首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Phosphomevalonate kinase and 5-pyrophosphomevalonate decarboxylase have been purified from the freeze-dried latex serum of the commercial rubber tree Hevea brasiliensis. 2. The phosphomevalonate kinase was acid- and heat-labile and required the presence of a thiol to maintain activity. 3. The 5-pyrophosphomevalonate decarboxylase was relatively acid-stable and more heat-stable than the phosphokinase. 4. Maximum activity of the phosphokinase was achieved at pH 7.2 with 0.2mm-5-phosphomevalonate (Km 0.042mm), 2.0mm-ATP (Km 0.19mm) and 8mm-Mg2+ at 40°C. The apparent activation energy was 14.8kcal/mol. 5. Maximum activity of 5-pyrophosphomevalonate decarboxylase was achieved at pH5.5–6.5 with 0.1mm-5-pyrophosphomevalonate (Km 0.004mm), 1.5mm-ATP (Km 0.12mm) and 2mm-Mg2+. The apparent activation energy was 13.7kcal/mol. The enzyme was somewhat sensitive to inhibition by its products, isopentenyl pyrophosphate and ADP.  相似文献   

2.
1. Cerebral-cortex mitochondria, after purification by using high-density sucrose solutions, were extracted with Triton X-100. The total hexokinase activity of the intact mitochondria was increased by 50–80% in the Triton extracts. 2. Triton X-100 was removed from mitochondrial extracts by a combination of ammonium sulphate fractionation and DEAE-cellulose chromatography. Mitochondrial hexokinase remained soluble after removal of extractant. 3. The behaviour of solubilized mitochondrial hexokinase was compared with soluble cytoplasmic hexokinase from the same samples of cerebral cortex on identical columns of DEAE-cellulose. Two peaks were eluted from each source of hexokinase. The distribution between hexokinase peaks was similar for the two sources. Peak I (approx. 80% of the total hexokinase) from each was eluted at identical concentrations of potassium chloride and slight differences were observed in the elution profiles for peak II. 4. The purified mitochondrial hexokinase showed the following kinetic properties: peak I, Km(ATP) 0.60mm, Km(glucose) 0.042mm; peak II, Km(ATP) 0.66mm, Km(glucose) 0.043mm. The purified cytoplasmic hexokinase Michaelis constants were: peak I, Km(ATP) 0.56mm, Km(glucose) 0.048mm; peak II, Km(ATP) 0.68mm, Km(glucose) 0.062mm. 5. Although no significant differences between mitochondrial and cytoplasmic hexokinases were noted in chromatographic behaviour or in the kinetic properties studied, the purified mitochondrial enzyme was activated slightly (approx. 20%) by Triton X-100, in contrast with the cytoplasmic enzyme, which was not affected. 6. The results, taken to indicate basic similarity between mitochondrial and cytoplasmic hexokinases, are discussed in relation to the role of the two sources of enzyme in the metabolism of the tissue.  相似文献   

3.
l-Glutamine d-fructose 6-phosphate amidotransferase (EC 2.6.1.16) was extracted and purified 600-fold by acetone fractionation and diethylaminoethyl cellulose column chromatography from mung bean seeds (Phaseolus aureus). The partially purified enzyme was highly specific for l-glutamine as an amide nitrogen donor, and l-asparagine could not replace it. The enzyme showed a pH optimum in the range of 6.2 to 6.7 in phosphate buffer. Km values of 3.8 mm and 0.5 mm were obtained for d-fructose 6-phosphate and l-glutamine, respectively. The enzyme was competitively inhibited with respect to d-fructose 6-phosphate by uridine diphosphate-N-acetyl-d-glucosamine which had a Ki value of 13 μm. Upon removal of l-glutamine and its replacement by d-fructose 6-phosphate and storage over liquid nitrogen, the enzyme was completely desensitized to inhibition by uridine diphosphate-N-acetyl-d-glucosamine. This indicates that the inhibitor site is distinct from the catalytic site and that uridine diphosphate-N-acetyl-d-glucosamine acts as a feedback inhibitor of the enzyme.  相似文献   

