首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids act synergistically with insulin-like growth factor I (IGF-I) to stimulate DNA synthesis and replication of cultured human fibroblasts. In the present study, we further define glucocorticoid and IGF-I interactive effects on human fibroblast metabolism and growth. IGF-I stimulated dose-dependent increases in early metabolic events. Half-maximal effectiveness was seen at 5–8 ng/ml IGF-I, with mean maximal responses of 1.5-, 2-, and 6-fold for [3H]2-deoxyglucose uptake, [14C]glucose incorporation, and [14C]aminoisobutyric acid (AIB) uptake, respectively. A 48-hour preincubation with 10?7 M dexamethasone markedly enhanced both the sensitivity and maximal effectiveness of IGF-I stimulation of AIB uptake. In contrast, dexamethasone had no effect on IGF-I-stimulated glucose uptake and utilization. Maximum specific binding of [125I]IGF-I to fibroblast monolayers was identical in ethanol control and glucocorticoid-treated cells, with 50% displacement at ~5 ng/ml IGF-I. In addition to its synergism with IGF-I, preincubation with dexamethasone augmented insulin and epidermal growth factor (EGF) stimulation of [3H]thymidine incorporation; dexamethasone had no effect on platelet-derived growth factor or fibroblast growth factor action. Two-dimensional gel electrophoresis identified two specific glucocorticoid-induced proteins in human fibroblast cell extracts with molecular weights of 45K and 53K and pls of 6.8 and 6.3, respectively. These data indicate that IGF-I receptor-mediated actions in human fibroblasts are differentially modulated by glucocorticoids. Glucocorticoids are synergistic with IGF-I in stimulating mitogenesis and amino acid uptake, without having any apparent effect on IGF-I-stimulated glucose metabolism. Glucocorticoid enhancement of growth factor bioactivity may involve modulation of a regulatory event in the mitogenic signaling pathway subsequent to cell surface receptor activation. © 1995 Wiley-Liss, Inc.  相似文献   

2.
In serum-free medium, insulin-like growth factor-I/somatomedin-C (IGF-I/SM-C) was weakly mitogenic for adult human fibroblasts in culture. However, in the presence of 0.5% human hypopituitary serum (HHS), which by itself had little effect, there was a marked dose-dependent response to IGF-I/SM-C with a 10- to 20-fold increase in [3H]thymidine incorporation at 25 ng/ml IFG-I/SM-C. With the further addition of dexamethasone or hydrocortisone to the combination of IGF-I/SM-C + 0.5% HHS, there was a dramatic synergistic effect resulting in a 60- to 70-fold increase in [3H]thymidine incorporation. This stimulation was two times greater than that seen with 20% FCS. In contrast, glucocorticoids had no effect in serum-free medium or with HHS alone. These [3H]thymidine incorporation results were clearly supported by cell replication studies. Dose-response curves for 125I IGF-I/SM-C binding and IGF-I/SM-C stimulation of [3H]thymidine incorporation were similar with 1/2 maximal effects for both at 5 ng/ml. However, the striking synergism seen with glucocorticoids occurred in the absence of any glucocorticoid-induced change in IGF-I/SM-C binding, indicating that the interaction of IGF-I/SM-C and glucocorticoids occurs at a postreceptor level. These data demonstrate that in the presence of a low concentration of HHS, IGF-I/SM-C and glucocorticoids stimulate complete cell cycle traverse and replication of human fibroblasts.  相似文献   

3.
Insulin-like growth factor II binding and action in human fetal fibroblasts   总被引:5,自引:0,他引:5  
To investigate the role of insulin-like growth factor II (IGF-II) in human prenatal growth, IGF-II binding and biological action were studied in four lines of fetal and three lines of postnatal human fibroblasts. Specific binding of IGF-II was similar in both groups: 15.7% and 14.9% for fetal and postnatal fibroblasts, respectively. This was 5-10 times the amount of IGF-I binding found in these cells. IGF-I and IGF-II caused dose-dependent increases in [14C]aminoisobutyric acid (AIB) uptake. IGF-II was sevenfold less potent than IGF-I in stimulating this metabolic response in both fetal and postnatal fibroblasts. The maximal effect of IGF-II in stimulating [14C]AIB uptake approach that of IGF-I. Similar results were obtained when IGF-I and IGF-II stimulation of [3H]thymidine incorporation was compared in fetal and postnatal fibroblasts. Incubation in the presence of alpha IR-3, a monoclonal antibody to the type I IGF receptor, inhibited the ability of both IGF-I and IGF-II to stimulate [14C]AIB uptake and [3H]thymidine incorporation in fetal and postnatal cells. A monoclonal antibody to the insulin receptor did not affect IGF action. These data indicate that IGF-II is a potent metabolic and mitogenic stimulus for human fetal fibroblasts. However, despite the presence of abundant type II IGF receptors on both fetal and postnatal human fibroblasts, IGF-II stimulation of amino acid transport and DNA synthesis appears to be mediated through the type I rather than through its own type II IGF receptor.  相似文献   

