首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics and mechanism of passive and active proton translocation in submitochondrial vesicles, obtained by sonication of beef heart mitochondria, have been studied.Analysis of the anaerobic release of the protons taken up by submitochondrial particles in the respiring steady state shows that proton diffusion consists of two parallel, apparent first-order processes: a fast reaction which, on the basis of its kinetic properties and response to cations and various effectors, is considered to consist of a proton/monovalent cation exchange; and a slow process which, on analogous grounds, is considered as a single electrogenic flux.The study of the various parameters of the respiration-linked active proton translocation and of the accompanying migration of permeant anions and K+ led to the following conclusions: (i) The oxidoreduction-linked proton translocation is electrogenic. (ii) Cation counterflow is not a necessary factor in the respiration-driven proton translocation. (iii) The membrane potential developed by active proton translocation exerts a coupling with respect to permeant cations and anions. (iv) The respiration-driven proton translocation is secondarily coupled, through the ΔμH component of the electrochemical proton gradient and at the level of a proton-cation exchange system of the membrane, to the flow of K+ and Na+.  相似文献   

2.
A study is presented on the effect of diamide-induced disulfide cross-linking of F(1)-gamma and F(0)I-PVP(b) subunits on proton translocation in the mitochondrial ATP synthase. The results show that, upon cross-linking of these subunits, whilst proton translocation from the A side to the B F(1) side is markedly accelerated with decoupling of oxidative phosphorylation, proton translocation in the reverse direction, driven by either ATP hydrolysis or a diffusion potential, is unaffected. These observations reveal further peculiarities of the mechanism of energy transfer in the ATP synthase of coupling membranes.  相似文献   

3.
The pyridine nucleotide transhydrogenase carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD+ and NADP+. Previous workers (E. Holmberg et al. Biochemistry 33, 7691-7700, 1994; N. A. Glavas et al. Biochemistry 34, 7694-7702, 1995) had examined the role in proton translocation of conserved charged residues in the transmembrane domain. This study was extended to examine the role of conserved polar residues of the transmembrane domain. Site-directed mutagenesis of these residues did not produce major effects on hydride transfer or proton translocation activities except in the case of betaAsn222. Most mutants of this residue were drastically impaired in these activities. Three phenotypes were recognized. In betaN222C both activities were impaired maximally by 70%. The retention of proton translocation indicated that betaAsn222 was not directly involved in proton translocation. In betaN222H both activities were drastically reduced. Binding of NADP+ but not of NADPH was impaired. In betaN222R, by contrast, NADP+ remained tightly bound to the mutant transhydrogenase. It is concluded that betaAsn222, located in a transmembrane alpha-helix, is part of the conformational pathway by which NADP(H) binding, which occurs outside of the transmembrane domain, is coupled to proton translocation. Some nonconserved or semiconserved polar residues of the transmembrane domain were also examined by site-directed mutagenesis. Interaction of betaGlu124 with the proton translocation pathway is proposed.  相似文献   

4.
Cytochrome-deficient cells of a strain of Escherichia coli lacking 5-amino-levulinate synthetase have been used to study proton translocation associated with the reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase region of the electron transport chain. Menadione was used as electron acceptor, and mannitol was used as the substrate for the generation of intracellular NADH. The effects of iron deficiency on NADH- and D-lactate-menadione reductase activities were studied in iron-deficient cells of a mutant strain unable to synthesize the iron chelator enterochelin; both activities were reduced. The NADH- menadione reductase activity in cytochrome-deficient cells was associated with proton translocation and could be coupled to the uptake of proline. However proton translocation associated with the NADH-menadione reductase activity was prevented by a mutation in an unc gene. It was concluded that there is no proton translocation associated with the NADH-dehydrogenase region of the electron transport chain in E. coli and that the proton translocation obtained with mannitol as substrate is due to the activity of membrane-bound adenosine triphosphatase.  相似文献   

5.
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.  相似文献   

6.
Transhydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. In membrane vesicles from Escherichia coli and Rhodospirillum rubrum, the transhydrogenase reaction (measured in the direction driving inward proton translocation) was inhibited by Zn(2+) and Cd(2+). However, depending on pH, the metal ions either had no effect on, or stimulated, "cyclic" transhydrogenation. They must, therefore, interfere specifically with steps involving binding/release of NADP(+)/NADPH: the steps thought to be associated with proton translocation. It is suggested that Zn(2+) and Cd(2+) bind in the proton-transfer pathway and block inter-conversion of states responsible for changing NADP(+)/NADPH binding energy.  相似文献   