4.
1. Human uterine cervical stroma was found to contain a Ca2+-independent neutral proteinase against casein and N-benzoyl-dl-arginine p-nitroanilide (Bz-dl-Arg-Nan). This enzyme was tightly bound to an insoluble material (20000g pellet) and was solubilized by high concentrations of NaCl or KCl. High concentrations of them in the reaction system, however, inhibited reversibly the activity of this enzyme. 2. The neutral proteinase was partially purified by extraction with NaCl, gel filtration on Sephadex G-200 and affinity chromatography on casein–Sepharose. 3. The optimal pH of this partially purified enzyme was 7.4–8.0 against casein and Bz-dl-Arg-Nan. The molecular weight of the enzyme was found to be about 1.4×105 by gel filtration on Sephadex G-200. 4. The enzyme was significantly inhibited by di-isopropyl phosphorofluoridate (0.1mm). High concentration of phenylmethanesulphonyl fluoride (5mm), 7-amino-1-chloro-3-l-tosylamidoheptan-2-one (0.5mm), antipain (10μm) or leupeptin (10μm) was also found to be inhibitory, but chymostatin (40μg/ml), soya-bean trypsin inhibitor (2.5mg/ml), human plasma (10%, v/v), p-chloromercuribenzoate (1mm), EDTA (10mm) and 1-chloro-4-phenyl-3-l-tosylamidobutan-2-one (1mm) had no effect on the enzyme. 5. The neutral proteinase hydrolysed casein, Bz-dl-Arg-Nan and heat-denatured collagen, but was inactive towards native collagen and several synthetic substrates, such as 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg, 3-carboxypropionyl-Ala-Ala-Ala p-nitroanilide and 2,4-dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-d-Arg, and also proteoglycan. The enzyme did not act as a plasminogen activator. 6. These properties suggested that a neutral proteinase in the human uterine cervix was different from enzymes previously reported.  相似文献   

5.
Ribulose 1,5-diphosphate carboxylase, when activated by preincubation with 10 mm MgCl2 and 1 mm bicarbonate in the absence of ribulose 1,5-diphosphate, can be further activated about 170% with 0.5 mm NADPH present in the preincubation mixture. NADP+, NADH, and NAD+ are ineffective. The activation by NADPH is comparable to that previously seen with 0.05 to 0.10 mm 6-phosphogluconate in that these specific preincubation conditions are required, but the effects of NADPH and 6-phosphogluconate are not additive. Moreover, where higher concentrations of 6-phosphogluconate inhibited the enzyme, higher concentrations of NADPH give a greater activation, saturating at about 1 mm and 200%. Under the specified conditions of preincubation, fructose 1,6-diphosphate has an activation curve similar to that of 6-phosphogluconate, peaking at 0.1 mm and 70%. Above this level, activation decreases, and inhibition is seen at still higher concentrations. Other metabolites tested produced smaller or no effects on the enzyme activity assayed under these conditions. When either reduced NADP or 6-phosphogluconate are present in the preincubation mixture, it becomes possible to determine the Km for bicarbonate using a Lineweaver-Burk plot, and the Km for bicarbonate under these conditions is 2.8 mm, corresponding to 0.3% CO2 at pH 7.8 and 25 C.  相似文献   

6.
Davis B  Merrett MJ 《Plant physiology》1973,51(6):1127-1132
Sucrose density gradient centrifugation of broken cell suspensions of autotrophically grown Euglena gracilis Klebs. has allowed the separation of chloroplasts, mitochondria, and peroxisomes. Chlorophyll was taken as a marker for chloroplasts, fumarase and succinate dehydrogenase for mitochondria, and glycolate oxidoreductase for peroxisomes. Peaks of malate dehydrogenase (l-malate-NAD oxidoreductase, EC 1.1.1.37) activity were found in the mitochondrial and peroxisomal fractions. Acrylamide gel electrophoresis showed specific isoenzymes in the mitochondrial and peroxisomal fractions and a third isoenzyme in the supernatant. The mitochondrial isoenzyme which had a Km (oxaloacetate) of 30μm was inhibited by oxaloacetate concentrations above 0.17 mm, an inhibition of 50% being given by 0.9 mm oxaloacetate. The peroxisomal isoenzyme had a Km (oxaloacetate) of 24 μm, was inhibited by oxaloacetate concentrations above 0.13 mm, 50% inhibition being given by 0.25 mm oxaloacetate. Malate dehydrogenase activity in the supernatant did not show inhibition by increasing oxaloacetate concentration, the Km (oxaloacetate) being 91 μm.  相似文献   