4.
Effects of RU486 on the induction of aromatase by dexamethasone via glucocorticoid receptor were determined using cultured human skin fibroblasts. Competition of [3H]dexamethasone binding to the cytosol receptor was 7 times stronger with RU486 than with dexamethasone. The order of the strength of competition was RU486 greater than dexamethasone greater than betamethasone greater than prednisolone greater than hydrocortisone. RU486 abolished a specific 8.6 S [3H]dexamethasone binding peak in the cytosol, determined using a sucrose density gradient analysis. Dexamethasone markedly induced aromatase and this event was strongly suppressed by RU486, in a dose-dependent manner, in the cultured skin fibroblasts. A linear correlation between the strength of competition and the induction of aromatase of various glucocorticoids was observed. RU486 non-competitively inhibited aromatase induction by dexamethasone determined from a double reciprocal plot of aromatase activity, with respect to [3H]androstenedione concentration in the presence of RU486. These results show that RU486 is a peripheral noncompetitive antiglucocorticoid on aromatase induction by glucocorticoid in human skin fibroblasts and that aromatase induction is a good marker for the biological function of glucocorticoid receptor in human skin fibroblasts.  相似文献   

5.
Insulin-like growth factor I (IGF-I) is anabolic for chondrocytes and is thought to be important in regulating such normal cartilaginous tissues as the epiphyseal growth plate. In the present studies, we have investigated the role of IGF-I in the regulation of neoplastic cartilage. Chondrocytes cultured from a transplantable rat chondrosarcoma were analyzed for responsiveness to IGF-I with respect to DNA and glycosaminoglycan synthesis as determined by labeling with radioactive thymidine and sulfate, respectively. Stimulation of [3H]thymidine and [35S]sulfate incorporation by IGF-I was two to four times that in serum-free controls, with half-maximal stimulation at 1 × 10-9M. The efficacy of IGF-I was approximately one-half of that of serum in stimulating [3H]thymidine incorporation and was comparable to that of serum for [35S]sulfate incorporation. When Swarm rat chondrosarcoma chondrocytes were cultured in the presence of IGF-I and exposed to graded concentrations of anti-IGF-I antibody, [3H]thymidine incorporation and [35S]sulfate incorporation were attenuated in a dose-dependent fashion to 29 and 25% of antibody-free controls, respectively. Nonspecific antibody not raised against IGF-I was not inhibitory. These observations suggest that the majority of IGF-I action on these cells is susceptible to immunoinhibition. To estimate the contribution of IGF-I to the regulation of these cells by serum, Swarm rat chondrosarcoma chondrocytes were cultured with graded concentrations of either calf serum or fetal calf serum in the presence of anti-IGF-I antibody, nonspecific antibody, or no other additives. Specific antibody attenuated the effect of calf serum on both [3H]thymidine and [35S]sulfate incorporation with overall inhibition of 52% (P < 0.01) and 48% (P < 0.001), respectively. Nonspecific antibody superimposed small, variably stimulatory or inhibitory effects on those of calf serum. When chondrosarcoma chondrocytes were incubated with fetal calf serum, anti-IGF-I antibody exerted a minimal inhibitory effect, reducing both [3H]thymidine and [35S]sulfate incorporation by less than 25%. The immunoinhibition of both pre- and postnatal serum could be overcome in a dose-dependent fashion by increasing serum concentrations. These results suggest that the factors influencing Swarm rat chondrosarcoma chondrocytes may be developmentally regulated and that the contribution of IGF-I to the action of serum increases between fetal and postnatal life. These data support the hypothesis that chondrosarcoma is a somatomedin-responsive neoplasm and suggest that this tumor may be susceptible to interventions directed toward mechanisms that block insulin-like growth factor action.  相似文献   