7.
The substrate and ionic requirements of ATP and inorganic pyrophosphate (PPi) hydrolysis by tonoplast vesicles isolated from storage tissue of red beet (Beta vulgaris L.) were compared with the requirements of ATP-and PPi-dependent proton translocation by the same material. Both ATP hydrolysis and ATP-dependent proton translocation are most stimulated by Cl and inhibited by NO3. NaCl and KCl support similar rates of ATP hydrolysis and ATP-dependent proton translocation while K2SO4 supports lesser rates for both. PPi hydrolysis and PPi-dependent proton translocation are most stimulated by K+. KCl and K2SO4 support similar rates of PPi hydrolysis and PPi-dependent proton translocation but NaCl has only a small stimulatory effect on both. Since PPi does not inhibit ATP hydrolysis and ATP does not interfere with PPi hydrolysis, it is inferred that the two phosphohydrolase and proton translocation activities are mediated by different tonoplast-associated enzymes. The results indicate the presence of an energy-conserving proton-translocating pyrophosphatase in the tonoplast of red beet.  相似文献   

8.
Mechanism of proton transport by plant plasma membrane proton ATPases   总被引:2,自引:0,他引:2  
The mechanism of proton translocation by P-type proton ATPases is poorly defined. Asp684 in transmembrane segment M6 of the Arabidopsis thaliana AHA2 plasma membrane P-type proton pump is suggested to act as an essential proton acceptor during proton translocation. Arg655 in transmembrane segment M5 seems to be involved in this proton translocation too, but in contrast to Asp684, is not essential for transport. Asp684 may participate in defining the E1 proton-binding site, which could possibly exist as a hydronium ion coordination center. A model of proton translocation of AHA2 involving the side chains of amino acids Asp684 and Arg655 is discussed.  相似文献   

9.
Protein translocation across the Escherichia coli plasma membrane is facilitated by concerted actions of the SecYEG integral membrane complex and the SecA ATPase. A secY mutation (secY39) affects Arg357, an evolutionarily conserved and functionally important residue, and impairs the translocation function in vivo and in vitro. In this study, we used the "superactive" mutant forms of SecA, which suppress the SecY39 deficiency, to characterize the mutationally altered SecY39EG translocase. It was found that SecY39-mediated preprotein translocation exhibited absolute dependence on the proton motive force. The proton motive force-dependent step proved to lie before signal peptide cleavage. We suggest that the proton motive force assists in the initiation phase of protein translocation.  相似文献   

10.
Vacuolar H(+)-pyrophosphatase (V-PPase; EC 3.6.1.1) plays a significant role in the maintenance of the pH in cytoplasm and vacuoles via proton translocation from the cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. The topology of V-PPase as predicted by TopPred II suggests that the catalytic site is putatively located in loop e and exposed to the cytosol. The adjacent transmembrane domain 6 (TM6) is highly conserved and believed to participate in the catalytic function and conformational stability of V-PPase. In this study, alanine-scanning mutagenesis along TM6 of the mung bean V-PPase was carried out to identify its structural and functional role. Mutants Y299A, A306S and L317A exhibited gross impairment in both PP(i) hydrolysis and proton translocation. Meanwhile, mutations at L307 and N318 completely abolished the targeting of the enzyme, causing broad cytosolic localization and implicating a possible role of these residues in protein translocation. The location of these amino acid residues was on the same side of the helix wheel, suggesting their involvement in maintaining the stability of enzyme conformation. G297A, E301A and A305S mutants showed declines in proton translocation but not in PP(i) hydrolysis, consequently resulting in decreases in the coupling efficiency. These amino acid residues cluster at one face of the helix wheel, indicating their direct/indirect participation in proton translocation. Taken together, these data indicate that TM6 is crucial to vacuolar H(+)-pyrophosphatase, probably mediating protein targeting, proton transport, and the maintenance of enzyme structure.  相似文献   

11.
A study is presented of the kinetics and stoichiometry of fast proton translocation associated to aerobic oxidation of components of the mitochondrial respiratory chain. 1. Aerobic oxidation of ubiquinol and b cytochromes is accompanied in EDTA particles, obtained by sonication of beef-heart mitochondria, by synchronous proton uptake. 2. The rapid proton uptake associated to oxidation and b cytochromes is greatly stimulated by valinomycin plus K+, but is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 3. 4 gion H+ are taken up per mol ubiquinol oxidized by oxygen. This H+/2e- ratio, measured in the rapid anaerobic-aerobic transition of the particles is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 4. Intact mitochondria aerobic oxidation of oxygen-terminal electron carriers is accompanied by antimycin-insensitive synchronous proton release, oxidation of ubiquinol and reduction of b cytochromes. The amount of protons released is in excess with respect to the amount of ubiquinol oxidized. 5. It is concluded that electron flow along complex III, from ubiquinol to cytochrome c, is directly coupled to vectorial proton translocation. The present data suggest that there exist(s) between ubiquinol and cytochrome c one (or two) respiratory carrier(s), whose oxido-reduction is directly linked to effective transmembrane proton translocation.  相似文献   

