首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of yeast iso-1-cytochrome c mRNA   总被引:7,自引:0,他引:7  
The iso-1-cytochrome c mRNA has been identified by hybridization of a 32P probe prepared from a plasmid containing the iso-1-cytochrome c gene to RNA size-fractionated on agarose gels and transferred to paper. A hybridization band was visible with RNA prepared from wild type cells, but not with RNA prepared from an iso-1-cytochrome c deletion mutant. RNA prepared from cells containing a nonsense mutation in the iso-1-cytochrome c gene showed reduced levels of hybridization. The RNA that hybridized to the probe was 700 +/- 50 nucleotides in length and was polyadenylated. The cellular levels of this RNA were repressed by glucose, and this repression was achieved within 5 min after glucose addition to a derepressed culture. No precursors of this RNA were detected in wild type cells or in an RNA1 mutant, temperature-sensitive for RNA metabolism. The length of the 3' noncoding region of this RNA was determined to be 200 +/- 25 nucleotides (excluding the poly(A) tail) and the 5' noncoding region was estimated to be about 120 nucleotides in length.  相似文献   

2.
Sequence of the yeast iso-1-cytochrome c mRNA   总被引:8,自引:0,他引:8  
The nucleotide sequence of the yeast iso-1-cytochrome c (CYC1) mRNA is presented. The mRNA was enriched by hybridization to cloned CYC1 DNA attached to a solid matrix: either nitrocellulose filters or diazobenzyloxymethyl cellulose powder. The sequence of the 5'-end of the mRNA was determined by the extension of a CYC1-specific dodecanucleotide primer; the sequence of the 3'-end was determined using a decanucleotide d(pT8-G-A) primer. The CYC1 mRNA begins 61 nucleotides 5' to the AUG initiation codon, extends through the coding sequence to 172 to 175 nucleotides 3' to the UAA termination codon, followed by the poly(A) tail. There are no intervening sequences. Some of the sequences that the CYC1 mRNA shares in common with other eukaryotic mRNAs are discussed.  相似文献   

3.
4.
Pielak GJ  Wang X 《Biochemistry》2001,40(2):422-428
Isothermal titration calorimetry was used to study the formation of 19 complexes involving yeast iso-1-ferricytochrome c (Cc) and ferricytochrome c peroxidase (CcP). The complexes comprised combinations of the wild-type proteins, six CcP variants, and three Cc variants. Sixteen protein combinations were designed to probe the crystallographically defined interface between Cc and CcP. The data show that the high-affinity sites on Cc and CcP coincide with the crystallographically defined sites. Changing charged residues to alanine increases the enthalpy of complex formation by a constant amount, but the decrease in stability depends on the location of the amino acid substitution. Deleting methyl groups has a small effect on the binding enthalpy and a larger deleterious effect on the binding free energy, consistent with model studies of the hydrophobic effect, and showing that nonpolar interactions also stabilize the complex. Double-mutant cycles were used to determine the coupling energies for nine Cc-CcP residue pairs. Comparing these energies to the crystal structure of the complex leads to the conclusion that many of the substitutions induce a rearrangement of the complex.  相似文献   

5.
Deletions and replacements of omega loops in yeast iso-1-cytochrome c   总被引:7,自引:0,他引:7  
omega (omega)-loops are protein secondary structural elements having small distances between segment termini. It should be possible to delete or replace certain of these omega-loops without greatly distorting the overall structure of the remaining portion of the molecule. Functional requirements of regions of iso-1-cytochrome c from the yeast Saccharomyces cerevisiae were investigated by determining the biosynthesis and activity in vivo of mutant forms in which four different omega-loops were individually deleted, or in which one omega-loop was replaced with five different segments. Deletions encompassing amino acid positions 27-33 and 79-83 either prevented synthesis of the holoprotein, or produced highly labile iso-1-cytochromes c, whereas deletions encompassing positions 42-45 and 48-55 allowed partial synthesis and activity. These two latter regions, therefore, are not absolutely required for any biosynthetic process such as heme attachment, mitochondrial import, or for enzymatic interactions. All replacements in Loop A (residue positions 24-33) with same size (10 amino acid residues), longer (13 and 15 amino acid residues), or shorter segments (6 amino acid residues), resulted in strains having at least partial levels of iso-1-cytochrome c; however, the relative activities ranged from zero to almost the normal level. Thus, Loop A does not appear to be essential for such biosynthetic steps as heme attachment and mitochondrial import. In contrast, the full range of relative activities suggest that this region interacts with physiological partners to carry out efficient electron transport.  相似文献   

