首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite extensive study of sperm motility, little is known of the mechanism of mammalian sperm hyperactivation. Here we describe a novel method for preparation of rodent sperm flagella and use it to show a correlation between tyrosine phosphorylation of flagellar proteins and hyperactivation of hamster sperm. When hyperactivation was produced by a 3.5-h incubation in a medium supporting capacitation, four major tyrosine-phosphorylated peptides of 90-, 80-, 62-, and 48-kDa mass were detected in flagellar extracts. Incubation with calyculin A, an inhibitor of protein phosphatases 1 and 2A, produced hyperactivation within 40 min but only a single 80-kDa phosphotyrosine-containing flagellar component. Conversely, incubation with inhibitors of either protein kinase A (H8) or protein tyrosine kinase (tyrphostin 47) prevented both hyperactivation and the production of tyrosine-phosphorylated flagellar peptides. These results indicate a strong correlation of hyperactivation with the tyrosine phosphorylation of sperm flagellar peptides, and they strongly implicate an 80-kDa component as a major mediator of the mechanism that produces hyperactivated motility of hamster sperm.  相似文献   

2.
Evidence for the function of hyperactivated motility in sperm   总被引:3,自引:0,他引:3  
After insemination, mammalian sperm undergo a striking change in flagellar beat pattern, termed hyperactivation. In low-viscosity culture medium, nonhyperactivated sperm flagella generate relatively symmetrical, low-amplitude waves, while hyperactivated sperm flagella generate an asymetrical beating pattern that results in nonprogressive movement. Since sperm encounter highly viscous and viscoelastic fluids in the female reproductive tract, the progress of hyperactivated sperm was compared with that of nonhyperactivated and transitional sperm in media of increasing viscosity. Hamster sperm obtained from the caudal epididymis were incubated in a medium that promotes capacitation. After 0, 3, and 4 h of incubation, the majority of the sperm exhibited, respectively, activated, transitional, and hyperactivated motility. At each of these time points, aliquots of sperm were removed from incubation and added to solutions of 0, 5%, 10%, 20%, and 30% Ficoll in medium. Samples containing mostly hyperactivated sperm (4 h) maintained higher swimming and flagellar velocities and were able to generate greater forces in response to increased viscous loading than activated sperm (0 h). Transitional sperm (3 h) showed an intermediate response. The paths of hyperactivated sperm through solutions of 20% and 30% Ficoll were considerably straighter than those made through medium alone. This is the first demonstration that hyperactivation can confer a mechanical advantage upon sperm in the oviduct where they may encounter viscous oviductal fluid and a viscoelastic cumulus matrix.  相似文献   

3.
A cAMP-induced protein tyrosine phosphorylation and flagellar hyperactivation are controlled via complicated signaling cascades in mammalian spermatozoa. For instance, these events seem to be regulated positively by the PKA-mediated signaling and negatively by the PI3K/PDK1-mediated signaling. In this article, we have shown molecular changes of PKA and PDK1 in cAMP analog (cBiMPS)-treated boar spermatozoa in order to disclose possible roles of these kinases in protein tyrosine phosphorylation and hyperactivation. Ejaculated spermatozoa were incubated with cBiMPS, and then they were used for biochemical analyses of sperm kinases by Western blotting and indirect immunofluorescence and for assessment of flagellar movement. The first 30-min incubation with cBiMPS highly activated PKA of the principal piece to the accompaniment of autophosphorylation on Thr-197 of catalytic subunits. However, protein tyrosine phosphorylation and hyperactivation were fully induced in the sperm samples after the 180-min incubation. A potentially active form of PDK1 (54/55-kDa phospho-PDK1) was detected in the principal piece of the spermatozoa during the 90-min incubation. Another potentially active form (59-kDa phospho-PDK1) gradually increased during the same incubation period. However, the PDK1 suddenly became inactive by the dephosphorylation after the 180-min incubation, namely coincidently with full induction of protein tyrosine phosphorylation and hyperactivation. Additionally, existence of PI3K-dependently suppressing mechanisms for protein tyrosine phosphorylation was confirmed in the principal piece by pharmacological experiments with LY294002 and biochemical analyses with anti-PI3K p85 antibodies. These findings suggest that dephosphorylation of PDK1 may be a molecular switch for enhancement of protein tyrosine phosphorylation and flagellar hyperactivation in boar spermatozoa.  相似文献   