12.
T Haltia  M Saraste    M Wikstrm 《The EMBO journal》1991,10(8):2015-2021
Subunit III (COIII) is one of the three core subunits of the aa3-type cytochrome c oxidase. COIII does not contain any of the redox centres and can be removed from the purified enzyme but has a function during biosynthesis of the enzyme. Dicyclohexyl carbodiimide (DCCD) modifies a conserved glutamic acid residue in COIII and abolishes the proton translocation activity of the enzyme. In this study, the invariant carboxylic acids E98 (the DCCD-binding glutamic acid) and D259 of COIII were changed by site-directed mutagenesis to study their role in proton pumping. Spectroscopy and activity measurements show that a structurally normal enzyme, which is active in electron transfer, is formed in the presence of the mutagenized COIII. Experiments with bacterial spheroplasts indicate that the mutant oxidases are fully competent in proton translocation. In the absence of the COIII gene, only a fraction of the oxidase is assembled into an enzyme with low but significant activity. This residual activity is also coupled to proton translocation. We conclude that, in contrast to numerous earlier suggestions, COIII is not an essential element of the proton pump.  相似文献   

13.
Tightly coupled bovine heart submitochondrial particles treated to activate complex I and to block ubiquinol oxidation were capable of rapid uncoupler-sensitive inside-directed proton translocation when a limited amount of NADH was oxidized by the exogenous ubiquinone homologue Q1. External alkalization, internal acidification and NADH oxidation were followed by the rapidly responding (t1/2 < or = 1 s) spectrophotometric technique. Quantitation of the initial rates of NADH oxidation and external H+ decrease resulted in a stoichiometric ratio of 4 H+ vectorially translocated per 1 NADH oxidized at pH 8.0. ADP-ribose, a competitive inhibitor of the NADH binding site decreased the rates of proton translocation and NADH oxidation without affecting -->H+/2e- stoichiometry. Rotenone, piericidin and thermal deactivation of complex I completely prevented NADH-induced proton translocation in the NADH-endogenous ubiquinone reductase reaction. NADH-exogenous Q1 reductase activity was only partially prevented by rotenone. The residual rotenone- (or piericidin-) insensitive NADH-exogenous Q1 reductase activity was found to be coupled with vectorial uncoupler-sensitive proton translocation showing the same -->H+/2e- stoichiometry of 4. It is concluded that the transfer of two electrons from NADH to the Q1-reactive intermediate located before the rotenone-sensitive step is coupled with translocation of 4 H+.  相似文献   

14.
A theory of proton coupled electron transfer (PCET) is reviewed with application to charge transfer steps in the photosystem II oxygen-evolving complex (PSII/OEC). The relation between PCET when it is a concerted electron proton transfer (ETPT) process and hydrogen-atom transfer (HAT) reactions is discussed. Signatures expected for HAT reactions in terms of the size of the kinetic isotope effect and overall magnitude of the rate constant are discussed in the context of PSII/OEC. The formal similarity of ETPT to proton transfer and translocation is used to introduce a combined quantum mechanical (for the transferring protons) and molecular dynamics for the heavy-atom degrees of freedom approach. The method is used to examine double proton transfer in cytochrome c oxidase where two waters and a glutamate (Glu286) that is implicated in the proton translocation mechanism form a cyclic hydrogen bonded structure. Protonation of the glutamate is found to occur in agreement with experimental results.  相似文献   

15.
The nicotinamide nucleotide transhydrogenases of mitochondria and bacteria are proton pumps that couple hydride ion transfer between NAD(H) and NADP(H) bound, respectively, to extramembranous domains I and III, to proton translocation by the membrane-intercalated domain II. Previous experiments have established the involvement of three conserved domain II residues in the proton pumping function of the enzyme: His91, Ser139, and Asn222, located on helices 9, 10, and 13, respectively. Eight highly conserved domain II glycines in helices 9, 10, 13, and 14 were mutated to alanine, and the mutant enzymes were assayed for hydride transfer between domains I and III and for proton translocation by domain II. One of the glycines on helix 14, Gly252, was further mutated to Cys, Ser, Thr, and Val, expression levels of the mutant enzymes were evaluated, and each was purified and assayed. The results show that Gly252 is essential for function and support a model for the proton channel composed of helices 9, 10, 13, and 14. Gly252 would allow spatial proximity of His91, Ser139, and Asn222 for proton conductance within the channel. Gly252 mutants are distinguished by high levels of cyclic transhydrogenation activity in the absence of added NADP(H) and by complete loss of proton pumping activity. The purified G252A mutant has <1% proton translocation and reverse transhydrogenation activity, retains 0.9 mol of NADP(H) per domain III, and has 96% intrinsic cyclic transhydrogenation activity, which does not exceed 100% upon the addition of NADP(H). These properties imply that Gly252 mutants exhibit a native-like domain II conformation while blocking proton translocation and coupled exchange of NADP(H) in domain III.  相似文献   