7.
Nonreversible d-Glyceraldehyde 3-Phosphate Dehydrogenase of Plant Tissues   总被引:6,自引:6,他引:0  
Kelly GJ  Gibbs M 《Plant physiology》1973,52(2):111-118
Preparations of TPN-linked nonreversible d-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.9), free of TPN-linked reversible d-glyceraldehyde 3-phosphate dehydrogenase, have been obtained from green shoots, etiolated shoots, and cotyledons of pea (Pisum sativum), cotyledons of peanut (Arachis hypogea), and leaves of maize (Zea mays). The properties of the enzyme were similar from each of these sources: the Km values for d-glyceraldehyde 3-phosphate and TPN were about 20 μm and 3 μm, respectively. The enzyme activity was inhibited by l-glyceraldehyde 3-phosphate, d-erythrose 4-phosphate, and phosphohydroxypyruvate. Activity was found predominantly in photosynthetic and gluconeogenic tissues of higher plants. A light-induced, phytochrome-mediated increase of enzyme activity in a photosynthetic tissue (pea shoots) was demonstrated. Appearance of enzyme activity in a gluconeogenic tissue (endosperm of castor bean, Ricinus communis) coincided with the conversion of fat to carbohydrate during germination. In photosynthetic tissue, the enzyme is located outside the chloroplast, and at in vivo levels of triose-phosphates and pyridine nucleotides, the activity is probably greater than that of DPN-linked reversible d-glyceraldehyde 3-phosphate dehydrogenase. Several possible roles for the enzyme in plant carbohydrate metabolism are considered.  相似文献   

8.
1. The hormonal control of glycogen breakdown was studied in hepatocytes isolated from livers of fed rats. 2. Glucose release was stimulated by [8-arginine]vasopressin (10pm–10nm), oxytocin (1nm–1μm), and angiotensin II (1nm–0.1μm). These responses are all at least as sensitive to hormone as is glucose output in the perfused rat liver. 3. The effect of these three hormones on glucose release was critically dependent on extracellular Ca2+, unlike that of glucagon. Half-maximal restoration of the vasopressin response occurred if 0.3mm-Ca2+ was added back to the incubation medium. 4. Glycogen breakdown was more than sufficient to account for the glucose released into the medium, in the absence or presence of hormones. Lactate release by hepatocytes was not affected by vasopressin, but was inhibited by glucagon. 5. If Ca2+ was omitted from the extracellular medium, vasopressin stimulated glycogenolysis, but not glucose release. 6. The phosphorylase a content of hepatocytes was increased by vasopressin, oxytocin and angiotensin II; minimum effective concentrations were 0.1pm, 0.1nm and 10pm respectively. This response was also dependent on Ca2+. 7. These results demonstrate that hepatocytes can respond to low concentrations of vasopressin and angiotensin II, i.e. these effects are likely to be relevant in the intact animal. The role of extracellular Ca2+ in the effects of these hormones on hepatic glycogenolysis and glucose release is discussed.  相似文献   

9.
Uridine diphosphate (UDP)-glucose 4-epimerase (EC 5.1.3.2) has been purified over 1000-fold from extracts of wheat germ by MnCl2 treatment, (NH4)2SO4 fractionation, Sephadex column chromatography, and adsorption onto and elution from calcium phosphate gel. The enzyme has a pH optimum of 9.0. Km values are 0.1 mm for UDP-d-galactose and 0.2 mm for UDP-d-glucose. NAD is required for activity; Ka = 0.04 mm. NADH is an inhibitor strictly competitive with NAD; Ki = 2 μm. Wheat germ also contains UDP-l-arabinose 4-epimerase (EC 5.1.3.5) and thymidine diphosphate (TDP)-glucose 4-epimerase which are distinct from UDP-glucose 4-epimerase.  相似文献   