4.
Few spermatozoa were present in the ampullae of females 12 h after intravaginal artificial insemination (AI) when there was no ovulation-inducing stimulus. When ovulation was induced, sperm distributions in the female tract 12 h after AI did not differ from those observed 12 h after natural mating. The number of spermatozoa in the oviductal isthmus was similar in all 3 groups as was the percentage of isthmic spermatozoa exhibiting 'activated' motility. When fertile mating was delayed for 8 or 12 h after coitus with a vasectomized male (i.e. 2 h before or after ovulation), spermatozoa were not present in the ampulla 4 h later. The numbers of spermatozoa recovered from the cranial isthmus after delayed matings and 12 h after natural matings did not differ, but after delayed matings the motility of isthmic spermatozoa was non-progressive or poorly progressive and none exhibited 'activated' motility. Flagellar activity of isthmic spermatozoa recovered 4 h after delayed matings and after natural matings was similarly depressed. These observations indicate that sperm ascent to the tubal ampulla in the sustained phase of transport, though enhanced by ovulation, must also depend on changes in flagellar activity and a specific pattern of motility, both of which appear only after spermatozoa have resided for more than 4 h in the female tract.  相似文献   

5.
Chang H  Suarez SS 《Biology of reproduction》2012,86(5):140, 1-140, 8
In order to better understand how sperm movement is regulated in the oviduct, we mated wild-type female mice with Acr-EGFP males that produce sperm with fluorescent acrosomes. The fluorescence improved our ability to detect sperm within the oviduct. Oviducts were removed shortly before or after ovulation and placed in chambers on a warm microscope stage for video recording. Hyperactivated sperm in the isthmic reservoir detached frequently from the epithelium and then reattached. Unexpectedly, most sperm found in the ampulla remained bound to epithelium throughout the observation period of several minutes. In both regions, most sperm produced deep flagellar bends in the direction opposite the hook of the sperm head. This was unexpected, because mouse sperm incubated under capacitating conditions in vitro primarily hyperactivate by producing deep flagellar bends in the same direction as the hook of the head. In vitro, sperm that are treated with thimerosal to release Ca(2+) from internal stores produce deep anti-hook bends; however, physical factors such as viscous oviduct fluid could also have influenced bending in oviductal sperm. Some sperm detached from epithelium in both the ampulla and isthmus during strong contractions of the oviduct. Blockage of oviduct contractions with nicardipine, however, did not stop sperm from forming a storage reservoir in the isthmus or prevent sperm from reaching the ampulla. These observations indicate that sperm continue to bind to oviductal epithelium after they leave the isthmic reservoir and that sperm motility is crucial in the transport of sperm to the fertilization site.  相似文献   

6.
The transformation of hamster sperm motility during capacitation in vitro and during maturation in the caudal epididymis was analyzed and compared using videomicrography. Sperm recovered from the distal portion of the caudal epididymis, as well as ejaculated sperm recovered from the uterus exhibited low amplitude, planar flagellar beating. By 3 hr of incubation under capacitating conditions, the caudal epididymal sperm were swimming in helical patterns apparently produced by significantly increased acuteness of flagellar bending and by torsion seen as abrupt, periodic turning of the head. By 4 hr, most sperm were hyperactivated, swimming in circles resulting from asymmetrical, planar flagellar bending that was significantly more acute than the preceding patterns. When motility parameters of fresh sperm were compared with those of sperm swimming in the transitional helical pattern and with hyperactivated sperm, transitional sperm had significantly higher net and average path velocities than the others, indicating that they covered space at the greatest rate. This suggests that the transitional phase plays an important role in sperm transport. Sperm recovered from the proximal region of the caudal epididymis, near the corpus, swam in either the helical or hyperactivated patterns, or a mixture of the two. The means of their flagellar curvature ratios and linear indices were intermediate between helical and hyperactivated mean values. Thus, sperm undergoing final maturation in the caudal epididymis reverse the pattern of development of hyperactivation. Also, the development of hyperactivated motility must therefore entail induction of a preexisting potential for flagellar movement, rather than a maturational process.  相似文献   