6.
Previous work has established that the N57I amino acid replacement in iso-1-cytochrome c from the yeast Saccharomyces cerevisiae causes an unprecedented increase in thermodynamic stability of the protein in vitro, whereas the N57G replacement diminishes stability. Spectrophotometric measurements of intact cells revealed that the N57I iso-l-cytochrome c is present at higher than normal levels in vivo. Although iso-1-cytochrome c turnover is negligible during aerobic growth, transfer of fully derepressed, aerobically grown cells to anaerobic growth conditions leads to reduction in the levels of all of the cytochromes. Pulsechase experiments carried out under these anaerobic conditions demonstrated that the N57I iso-l-cytochrome c has a longer half-life than the normal protein. This is the first report of enhanced stability in vivo of a mutant form of a protein that has an enhanced thermodynamic stability in vitro. Although the N57I protein concentration is higher than the normal level, reduced growth in lactate medium indicated that the specific activity of this iso-l-cytochrome c in vivo is diminished relative to wild-type. On the other hand, the level of the thermodynamically labile N57G iso-1-cytochrome c was below normal. The in vivo levels of the N57I and N57G iso-l-cytochrome c suggest that proteins in the mitochondrial intermembrane space can be subjected to degradation, and that this degradation may play a role in controlling their normal levels.  相似文献   

7.
A phagemid (pING4) carrying the yeast iso-1-cytochrome c gene was constructed which bears all the elements necessary for replication in yeast and bacteria and may be converted into a single-stranded form of DNA for site-directed mutagenesis and nucleotide sequencing. The recombinant vector was used to create a complete set of 19 amino acid changes at position 82, a phylogenetically conserved phenylalanine residue in mitochondrial cytochrome c. All the different forms of cytochrome c were functional in vivo, based upon their ability to support respiration when the mutant proteins were expressed in a yeast strain (otherwise devoid of cytochrome c) grown on non-fermentable carbon sources, with only the strain containing the Cys82 variant having a substantially decreased growth rate. These results are interpreted in terms of the available structural and functional information previously reported on a subset of cytochrome c proteins with mutations at position 82.  相似文献   

8.
Deep red crystals of the electron transfer protein, iso-1-cytochrome c from yeast (Saccharomyces cerevisiae), have been obtained from a 90% saturated solution of (NH4)2SO4 containing 2 mg protein/ml, 0.1 M-sodium phosphate and adjusted to pH 6.7. The space group is P4(1)2(1)2 (or P4(3)2(1)2) with a = b = 36.4 A, c = 136.8 A and Z = 8. Crystals are stable for at least ten days in the X-ray beam and diffract to better than 2.0 A resolution. Comparable and morphologically similar crystal forms of three iso-1-cytochrome c mutants at Phe87, a pivotal residue in the electron transport chain, have also been obtained.  相似文献   

9.
Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast   总被引:19,自引:0,他引:19  
In previous studies the nucleotide sequences of numerous mutant codons in the cy1 gene have been identified from altered iso-1-cytochromes c. These studies not only revealed the mutant codons that caused the deficiencies but also experimentally determined which of the base pair changes allowed the formation of functional iso-1-cytochromes c. In this investigation we have quantitatively measured the reversion frequencies of eleven cy1 mutants which were treated with 12 mutagens. The cy1 mutants comprised nine mutants having single-base changes of the AUG initiation codon (Stewart et al., 1971), an ochre mutant cy1–9 (Stewart et al., 1972), and an amber mutant cy1–179 (Stewart &; Sherman, 1972). In some cases the types of induced base changes could be inferred unambiguously from the pattern of reversion. Selective G.C to A.T transitions were induced by ethyl methanesulfonate, diethyl sulfate, N-methyl-N′-nitro-N-nitrosoguanidine, 1-nitrosoimidazolidone-2, nitrous acid, [5-3H]uridine and β-propiolactone. There was no apparent specificity with methyl methanesulfonate, dimethyl sulfate, nitrogen mustard and γ-rays. Ultraviolet light induced high rates of reversion of the ochre and amber mutants, but in these instances it appears as if the selective action is due to particular nucleotide sequences and not due to simple types of base pair changes.  相似文献   