6.
CON8 is a single-cell derived subclone of the 13762NF transplantable, hormone-responsive rat mammary tumor that proliferates rapidly in serum-free medium. Addition of either glucocorticoids or calf serum alone caused a slight stimulation of CON8 proliferation. However, glucocorticoids required the presence of specific serum proteins to strongly suppress CON8 cell growth. Furthermore, the anchorage-independent growth of CON8 cells was significantly reduced in the presence of glucocorticoids and serum. We have designated this serum activity GMGSF, for glucocorticoid modulating growth suppression factor. Inhibition of cell growth was limited to steroids with strong glucocorticoid biological activity, while exposure to the glucocorticoid antagonist RU38486 prevented this response. Half-maximal growth inhibition and half-maximal expression of a glucocorticoid-inducible gene product (2 nM) occurred slightly below the half-maximal receptor binding of [3H]dexamethasone (10nM). We have also selected a variant mammary epithelial tumor cell line, derived from CON8, denoted 8RUV7, whose proliferation and soft agar colony formation failed to be suppressed by glucocorticoids in the presence of serum. These glucocorticoid-resistant variant cells possess functional glucocorticoid receptors, competently produce the glucocorticoid-responsive gene product plasminogen activator inhibitor, and along with CON8 cells express milk fat globule protein antigens on their cell surface, indicative of their mammary epithelial cell character. We are using this variant line to genetically dissect the molecular mechanism of the glucocorticoid/GMGSF growth suppression pathway in mammary epithelial tumor cells.  相似文献   

7.
Sparse cultures of fetal and postnatal human fibroblasts were equivalent in their responsiveness to the mitogenic action of somatomedin C/insulin-like growth factor I (SM-C/IGF-I). At both developmental stages, the addition of SM-C/IGF-I (100 ng/ml) increased cell number at day 3 1.4-fold in serum-free medium and 2-fold in the presence of 0.25% human hypopituitary serum. Furthermore, dose-response curves indicated that there was no difference in the sensitivity of fetal and postnatal fibroblasts to the growth-promoting effects of SM-C/IGF-I, with a half-maximal response occurring at 6 ng/ml SM-C/IGF-I. This biological action of SM-C/IGF-I correlated with SM-C/IGF-I binding to fetal and postnatal fibroblast monolayers. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) also stimulated replication of fetal and postnatal fibroblasts. The mitogenic effects of SM-C/IGF-I, EGF, and PDGF were additive. Dexamethasone, which alone had no effect, was synergistic with SM-C/IGF-I in stimulating replication of postnatal fibroblasts. The combination of SM-C/IGF-I (100 ng/ml), dexamethasone (10(-7) M), EGF (10 ng/ml), and PDGF (5 ng/ml) had the same mitogenic effectiveness as 10% calf serum (CS) in postnatal cells. In marked contrast, there was no mitogenic interaction between SM-C/IGF-I and dexamethasone in fetal fibroblasts. In fetal cells, SM-C/IGF-I + EGF + PDGF +/- dexamethasone could only account for 50% of the activity of 10% CS. Moreover, fetal cells were 50-100% more responsive than postnatal cells to the proliferative effect of serum.  相似文献   

8.
Summary A serum-free clonal density growth assay was developed for the quantification of the biological activity of human recombinant insulin-like growth factor I (IGF-I). The assay measures IGF-I stimulated growth of Balb/c 3T3 cells cultured over 4 d on poly-d-lysine-coated plastic surfaces in a serum-free medium formulation composed of a 1∶1 (vol/vol) mixture of Ham's F12 and Dulbecco's modified Eagle's media, supplemented with 3.0 ng/ml bovine basic fibroblast growth factor (bFGF), 10 μg/ml human transferrin, 100 μg/ml ovalbumin, and 1.0 μM dexamethanose. Low-temperature trypsinization of serum-supplemented stock cultures combined with the use of poly-d-lysine-coated plates made it unnecessary to use serum or fibronectin to promote cell attachment and survival. Serum-free growth conditions were optimized with respect to the concentrations of the supplements. Addition of IGF-I resulted in 3.5-fold more cells than control cultures without IGF-I after 4 d. Deletion of bFGF resulted in no IGF-I stimulation of growth. The concentrations of various preparations of IGF-I required to achieve one-half maximal stimulation of cell number (ED50), ranged between 1.25 and 4.7 ng/ml. In parallel assays, IGF-I was 6.6 times more potent than human recombinant insulin-like growth factor II and 32 times more potent than insulin. When cells were seeded into medium containing IGF-I, transferrin, ovalbumin, and dexamethasone but no bFGF, growth was minimal. Dose-response addition of bFGF showed an ED50, of 0.9 ng/ml. The methods reported are useful to monitor the biological potency of recombinant and natural-source growth factors as well as providing a new means of studying the multiple growth factor requirements of Balb/c 3T3 cells in cultures. This work was supported by a contract from IMCERA Bioproducts, Inc.  相似文献   