7.
Protein phosphorylation and dephosphorylation are believed to play key roles in regulation of sperm motility. Here we examine the effect of temperature on hamster sperm motility and protein tyrosine phosphorylation status. As in previous work, a decrease from 37 degrees C to 22 degrees C caused loss of hyperactivated motility. We now find that cooling also produces a dephosphorylation of several 48-80-kDa flagellar peptides. A return to 37 degrees C restored hyperactivation but resulted in rephosphorylation of only an 80-kDa protein. Conversely, hyperactivation and phosphorylation of the 80-kDa component were insensitive to incubation temperature for sperm incubated with the protein phosphatase inhibitor, calyculin A, or for sperm demembranated by detergent extraction. These results strongly indicate that the temperature-sensitive tyrosine phosphorylation status of an 80-kDa sperm flagellar peptide explains the sensitivity of hyperactivation to temperature.  相似文献   

8.
An intracellular cAMP-PKA signaling plays a pivotal role in the expression of fertilizing ability in mammalian spermatozoa. The aim of this study is to disclose biological function of serine/threonine protein kinases that are activated by the action of the cAMP-PKA signaling in boar spermatozoa. Ejaculated spermatozoa were incubated with cBiMPS (a cell-permeable cAMP analog) at 38.5 degrees C up to 180 min, and then they were used for biochemical analyses of PKCs by Western blotting and indirect immunofluorescence and for assessment of flagellar movement. The incubation of spermatozoa with cBiMPS gradually activated PKCs in the connecting piece. The activation of sperm PKCs was accompanied with changes of their electrophoretic mobility by the PKA-mediated serine/threonine phosphorylation. In coincidence with the PKC activation, the cBiMPS-incubated spermatozoa were capable of exhibiting hyperactivation of flagellar movement. Moreover, the cBiMPS-induced hyperactivation was dramatically suppressed by the addition of either of specific PKC inhibitors (Ro-32-0432 and bisindolylmaleimide I) to the sperm suspensions. On the other hand, experiments using a calcium-deficient medium showed that the cBiMPS-induced hyperactivation of flagellar movement and activation of PKCs required the extracellular calcium. Based on the obtained data, we have concluded that a cAMP-PKA signaling can induce activation of calcium-sensitive PKCs that is leading to the hyperactivation of flagellar movement in boar spermatozoa. Moreover, the cAMP may have a unique role as the up-regulator of PKCs during the expression of fertilizing ability in boar spermatozoa.  相似文献   