10.
The nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (l-glutamate:NAD+ oxidoreductase, EC 1.4.1.2) of Chlorella sorokiniana was purified 1,000-fold to electrophoretic homogeneity. The native enzyme was shown to have a molecular weight of 180,000 and to be composed of four identical subunits with a molecular weight of 45,000. The N-terminal amino acid was determined to be lysine. The pH optima for the aminating and deaminating reactions were approximately 8 and 9, respectively. The Km values for α-ketoglutarate, NADH, NH4+, NAD+, and l-glutamate were 2 mm, 0.15 mm, 40 mm, 0.15 mm, and 60 mm, respectively. Whereas the Km for α-ketoglutarate and l-glutamate increased 10-fold, 1 pH unit above or below the pH optima for the aminating or deaminating reactions, respectively, the Km values for NADH and NAD+ were independent of change in pH from 7 to 9.6. By initial velocity, product inhibition, and equilibrium substrate exchange studies, the kinetic mechanism of enzyme was shown to be consistent with a bi uni uni uni ping-pong addition sequence. Although this kinetic mechanism differs from that reported for any other glutamate dehydrogenase, the chemical mechanism still appears to involve the formation of a Schiff base between α-ketoglutarate and an ε-amino group of a lysine residue in the enzyme. The physical, chemical, and kinetic properties of this enzyme differ greatly from those reported for the NH4+-inducible glutamate dehydrogenase in this organism.  相似文献   

11.
Two major peaks of RNA polymerase activity have been routinely separated by diethylaminoethyl cellulose chromatography following solubilization from soybean (Glycine max L. var. Wayne) chromatin. The relative amounts of these two peaks depend upon the manner in which the chromatin is purified. Pelleting the chromatin through dense sucrose solutions results in not only a loss of total solubilized RNA polymerase activity but also a selective loss of the α-amanitin-sensitive form of the enzyme. Peak I elutes from a diethylaminoethyl cellulose column at a KCl concentration of approximately 0.27 m, is insensitive to α-amanitin and rifamycin, and has Mg2+ + Mn2+ optima of 5 mm and 1.25 mm, respectively. The enzyme is inhibited by KCl concentrations of about 0.03 m or greater. Peak II elutes from the column at a KCl concentration of approximately 0.35 m, is sensitive to α-amanitin, insensitive to rifamycin, and has Mg2+ + Mn2+ optima of 2 mm and 1.0 mm, respectively. Activity is inhibited by KCl concentrations of about 0.06 m or greater. Both enzymes prefer denatured calf thymus DNA, but peak II exhibits a stronger preference.  相似文献   

12.
Rhythmic leaflet movement in Albizzia is controlled by rhythmic K+ flux in pulvinal motor cells. The angle assumed by darkened leaflets during the open phase of the rhythm can be altered by various compounds and changes in temperature; such treatments are ineffective during the closed phase. In all cases, effects on leaflet angle are correlated with and probably a consequence of K+ flux in pulvinal motor cells. Incubation at low temperature (6C) or on sodium azide (1.0 mm) reduces K+ in the ventral motor region and increases K+ in the dorsal motor region, thereby decreasing leaflet angle. Incubation on cycloheximide (0.1 mm) or sodium acetate (0.05 m) inhibits protein synthesis; if the incubation period immediately precedes the opening phase, these compounds prevent both K+ flux into the ventral motor cells and leaflet opening. Magnesium nitrate (0.05 m), supplied after leaflets have started to open, promotes K+ secretion from the dorsal motor cells and increases the angle of opening.  相似文献   

13.
The first enzyme in the pathway for l-arabinose catabolism in eukaryotic microorganisms is a reductase, reducing l-arabinose to l-arabitol. The enzymes catalyzing this reduction are in general nonspecific and would also reduce d-xylose to xylitol, the first step in eukaryotic d-xylose catabolism. It is not clear whether microorganisms use different enzymes depending on the carbon source. Here we show that Aspergillus niger makes use of two different enzymes. We identified, cloned, and characterized an l-arabinose reductase, larA, that is different from the d-xylose reductase, xyrA. The larA is up-regulated on l-arabinose, while the xyrA is up-regulated on d-xylose. There is however an initial up-regulation of larA also on d-xylose but that fades away after about 4 h. The deletion of the larA gene in A. niger results in a slow growth phenotype on l-arabinose, whereas the growth on d-xylose is unaffected. The l-arabinose reductase can convert l-arabinose and d-xylose to their corresponding sugar alcohols but has a higher affinity for l-arabinose. The Km for l-arabinose is 54 ± 6 mm and for d-xylose 155 ± 15 mm.  相似文献   