9.
10.
Summary A new human pancreatic cancer (HPAC) cell line was established from a nude mouse xenograft (CAP) of a primary human pancreatic ductal adenocarcinoma. In culture, HPAC cells form monolayers of morphologically heterogenous, polar epithelial cells, which synthesize carcinoembryonic antigen, CA 19-9, CA-125, cytokeratins, antigens for DU-PAN-2, HMFG1, and AUA1, but do not express chromogranin A or vimentin indicative of their pancreatic ductal epithelial cell character. In the presence of serum, HPAC cell DNA synthesis was stimulated by insulin, insulin growth factor-I, epidermal growth factor, and TGF-&#x03B1; but inhibited by physiologic concentrations of hydrocortisone and dexamethasone. Dose-dependent inhibition of DNA synthesis was limited to steroids with glucocorticoid activity. The inhibitory effect of dexamethasone was abolished by the glucocorticoid antagonist RU 38486. Binding of [3H]dexamethasone to cytosolic proteins was specific and saturable at 4&#x00B0; C. Scatchard analysis of binding data demonstrated a single class of high-affinity binding sites (Kd=3.8&#x00B1;0.9 nM; Bmax=523&#x00B1;128 fmol/mg protein). Western blot analysis revealed a major protein band that migrated at a Mr of 96 kDa. Northern blot analysis identified an mRNA of approximately 7 kilobases which hybridized with a specific glucocorticoid receptor complementary DNA probe (OB7). These findings support a role for glucocorticoids in the regulation of human malignant pancreatic cell function.  相似文献   

11.
Cytosolic receptor for glucocorticoids can exist in either the free or bound form; assays now in use measure only the free form. In order to assay the total glucocorticoid receptor content of rat liver, free plus bound, we have developed an exchange assay wherein specifically bound [3H]dexamethasone is shown to be a valid measure of receptor in the presence of high concentrations of corticosterone. The exchange between [3H]dexamethasone and corticosterone is able to proceed because, under the conditions of the assay, corticosterone is almost completely metabolized.  相似文献   

12.
Addition of insulin to nonproliferating serum-free cultures of secondary chicken embryo (CE) cells caused a 30% to 50% increase in cell number. Addition of any one of several glucocorticoids (dexamethasone, cortisol, or corticosterone) to the cultures two days before insulin addition increased the mitogenic effect of insulin by about twofold at each insulin concentration tested. This glucocorticoid stimulation of cell proliferation was “permissive” because in the absence of insulin glucocorticoids caused little increase in cell number (usually less than 15%). Glucocorticoids were maximally active at low concentrations (e.g., 10?10 M dexamethasone). Steroids without glucocorticoid activity were inactive over a wide range of concentrations. Glucocorticoids increased the mitogenic response to insulin largely by increasing the percentage of cells that insulin stimulated to synthesize DNA. The maximum mitogenic effect of insulin upon CE cells rapidly decreased after the cells were serially subcultured. After only nine population doublings (4 passages) in culture, the response to insulin was diminished by about 70%. The mitogenic effect of insulin plus dexamethasone declined similarly during serial subculture, and was always about twofold greater than the effect of insulin alone. The cells maintained their mitogenic responsiveness to serum as these responses decreased. In contrast to the growth promoting influence of glucocorticoids in the presence of insulin, glucocorticoids inhibited the mitogenic response of CE cells to serum. This result may resolve our above findings with reports that glucocorticoids inhibit the proliferation of CE cells.  相似文献   

13.
Abstract

We have developed a whole cell binding assay with [3H] dexamethasone as the ligand for the measurement of the glucocorticoid receptor (GR) content of normal and malignant human leukocytes. A panel of eleven phenotypically well-defined human leukemia cell lines were investigated for their GR expression and in vitro sensitivity to glucocorticoids.