9.
The aim of this study was to elucidate the relationship between protein tyrosine phosphorylation state and sperm characteristics in frozen‐stored spermatozoa of Japanese Black bulls. The spermatozoa were washed with PBS containing polyvinyl alcohol and then incubated with cell‐permeable cAMP analog cBiMPS to induce flagellar hyperactivation. Before and after incubation, the spermatozoa were used for immunodetection of tyrosine‐phosphorylated proteins, assessment of morphological acrosome condition and evaluation of motility. In bulls whose frozen‐stored spermatozoa were classified as having a high‐grade acrosome condition before incubation, sperm tyrosine‐phosphorylated proteins, including the 33‐kDa tyrosine‐phosphorylated SPACA1 protein, were localized in the anterior region of the acrosome and equatorial subsegment. The immunodetection level of the 41‐ and 33‐kDa sperm tyrosine‐phosphorylated proteins in the Western blots and the immunofluorescence of tyrosine‐phosphorylated proteins and SPACA1 proteins in the anterior region of the sperm acrosome were lower in bulls whose frozen‐stored sperm were classified as having a low‐grade acrosome condition. On the other hand, after incubation with cBiMPS, immunodetection levels of at least 10 tyrosine‐phosphorylated proteins increased in the connecting and principal pieces of spermatozoa, coincident with the induction of flagellar hyperactivation. Many of the spermatozoa also exhibited detection patterns similar to those of boar hyperactivated spermatozoa. These results are consistent with the suggestion that immunodetection levels of tyrosine‐phosphorylated proteins are valid markers that can predict the level of tolerance to frozen storage and the potential to undergo cAMP‐dependent hyperactivation for the spermatozoa of individual Japanese Black bulls. Mol. Reprod. Dev. 77:910–921, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
The purposes of this study were to demonstrate the localization of spermatozoa in the reproductive tract of female domestic cats before (30 min and 3 h after mating) and after ovulation (48 and 96 h after mating), and to evaluate the efficiency of two techniques for studying sperm distribution. Estrus was induced in twenty-four female cats using 100 IU eCG and the females were divided into four groups with six females per group. The same male cat was used for mating with all the females. One group of six females was mated once; the others were mated four times in 1 h. Ovariohysterectomy was performed at 30 min, 3 h, 48 h, and 96 h after mating and the excised reproductive tracts were divided into seven segments on each side: infundibulum, ampulla, isthmus, uterotubal junction (UTJ), cranial and caudal uterine horn, and uterine body. The vagina and the lumina of the segments from one side were flushed with 0.5 ml PBS. The flushed and the non-flushed segments from the contralateral side were then fixed in 3% neutral buffered formalin and processed for routine histology. The numbers of spermatozoa in the flushings and in 40 histological sections from each segment were counted. Before ovulation, the majority of spermatozoa was detected in the vagina and the uterine segments, whereas after ovulation, significantly higher numbers of spermatozoa were present in the uterine tubal segments. The decreasing gradient in sperm numbers at 30 min and 3 h after mating between the vagina, the uterine segments, including the UTJ, and the uterine tubal segments indicated that the cervix and the UTJ served as barriers for sperm transport in the cat. The UTJ and the uterine crypts acted as sperm reservoirs before ovulation whereas the isthmus was a sperm reservoir around the time of ovulation. There was no difference in sperm numbers in the tissue sections between flushed and non-flushed segments, implying that the flushing technique only recovered some intraluminal spermatozoa while most of the spermatozoa remained in the epithelial crypts. This was further supported by the finding that significantly higher numbers of spermatozoa were recovered in the flushings at 30 min and 3 h after mating, when more spermatozoa were free in the lumina, than at 48 and 96 h after mating, when the majority of the spermatozoa were entrapped in the uterine epithelial crypts.  相似文献   

11.
Hyperactivated sperm motility is characterized by high-amplitude and asymmetrical flagellar beating that assists sperm in penetrating the oocyte zona pellucida. Other functional changes in sperm, such as activation of motility and capacitation, involve cross talk between the cAMP/PKA and tyrosine kinase/phosphatase signaling pathways. Our objective was to determine the role of the cAMP/protein kinase A (PKA) signaling pathway in hyperactivation. Western blot analyses of detergent extracts of whole sperm and flagella were performed using antiphosphotyrosine antibody. Bull sperm capacitated by 10 microg/ml heparin and/or 1 mM dibutyryl-cAMP plus 100 microM 3-isobutyl-1-methylxanthine exhibited increased protein tyrosine phosphorylation without becoming hyperactivated. Procaine (5 mM) or caffeine (10 mM) immediately induced hyperactivation in nearly 100% of motile sperm but did not increase protein tyrosine phosphorylation. After 4 h of incubation with caffeine, sperm expressed capacitation-associated protein tyrosine phosphorylation but hyperactivation was significantly reduced. Sperm initially hyperactivated by procaine or caffeine remained hyperactivated for at least 4 h in the presence of Rp-cAMPS (cAMP antagonist) or PKA inhibitors H-89 or H-8. Pretreatment with inhibitors also failed to block induction of hyperactivation; however, the inhibitors did block protein tyrosine phosphorylation when sperm were incubated with capacitating agents, thereby verifying inhibition of the cAMP/PKA pathway. While induction of hyperactivation did not depend on cAMP/PKA, it did require extracellular Ca(2+). These findings indicate that hyperactivation is mediated by a Ca(2+) signaling pathway that is separate or divergent from the pathway associated with acquisition of acrosomal responsiveness and does not involve protein tyrosine phosphorylation downstream of the actions of procaine or caffeine.  相似文献   