14.
Mazelis M  Liu ES 《Plant physiology》1967,42(12):1763-1768
Serine transhydroxymethylase (EC 2.1.2.1) has been purified 46-fold from cauliflower (Brassica oleracea var. botrytis L.). The enzyme was completely dependent on the presence of tetrahydrofolic acid for the conversion of serine to glycine. The addition of pyridoxal phosphate gave a large increase in the reaction rate. A double pH optimum was observed with maxima at 7.5 and 9.5. The enzyme is specific for l-serine. The d-isomer is neither a substrate nor an inhibitor. The Michaelis constants for l-serine, tetrahydrofolic acid, and pyridoxal phosphate were 300 μm, 760 μm, and 24 μm, respectively. The addition of K+ also stimulated the reaction rate considerably. The effect was quite specific since all other metal ions tested either had very little: influence or were extremely inhibitory.  相似文献   

15.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

16.
Vessal M  Hassid WZ 《Plant physiology》1973,51(6):1055-1060
d-Glucosamine-6-P N-acetyltransferase (EC 2.3.1.4) from mung bean seeds (Phaseolus aureus) was purified 313-fold by protamine sulfate and isoelectric precipitation, ammonium sulfate and acetone fractionation, and CM Sephadex column chromatography. The partially purified enzyme was highly specific for d-glucosamine-6-P. Neither d-glucosamine nor d-galactosamine could replace this substrate. The partially purified enzyme preparation was inhibited up to 50% by 2 × 10−2m EDTA, indicating the requirement of a divalent cation. Among divalent metal ions tested, Mg2+ was required for maximum activity of the enzyme. Mn2+ and Zn2+ were inhibitory, while Co2+ had no effect on the enzyme activity. The pH optimum of the enzyme in sodium acetate and sodium citrate buffers was found to be 5.2. The effect of Mg2+ on the enzyme in sodium acetate and sodium citrate buffers was particularly noticeable in the range of optimum pH. Km values of 15.1 × 10−4m and 7.1 × 10−4m were obtained for d-glucosamine-6-P and acetyl CoA, respectively. The enzyme was completely inhibited by 1 × 10−4mp-hydroxymercuribenzoate, and this inhibition was partially reversed by l-cysteine; indicating the presence of sulfhydryl groups at or near the active site of the enzyme.  相似文献   

17.
Terminal Oxidases of Chlorella pyrenoidosa   总被引:2,自引:2,他引:0  
In studies of the kinetics of oxygen uptake by glucose-stimulated Chlorella pyrenoidosa, two terminal oxidases could be distinguished. The cytochrome oxidase of Chlorella has a Km (O2) of 2.1 ± 0.3 μm, while the second oxidase has a Km (O2) of 6.7 ± 0.5 μm, and a maximum capacity about one-quarter of that of the cytochrome system. The identity of the second oxidase is unknown, but it is not inhibited by carbon monoxide, 1 mm cyanide, 0.1 mm thiocyanate, or 1 mm 8-hydroxyquinoline. In fresh cultures, the second oxidase accounts for at most 35% of the total oxygen uptake.  相似文献   

18.
C-reactive protein (CRP) is an acute phase protein of the pentraxin family that binds ligands in a Ca2+-dependent manner, and activates complement. Knowledge of its oligomeric state in solution and at surfaces is essential for functional studies. Analytical ultracentrifugation showed that CRP in 2 mm Ca2+ exhibits a rapid pentamer-decamer equilibrium. The proportion of decamer decreased with an increase in NaCl concentration. The sedimentation coefficients s20,w0 of pentameric and decameric CRP were 6.4 S and in excess of 7.6 S, respectively. In the absence of Ca2+, CRP partially dissociates into its protomers and the NaCl concentration dependence of the pentamer-decamer equilibrium is much reduced. By x-ray scattering, the radius of gyration RG values ranged from 3.7 nm for the pentamer to above 4.0 nm for the decamer. An averaged KD value of 21 μm in solution (140 mm NaCl, 2 mm Ca2+) was determined by x-ray scattering and modeling based on crystal structures for the pentamer and decamer. Surface plasmon resonance showed that CRP self-associates on a surface with immobilized CRP with a similar KD value of 23 μm (140 mm NaCl, 2 mm Ca2+), whereas CRP aggregates in low salt. It is concluded that CRP is reproducibly observed in a pentamer-decamer equilibrium in physiologically relevant concentrations both in solution and on surfaces. Both 2 mm Ca2+ and 140 mm NaCl are essential for the integrity of CRP in functional studies and understanding the role of CRP in the acute phase response.  相似文献   