There were great variations in the GR contents of different cell lines (2200–18100 sites/cell) while no marked differences in the binding affinities of the GRs were seen. No obvious correlation was found between the GR content and the phenotype of the cell line nor between the GR content and the in vitro growth inhibition by glucocorticoids.  相似文献   

14.
Glucocorticoids will enhance the growth of cultured human skin fibroblasts in serum-containing medium. In serum-free cultures hydrocortisone (5 X 10(-6) M) will enhance insulin stimulation of sugar transport and DNA synthesis (as measured by thymidine incorporation into trichloroacetic acid-precipitable material). The optimal concentration for the glucocorticoid effect on DNA synthesis was 5 X 10(-8) M for dexamethasone and 5 X 10(-7) M for hydrocortisone. In dexamethasone-treated cells, concentrations of insulin as low as 250 microU/ml (10 ng/ml) were effective in stimulating DNA synthesis. Further, hydrocortisone and dexamethasone (both at 5 X 10(-6) M) exhibited potentiating effects on insulin-stimulated sugar transport. These effects appeared to be mediated via inhibitory actions on the hexose transport system with the preservation of a functional insulin-receptor interaction resulting in insulin stimulation of deoxy-D-glucose transport at physiological insulin concentrations, 250 microU/ml (10 ng/ml). Hydrocortisone also enhanced specific [125I]insulin binding in these cells. The data indicate that the mechanism(s) of glucocorticoid enhancement of two actions of insulin may be different.  相似文献   

15.
Glucocorticoids accelerate fetal lung maturation by acting on the fetal lung fibroblast to induce the synthesis of fibroblast-pneumonocyte factor which in turn stimulates pulmonary surfactant synthesis by the alveolar type II cell. We have studied the site of glucocorticoid regulation of fibroblast-pneumonocyte factor synthesis in primary cultures of fetal rat lung fibroblasts. Conditioned media from fetal rat lung fibroblasts exposed to cortisol stimulate [Me-3H]choline incorporation into saturated phosphatidylcholine by primary cultures of fetal rat lung alveolar type II cells. This effect is blocked by the presence of actinomycin D during the first, but not the second, 24 h of incubation of the fibroblasts with cortisol. Cycloheximide blocks this effect if present during either the first or second 24 h of incubation. We fractionated mRNA from fetal rat lung fibroblasts incubated in the presence or absence of dexamethasone and observed that cell-free translation products from a fraction of approximately 500 bases possess biological activity in the bioassay. Such activity is only present in cell-free translation products of mRNA isolated from fibroblasts treated with dexamethasone. These results suggest that glucocorticoids act at a pretranslational level to induce production of fibroblast-pneumonocyte factor and that the primary translation products are biologically active.  相似文献   