12.
Female hamsters were mated shortly after the onset of oestrus or immediately after ovulation. At various times after mating, spermatozoa were flushed from the isthmus of the oviduct using a modified Tyrode's medium supplemented with 20% hamster serum. Cumulus oophorus-free eggs were introduced into the suspensions of isthmic spermatozoa. Some eggs were removed every 30 min and examined for evidence of fertilization. For females mated shortly after the onset of oestrus, spermatozoa recovered from the oviducts 8 h after mating (about 1.5 h after ovulation) could penetrate eggs within 30 min and were considered fully capacitated. When spermatozoa were recovered at earlier times (1, 2, 4 and 6 h after mating) they required additional time (2, 1.5, 1 and 1 h respectively) in vitro before penetrating eggs. Therefore, when mating occurs shortly after the onset of oestrus, spermatozoa in the oviduct do not appear to become fully capacitated until about the time of ovulation. For females mated immediately after ovulation, spermatozoa recovered from the oviducts at 4 h after mating could penetrate eggs within 30 min. Spermatozoa recovered at 1 and 3 h after mating required 2 and 1 h respectively in vitro before penetrating eggs. These results suggest that sperm capacitation proceeds at a faster rate when mating occurs after ovulation.  相似文献   

13.
The mouse is an established and popular animal model for studying reproductive biology. Epididymal mouse sperm, which lack exposure to secretions of male accessory glands and do not precisely represent ejaculated sperm for the study of sperm functions, have been almost exclusively used in studies. We compared ejaculated and epididymal sperm in an in vitro fertilization setting to examine whether ejaculated sperm enter cumulus-oocyte complexes more efficiently. In order to prepare sperm for fertilization, they were incubated under capacitating conditions. At the outset of incubation, ejaculated sperm stuck to the glass surfaces of slides and the incidences of sticking decreased with time; whereas, very few epididymal sperm stuck to glass at any time point, indicating differences in surface charge. At the end of the capacitating incubation, when sperm were added to cumulus-oocyte complexes, the form of flagellar movement differed dramatically; specifically, ejaculated sperm predominantly exhibited increased bending on one side of the flagellum (a process termed pro-hook hyperactivation), while epididymal sperm equally exhibited increased bending on one or the other side of the flagellum (pro-hook or anti-hook hyperactivation). This indicates that accessory sex gland secretions might have modified Ca2+ signaling activities in sperm, because the two forms of hyperactivation are reported to be triggered by different Ca2+ signaling patterns. Lastly, over time, more ejaculated than epididymal sperm entered the cumulus oocyte complexes. We concluded that modification of sperm by male accessory gland secretions affects the behavior of ejaculated sperm, possibly providing them with an advantage over epididymal sperm for reaching the eggs in vivo.  相似文献   

14.
The reversibility of hyperactivated motility was tested in caudal epididymal mouse sperm by treating them with 1 microM calcium ionophore A23187 in dimethyl sulfoxide (DMSO), followed 2 min later by the addition of medium containing high levels of bovine serum albumin (BSA) (final concentrations: 0.5 microM A23187, 22 mg/ml BSA). Controls received DMSO alone, followed by BSA. Immediately following treatment with A23187, motility was weak and vibratory. Two minutes after the addition of high levels of BSA, motility was hyperactivated, as determined by videotape analysis of linearity of trajectory and acuteness of flagellar bending. Ten minutes after the addition, the movement pattern returned to that of fresh, uncapacitated epididymal sperm. Control sperm retained the linear swimming pattern of fresh caudal epididymal sperm during the 10 min of observation. Ninety minutes later, however, both control and treated sperm became hyperactivated. The percentage of motile sperm was not affected by treatment or time. Thus, ionophore-induced hyperactivation is reversible and does not interfere with the normal development of hyperactivation during incubation under capacitating conditions in vitro.  相似文献   

15.
Hyperactivated sperm progress in the mouse oviduct.   总被引:3,自引:0,他引:3  
Sperm from naturally mated mice were observed and videotaped moving within mouse oviducts. The typical pattern of sperm progress involved intermittently breaking free and swimming a short distance, then reattaching to the epithelium. The proportion of sperm that swam freely (were not attached to the epithelium) was calculated and analyzed for effects of oviductal region, ovulation status, and sperm location relative to the lumen. A significantly higher proportion of sperm were free in the ampulla than in the isthmus (26.3% +/- 0.8% vs. 11.8% +/- 1.0%; p less than 0.0001) and in post-ovulatory than pre-ovulatory (16.2% +/- 2.0% vs. 10.6% +/- 1.6%; p less than 0.05) oviducts. Flagellar curvature ratio values showed that free sperm (0.716 +/- 0.024) had more sharply curved tails than stuck sperm (0.782 +/- 0.013). While this difference is significant (p = 0.01), the effect of attachment status interacted significantly (p less than 0.05) with the oviductal region such that there was a greater difference in the isthmus than in the ampulla. Only sperm using the more curved tail beats of hyperactivation were seen to break free from the epithelium and to progress along the oviduct. These results indicate that hyperactivation plays a role in moving sperm out of the isthmic reservoir and to the site of fertilization.  相似文献   