19.
1. Suspensions of isolated chick jejunal columnar absorptive (brush-border) cells respired on endogenous substrates at a rate 40% higher than that shown by rat brush-border cells. 2. Added d-glucose (5 or 10mm), l-glutamine (2.5mm) and l-glutamate (2.5mm) were the only individual substrates which stimulated respiration by chick cells; l-aspartate (2.5 or 6.7mm), glutamate (6.7mm), glutamine (6.7mm), l-alanine (1 or 10mm), pyruvate (1 or 2mm), l-lactate (5 or 10mm), butyrate (10mm) and oleate (1mm) did not stimulate chick cell respiration; l-asparagine (6.7mm) inhibited slightly; glucose (5mm) stimulated more than did 10mm-glucose. 3. Acetoacetate (10mm) and d-3-hydroxybutyrate (10mm) were rapidly consumed but, in contrast to rat brush-border cells, did not stimulate respiration. 4. Glucose (10mm) was consumed more slowly than 5mm-glucose; the dominant product of glucose metabolism during vigorous respiration was lactate; the proportion of glucose converted to lactate was greater with 10mm- than with 5mm-glucose. 5. Glutamate and aspartate consumption rates decreased, and alanine and glutamine consumption rates increased when their initial concentrations were raised from 2.5 to 6.7 or 10mm. 6. The metabolic fate of glucose was little affected by concomitant metabolism of any one of aspartate, glutamate or glutamine except for an increased production of alanine; the glucose-stimulated respiration rate was unaffected by concomitant metabolism of these individual amino acids. 7. Chick cells produced very little alanine from aspartate and, in contrast to rat cells, likewise produced very little alanine from glutamate or glutamine; in chick cells alanine appeared to be predominantly a product of transmination of pyruvate derived from glucose metabolism. 8. In chick cells, glutamate and glutamine were formed from aspartate (2.5 or 6.7mm); aspartate and glutamine were formed from glutamate (2.5mm) but only aspartate from 6.7mm-glutamate; glutamate was the dominant product formed from glutamine (6.7mm) but aspartate only was formed from 2.5mm-glutamine. 9. Chick brush-border cells can thus both catabolize and synthesize glutamine; glutamine synthesis is always diminished by concomitant metabolism of glucose, presumably by allosteric inhibition of glutamine synthetase by alanine. 10. Proline was formed from glutamine (2.5mm) but not from glutamine (2.5mm)+glucose (5mm) and not from 2.5mm-glutamate; ornithine was formed from glutamine (2.5mm)+glucose (5.0mm) but not from glutamine alone; serine was formed from glutamine (2.5mm)+glucose (5mm) and from these two substrates plus aspartate (2.5mm). 11. Total intracellular adenine nucleotides (22μmol/g dry wt.) remained unchanged during incubation of chick cells with glucose. 12. Intracellular glutathione (0.7–0.8mm) was depleted by 40% during incubation of respiring chick cells without added substrates for 75min at 37°C; partial restoration of the lost glutathione was achieved by incubating cells with l-glutamate+l-cysteine+glycine.  相似文献   

20.
Ting IP 《Plant physiology》1968,43(12):1919-1924
Phosphoenolpyruvate carboxylase was purified from corn root tips about 80-fold by centrifugation, ammonium sulfate fractionation, and anion exchange and gel filtration chromatography. The resulting preparation was essentially free from malate dehydrogenase, isocitrate dehydrogenase, malate enzyme, NADH oxidase, and pyruvate kinase activity. Kinetic analysis indicated that l-malate was a noncompetitive inhibitor of P-enolpyruvate carboxylase with respect to P-enolpyruvate (KI = 0.8 mm). d-Malate, aspartate, and glutamate inhibited to a lesser extent; succinate, fumarate, and pyruvate did not inhibit. Oxaloacetate was also a noncompetitive inhibitor of P-enolpyruvate carboxylase with an apparent KI of 0.4 mm. A comparison of oxaloacetate and l-malate inhibition suggested that the mechanisms of inhibition were different. These data indicated that l-malate may regulate CO2 fixation in corn root tips by a feedback or end product type of inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号