antioxidant capacities, making them better equipped to resist oxidative stress than monocytes. Upregulation of PRDX2 is involved in the neutralization of ROS in moDCs. Taken together, this points to better survival skills of DCs in oxidative stress environments, such as atherosclerotic plaques.  相似文献   

15.
16.
Age‐related cataract is among the most common chronic disorders of ageing and is the world's leading blinding disorder. Long non‐coding RNAs play important roles in several biological processes and complicated diseases. However, the role of lncRNAs in the setting of cataract is still unknown. Here, we extracted total RNAs from the transparent and age‐matched cataractous human lenses, and determined lncRNA expression profiles using microarray analysis. We found that 38 lncRNAs were differentially expressed between transparent and cataractous lenses. 17 of 20 differentially expressed lncRNAs were further verified by quantitative RT‐PCRs. One top abundant lncRNA, MIAT, was specifically up‐regulated both in the plasma fraction of whole blood and aqueous humor of cataract patients. MIAT knockdown could affect the proliferation, apoptosis and migration of Human lens epithelial cells (HLECs) upon oxidative stress. Posterior capsule opacification (PCO) is a common complication of cataract surgery, which is associated with abnormal production of inflammatory factors. MIAT knockdown could repress tumour necrosis factor‐α‐induced abnormal proliferation and migration of HLECs, suggesting a potential role of MIAT in PCO‐related pathological process. Moreover, we found that MIAT acted as a ceRNA, and formed a feedback loop with Akt and miR‐150‐5p to regulate HLEC function. Collectively, this study provides a novel insight into the pathogenesis of age‐related cataract.  相似文献   

17.
Little is known about the lipid environment of lens fiber junctions, the plasma membrane structure proposed to be responsible for passage of low molecular weight metabolites between adjacent lens fiber cells. Plasma membranes of the ocular lens are especially rich in fiber junctions. The resistance of junctional domains to disruption by detergent or alkali treatment provides the opportunity to isolate a lens plasma membrane fraction enriched in fiber junctions. When examined by electron microscopy, the fiber junction fraction prepared from bovine lenses was enriched with junctional structures by about twofold when compared to total plasma membrane. We compared the protein, phospholipid, and cholesterol concentration of total plasma membrane with fiber junctional membrane from rat and cow lens and from aged normal cataractous human lenses. The principal finding was that junctional membrane contained 20-40% more total lipid than that of the total plasma membrane. This was due to a proportionate increase in the relative content (mg/mg protein) of both phospholipid and cholesterol. Exclusive of one exception (nucleus of bovine lens), the cholesterol/phospholipid molar ratios of the two fractions were similar. In the bovine nucleus, the cholesterol/phospholipid molar ratio was substantially higher in the fiber junctional-enriched membrane fraction than in the total plasma membrane, suggesting a special association of cholesterol with bovine nuclear fiber junctions. The relative lipid compositions of the plasma membrane and fiber junction-enriched fractions from human normal and cataractous lenses were similar, suggesting that human senile cataractogenesis involves changes in the lens plasma membrane more subtle than would be reflected by gross changes in the membrane lipid composition.  相似文献   

18.
19.
Normal and needle-punctured lenses of Rana pipiens were examined with the electron microscope in order to characterize the sequence of ultrastructural changes that follow the injury over a 5-month period. Results were compared with those obtained previously in experimentally injured mouse and accidentally injured human lenses. The normal adult frog lens was found to have a morphology similar to that of mammalian lenses. As in the human, frog lens epithelial cells contained scattered microfilaments and were connected by desmosomes and gap junctions. They differed from mouse cells, which had been shown to lack desmosomes and to have microfilaments organized into dense bundles. These differences are postulated to be related to the degree of accommodative deformation of the lens displayed by these species. After injury, cellular debris and fibrin, accumulated in the wound, were phagocytized by extrinsic cells derived from the blood and ocular tissues. Leucocytes, pigmented cells and fibroblasts remained in the wound for eight weeks, along with epithelial cells which proliferated and migrated from the wound margins.Epithelial cells showed an increase in those organelles associated with protein synthesis and transport, and in microfilaments. In cataractous lenses, epithelial cells showed changes in matrix, and lens fibers became organized into smaller, denser compressed units. At five months, considerable healing had taken place, but localized opacities persisted in many frog lenses.  相似文献   

20.
The glass-like transparency of the human eye lens is achieved by the tight packing of abundant crystallin proteins. However, the precise role of the accessory non-crystallin proteins is not well understood. We have carried out 2-DE mapping of these proteins in rat lens. This showed the presence of the high molecular weight filamentous structural proteins spectrin, filensin, tubulin, vimentin, actin and phakinin as well as several forms of potential crystallin oligomers comprised of alphaA, betaB1, betaA1 and betaA4 chains. Other proteins that were present include, heat shock protein 71, WD repeat protein 1, and several enzymes including alpha-enolase, pyruvate kinase, transketolase and aldose reductase. 2-D-DIGE analysis revealed several expression differences between the lens proteomes of male and female rats. Female rat lenses contained lower levels of aldose reductase, increased proteolyic fragments of the structural proteins filensin, vimentin and phakinin and higher levels of potential alphaA, betaB1 and betaA1 crystallin oligomers. Taken together these findings suggest that there are potential differences in oxidative stress regulation between male and female rat lenses, which may have implications on susceptibility to cataract formation. Future studies aimed at elucidating pre-cataractic changes in the non-crystallin proteins described here may facilitate identification of novel markers involved in cataractogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号