16.
Changes in human sperm motion during capacitation in vitro   总被引:2,自引:0,他引:2  
Spermatozoa from 10 fertile donors and from 10 patients with infertile marriages were washed and centrifuged (time zero, T0), and incubated in vitro in capacitation media for 6 h (T6), or 24 h (T24). At each time individual spermatozoa were classified as being morphologically normal or abnormal, and their movement characteristics were determined using high-speed videomicrography. Zona-free hamster oocytes were added to the T24 sperm suspensions. At all times, morphologically normal spermatozoa from donors and patients swam faster and had greater rolling frequency, flagellar beat frequency and amplitude than did abnormally shaped cells. Morphologically normal spermatozoa from donors exhibited a significant change in their movement pattern at T6. This change, which resembles hyperactivation in other species, was characterized by higher values of amplitude of lateral head displacement, and lower values of linearity, beat frequency and flagellar curvature ratio. In contrast, normal spermatozoa from patients showed only a decrease in straight line velocity at T6, with no other significant changes in movement characteristics. No changes in sperm movement could be demonstrated for the abnormal cells in either group of subjects. In sperm suspensions from donors and patients examined at T24, sperm vigour declined regardless of the morphological type. Spermatozoa from all 10 donors were able to penetrate the zona-free hamster oocytes, but spermatozoa from 5 of the 10 patients failed to penetrate oocytes. Correlations between hamster oocyte penetration and indicators of sperm vigour were demonstrated only for spermatozoa of patients.  相似文献   

17.
Hyperactivated motility is observed among sperm in the mammalian oviduct near the time of ovulation. It is characterized by high-amplitude, asymmetrical flagellar beating and assists sperm in penetrating the cumulus oophorus and zona pellucida. Elevated intracellular Ca2+ is required for the initiation of hyperactivated motility, suggesting that calmodulin (CALM) and Ca2+/CALM-stimulated pathways are involved. A demembranated sperm model was used to investigate the role of CALM in promoting hyperactivation. Ejaculated bovine sperm were demembranated and immobilized by brief exposure to Triton X-100. Motility was restored by addition of reactivation medium containing MgATP and Ca2+, and hyperactivation was observed as free Ca2+ was increased from 50 nM to 1 microM. However, when 2.5 mM Ca2+ was added to the demembranation medium to extract flagellar CALM, motility was not reactivated unless exogenous CALM was readded. The inclusion of anti-CALM IgG in the reactivation medium reduced the proportion hyperactivated in 1 microM Ca2+ to 5%. Neither control IgG, the CALM antagonist W-7, nor a peptide directed against the CALM-binding domain of myosin light chain kinase (MYLK2) inhibited hyperactivation. However, when sperm were reactivated in the presence of CALM kinase II (CAMK2) inhibiting peptides, hyperactivation was reduced by 75%. Furthermore, an inhibitor of CAMK2, KN-93, inhibited hyperactivation without impairing normal motility of intact sperm. CALM and CAMK2 were immunolocalized to the acrosomal region and flagellum. These results indicate that hyperactivation is stimulated by a Ca2+/CALM pathway involving CAMK2.  相似文献   