16.
The vacuolar H(+)-ATPases (or V-ATPases) are a family of ATP-dependent proton pumps responsible for acidification of intracellular compartments and, in certain cases, proton transport across the plasma membrane of eukaryotic cells. They are multisubunit complexes composed of a peripheral domain (V(1)) responsible for ATP hydrolysis and an integral domain (V(0)) responsible for proton translocation. Based upon their structural similarity to the F(1)F(0) ATP synthases, the V-ATPases are thought to operate by a rotary mechanism in which ATP hydrolysis in V(1) drives rotation of a ring of proteolipid subunits in V(0). This review is focused on the current structural knowledge of the V-ATPases as it relates to the mechanism of ATP-driven proton translocation.  相似文献   

17.
Inhibition of clathrin-coated vesicle acidification by duramycin   总被引:6,自引:0,他引:6  
Clathrin-coated vesicles contain a proton translocating ATPase which operates in parallel with a chloride transporter (Xie, X.-S., Stone, D.K., and Racker, E. (1983) J. Biol. Chem. 258, 14834-14838). The polypeptide antibiotic, duramycin, has a dual inhibitory effect on clathrin-coated vesicle acidification. Low amounts of duramycin (5 micrograms/100 micrograms of protein) inhibit by 50% the proton translocation facilitated by chloride translocation. Under these conditions duramycin inhibits also 36Cl uptake when driven by either the electrogenic proton pump or by inward directed K+ movement in the presence of valinomycin. Higher amounts of duramycin (20 micrograms/100 micrograms of protein) are needed to inhibit by 50% the proton pump itself, as evidenced by reduced proton translocation facilitated by an outward potassium movement in the presence of valinomycin. In addition, the amount of duramycin needed to inhibit the proton pump corresponded well with the amount needed to inhibit the ouabain-insensitive, N-ethylmaleimide-sensitive ATPase activity of clathrin-coated vesicles.  相似文献   

18.
Proton-translocating transhydrogenases, reducing NADP+ by NADH through hydride transfer, are membrane proteins utilizing the electrochemical proton gradient for NADPH generation. The enzymes have important physiological roles in the maintenance of e.g. reduced glutathione, relevant for essentially all cell types. Following X-ray crystallography and structural resolution of the soluble substrate-binding domains, mechanistic aspects of the hydride transfer are beginning to be resolved. However, the structure of the intact enzyme is unknown. Key questions regarding the coupling mechanism, i.e., the mechanism of proton translocation, are addressed using the separately expressed substrate-binding domains. Important aspects are therefore which functions and properties of mainly the soluble NADP(H)-binding domain, but also the NAD(H)-binding domain, are relevant for proton translocation, how the soluble domains communicate with the membrane domain, and the mechanism of proton translocation through the membrane domain.  相似文献   

19.
Wikström M 《Biochemistry》2000,39(13):3515-3519
Ten years ago, intermediate reaction steps in the catalytic cycle of cytochrome c oxidase were titrated with phosphorylation potential in isolated mitochondria, and the results were interpreted as evidence for thermodynamic linkage of proton translocation exclusively to the oxidative reaction steps of the catalytic cycle [Wikstr?m, M. (1989) Nature 338, 776-778]. Michel has recently argued that this work was flawed, and proposed a mechanism in which one of the four steps of proton translocation is linked to the reductive phase of the catalytic cycle [Michel, H. (1999) Biochemistry 38, 15129-15140]. Here, the original data are scrutinized and related to information that has accumulated since this work was published. The analysis shows that the main conclusions from this work still hold. Michel's mechanism of proton translocation is briefly discussed, and found to be at odds with some experimental observations.  相似文献   

20.
ATP hydrolysis and synthesis by the F(0)F(1)-ATP synthase are coupled to proton translocation across the membrane in the presence of magnesium. Calcium is known, however, to disrupt this coupling in the photosynthetic enzyme in a unique way: it does not support ATP synthesis, and CaATP hydrolysis is decoupled from any proton translocation, but the membrane does not become leaky to protons. Understanding the molecular basis of these calcium-dependent effects can shed light on the as yet unclear mechanism of coupling between proton transport and rotational catalysis. We show here, using an actin filament gamma-rotation assay, that CaATP is capable of sustaining rotational motion in a highly active hybrid photosynthetic F(1)-ATPase consisting of alpha and beta subunits from Rhodospirillum rubrum and gamma subunit from spinach chloroplasts (alpha(R)(3)beta(R)(3)gamma(C)). The rotation was found to be similar to that induced by MgATP in Escherichia coli F(1)-ATPase molecules. Our results suggest a possible long range pathway that enables the bound CaATP to induce full rotational motion of gamma but might block transmission of this rotational motion into proton translocation by the F(0) part of the ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号