16.
The effects of platelet-derived growth factor (PDGF) on DNA synthesis and mRNA expression of osteoblast markers in marrow stromal cells derived from adult (6 months) and old (24 months) rats were examined. Treatment of stromal cells from adult rats with dexamethasone induced the appearance of osteoblast-like cells. PDGF partially also inhibited the differentiation of stromal cells induced by dexamethasone. In cultures of serum-starved stromal cells, PDGF stimulated [3H]-thymidine incorporation into DNA in a dose-dependent manner with a maximum stimulation of 15-fold at 500 ng/ml. By comparison, insulin-like growth factor (IGF-I) has a small effect on [3H] -thymidine incorporation. The effect of PDGF and IGF-I on DNA synthesis was additive. Treatment of the confluent stromal cells from adult rats with PDGF increased the mRNA level of osteopontin fourfold without any significant effect on alkaline phosphatase and type I collagen mRNAs. In contrast, dexamethasone stimulated the mRNA expression of alkaline phosphatase, type I collagen, and osteopontin 2.1-, 2.3-, and 14-fold, respectively. Addition of PDGF to dexamethasone-treated cells failed to induce any further increase in osteopontin expression whereas the expression of alkaline phosphatase and type I collagen was partially reduced. The expression of osteocalcin mRNA was negligible in stromal cells but stimulated several fold by dexamethasone and 1,25(OH)2D3. PDGF inhibited drastically the elevation of osteocalcin mRNA. In contrast, IGF-I stimulated type I collagen expression 100% without any appreciable effect on the expression of osteopontin and alkaline phosphatase. The stimulatory effect of PDGF on osteopontin expression was augmented by IGF-I. Furthermore, PDGF attenuated the stimulatory effect of IGF-I on type I collagen expression. The responses of cultured cells from old rats to growth factors were also examined. PDGF or PDGF plus IGF-I increased [3H]-thymidine incorporation in stromal cells from old rats but to a lesser extent. However, PDGF was equally effective in stimulating osteopontin expression in cells from both adult and old rats. We concluded that PDGF is a potent mitogen but that the response of stromal cells from old rats is impaired. In addition, PDGF stimulates osteopontin expression in stromal cells and this effect is not age dependent. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Administration of the glucocorticoid dexamethasone to adrenalectomized rats significantly decreased the serum zinc concentration within 14 hr. Dexamethasone did not detectably alter the liver zinc content, but markedly increased the proportion of zinc associated with liver metallothionein. The rate of incorporation of 35S-cystine into this protein was stimulated to a maximal extent 7 hr after administration of the glucocorticoid. Poly(A)+ mRNA from liver polysomes was isolated and translated in a cell-free protein synthesizing system. Nearly twice as much polysomal metallothionein mRNA was found 7 hr following treatment with dexamethasone. These results suggest that glucocorticoids can regulate the plasma zinc concentration by a process that is related to the biosynthesis of the hepatic zinc-binding protein, metallothionein.  相似文献   

18.
19.
The modulation of liver growth control by the tumor promoter, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was investigated in primary hepatocytes of adult rats. Under defined conditions in serum-free cultures, the interaction of TCDD with growth-related hormones was studied. TCDD-treatment of the cultured hepatocytes for two days caused a transient stimulation of both DNA synthesis and mitotic activity. This effect was maximal at the very low nontoxic concentration of 10–12 M TCDD, i.e., two orders of magnitude below the optinzal concentrations for induction of drug metabolizing enzymes. Growth stimuladon by TCDD was dependent on the presence of growth-related hormones; in primary rat hepatocytes, TCDD acted synergistically with insulin and epidermal growth factor (EGF) and antagonized the growth inhibition by dexamethasone. Under culture conditions allowing high rates of DNA synthesis, e.g., at low concentrations of dexamethasone, in the presence of EGF plus alphal-adrenergic agonists or rat serum, no significant effect of TCDD on cellular growth was observed. Furthermore, TCDD failed to stimulate DNA synthesis in a rat hepatoma cell line, H4IIE, which is less sensitive to growth controlling factors than normal hepatocytes. Therefore, the results suggest that the growth modulation of primary rat hepatocytes by TCDD is the most sensitive parameter of the agent thus far observed. This effect may involve both a release from the growth inhibition caused, for instance, by glucocorticoids, as well as a direct growth-stimulating effect, synergistic to the one induced by insulin.Abbreviations Ah aryl hydrocarbon - EGF epidermal growth factor - EROD 7-ethoxyresorufin-0-deethylase - 3HdT [3H]thymidine - TCB 3,4,3,4-tetrachlorobiphenyl - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

20.
The growth of DBA/2 mouse embryo fibroblasts, as well as their prostaglandin (PG) production, was compared under 3 different culture conditions: RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 2% Ultroser SF (steroid-free) or with 2% Ultroser G (containing steroids). The effect of the absence or presence of glucocorticoids on both parameters was more precisely investigated. In FBS-supplemented cultures, dexamethasone had a stimulatory effect on cells characterized by a slow growth rate, whereas it markedly inhibited proliferation in rapidly growing fibroblasts. The experiments carried out with serum substitutes (Ultroser SF and G) strongly corroborated the role of the absence or presence of glucocorticoids on fibroblast proliferation. Manipulations of glucocorticoid concentrations in Ultroser SF by adding 5 x 10(-8) M dexamethasone or in Ultroser G by adding 10(-6) M RU 486 reversed the effect of the absence of glucocorticoid in the first case, or in the latter case the effect of the presence of glucocorticoid on both cell growth and PG production. Progesterone had no effect by itself. Our results emphasize the importance of performing complete kinetic studies to investigate the effect of a given factor on cell proliferation in vitro, since glucocorticoids may have opposite effects on fibroblast proliferation according to their cell growth pattern in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号