18.
Hyperactivated motility, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization in vivo. It is characterized by high-amplitude flagellar waves and, usually, highly asymmetrical flagellar beating. It had been suggested, but not tested, that Ca2+ and cAMP switch on hyperactivation by directly affecting the flagellar axoneme. In this study, the direct affects of these agents on the axoneme were tested by using detergent-demembranated bull sperm. As confirmed by TEM, treatment of sperm with 0.2% Triton X-100 disrupted the plasma, acrosomal, and inner mitochondrial membranes, leaving axonemes intact. In the presence of 2 mM ATP, the percentage of reactivated sperm that were hyperactivated increased to 80% when free Ca2+ was increased from 50 to 400 nM. The effect of the Ca2+ in this range was to increase beat asymmetry by increasing the curvature of the principal bend. No additional increases were observed above 400 nM free Ca2+, but motility was suppressed at 1 mM. The ability of Ca2+ to produce hyperactivation depended on ATP availability, such that more ATP was required to produce the high amplitude flagellar bends characteristic of hyperactivated motility than to produce activated motility. Cyclic AMP was not required for reactivation, nor for hyperactivation. Production of hyperactivated motility also required an alkaline environment (pH 7.9-8.5). These results suggest that, provided sufficient ATP is present and pH is sufficiently alkaline, Ca2+ switches on hyperactivation by enabling curvature of the principal bends to increase.  相似文献   

19.
Immotile spermatozoa from the caput epididymidis become progressively motile when incubated in medium containing theophylline, seminal plasma, and albumin. We previously reported that under these incubation conditions the spermatozoa induced to acquire motility exhibited a marked flagellar angularity, with the sperm head or midpiece bent 90-180 degrees towards the tail. In addition, we demonstrated that sperm flagellar bending did not occur when the sulfhydryl oxidant diamide was added to the motility induction medium. In the present study, we examined further the effect of sulfhydryl oxidation on the morphology and sulfhydryl content of immature caput spermatozoa induced to acquire motility in vitro. We found that flagellar bending was prevented and sperm flagellar straightness was maintained in a dose-dependent manner by diamide. Moreover, flow cytometric analysis of caput sperm sulfhydryls using the sulfhydryl reagent monobromobimane (mBBr) revealed that 1) diamide oxidizes caput sperm sulfhydryls, and 2) less than 15% of the total reactive sperm sulfhydryls were oxidized at diamide concentrations capable of preventing sperm angulation. Sodium tetrathionate (NaTT), another sulfhydryl oxidant, and hamster cauda epididymal fluid (CEF) containing sulfhydryl oxidase enzyme activity also maintained flagellar straightness in induced caput spermatozoa and oxidized sperm sulfhydryls. The flagellar straightness in caput spermatozoa treated with sulfhydryl oxidants, however, was temporary; with extended incubation, diamide- or CEF-treated spermatozoa exhibited flagellar bending. Additional studies showed that the flagellar straightness observed in sulfhydryl-oxidized spermatozoa was sustained when nitrofurantoin, an inhibitor of glutathione reductase, was included in the induction medium. Flow cytometric analysis of nitrofurantoin-treated spermatozoa showed that nitrofurantoin maintained the sperm disulfides formed by diamide and prevented the reduction of sperm disulfides back to sulfhydryls. Taken together, these studies demonstrate the significance of sulfhydryl oxidation in maintaining the morphology of immature caput epididymal spermatozoa induced to acquire motility in vitro and suggest that sulfhydryl oxidation may be important in the development of motility during sperm epididymal maturation in vivo.  相似文献   

20.
Proteolytic enzymes appear to have an essential role in multiple phases of mammalian fertilization. Several observations suggest that the plasminogen activator/plasmin system might also play a role in mammalian fertilization. Movement characteristics of bovine sperm incubated with different concentrations of plasmin were investigated using a computer-assisted automated semen analysis system. Sperm were incubated up to 4h in a modified Tyrode's medium (control) and 0.1, 1, 10 and 100 mU/ml of plasmin. The percentage motile sperm was significantly higher at 0 h for sperm incubated in 1, 10, and 100 mU of plasmin. Relative to sperm incubated in control medium, lateral head displacement (ALH), curvilinear velocity, beat cross frequency, path velocity and straight line velocity (VSL) of sperm treated with 100 mU of plasmin for 0 h were increased. After 2h of incubation, sperm treated with 100 mU of plasmin showed an increase in ALH, but a decrease in VSL, straightness and linearity. The effect of plasmin on most motility parameters appears to be direct since all these parameters were affected at 0 h of incubation. Our results support the notion of hyperactivation of bovine spermatozoa following incubation with different concentrations of plasmin. The present work provides additional information to further characterize motility movement of bovine sperm associated with final preparation for fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号