10.
Yeast iso-1-cytochrome c is one of the least stable mitochondrial cytochromes c. We have used a coordinated approach, combining the known functional and structural properties of cytochromes c, to engineer mutations into yeast iso-1-cytochrome c with the goal of selectively increasing the stability of the protein. The two redox forms of the native protein and six different mutant forms of yeast iso-1-cytochrome c were analyzed by differential scanning calorimetry (DSC). The relative stability, expressed as the difference in the Gibb's free energy of denaturation at a given temperature between the native and mutant forms (DeltaDeltaG(Tref)), was determined for each of the proteins. In both oxidation states, the mutant proteins C102T, T69E/C102T, T96A/C102T, and T69E/T96A/C102T were more stable than the wild-type protein, respectively. The increased stability of the mutant proteins is proposed to be due to the removal of a rare surface cysteine and the stabilization of two distorted alpha-helices.  相似文献   

11.
12.
The structure of yeast iso-1-cytochrome c has been refined against X-ray diffraction data to a nominal resolution of 1.23 A. The atomic model contains 893 protein atoms, as well as 116 water molecules and one sulfate anion. Also included in the refinement are 886 hydrogen atoms belonging to the protein molecule. The crystallographic R-factor is 0.192 for the 12,513 reflections with F greater than or equal to 3 sigma (F) in the resolution range 6.0 to 1.23 A. Co-ordinate accuracy is estimated to be better than 0.18 A. The iso-1-cytochrome c molecule has the typical cytochrome c fold, with the polypeptide chain organized into a series of alpha-helices and reverse turns that serve to envelop the heme prosthetic group in a hydrophobic pocket. Inspection of the conformations of helices in the molecule shows that the local environments of the helices, in particular the presence of intrahelical threonine residues, cause distortions from ideal alpha-helical geometry. Analysis of the internal mobility of iso-1-cytochrome c, based on refined crystallographic temperature factors, shows that the most rigid parts of the molecule are those that are closely associated with the heme group. The degree of saturation of hydrogen-bonding potential is high, with 90% of all polar atoms found to participate in hydrogen bonding. The geometry of intramolecular hydrogen bonds is typical of that observed in other high-resolution protein structures. The 116 water molecules present in the model represent about 41% of those expected to be present in the asymmetric unit. The majority of the water molecules are organized into a small number of hydrogen-bonding networks that are anchored to the protein surface. Comparison of the structure of yeast iso-1-cytochrome c with those of tuna and rice cytochromes c shows that these three molecules have very high structural similarity, with the atomic packing in the heme crevice region being particularly highly conserved. Large conformational differences that are observed between these cytochromes c can be explained by amino acid substitutions. Additional subtle differences in the positioning of the side-chains of several highly conserved residues are also observed and occur due to unique features in the local environments of each cytochrome c molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
The three missense mutants cyc1-132, cyc1-166 and cyc1-189 in the yeast Saccharomyces cerevisiae contain nonfunctional and thermolabile iso-1-cytochromes c and have different replacements of the tryptophan at position 64 which corresponds to the invariant tryptophan residue found in cytochromes c from all eukaryotic species. The cyc1-166 and cyc1-189 mutants contain single replacements of, respectively, serine 64 and cysteine 64, while the cyc1-132 mutant contains a double replacement of glycine 64 and alanine 65 instead of the normal tryptophan 64 and aspartic acid 65. Twenty-three intragenic revertants having at least partially functional iso-1-cytochromes c arose from these three missense mutants by single amino acid replacements of either tryptophan, phenylalanine, tyrosine or leucine at position 64, or by second-site replacements in which the mutant residues at position 64 are retained and the normal serine 45 is replaced by phenylalanine 45. Specific activities of the iso-1-cytochromes c were estimated by growth of strains on lactate medium and are as follows, in terms of the normal, for iso-1-cytochromes c altered specifically in the ways shown: 100% for phenylalanine 64; 25% for tyrosine 64; between 0 and 25% for leucine 64; 100% for phenylalanine 45, cysteine 64; 25% for phenylalanine 45, serine 64; between 0 and 25% for phenylalanine 45, glycine 64, alanine 65; and 0% for serine 64, for cysteine 64, and for glycine 64, alanine 65 iso-1-cytochromes c. The results demonstrate that small residues of glycine, serine, and cysteine at position 64 are incompatible with function; they imply that many of the 10 amino acids accessible by single base-pair substitution but not observed in primary site revertants also are incompatible with function; and they show that large hydrophobic residues of phenylalanine, leucine, and tyrosine at position 64 are capable of restoring at least partial function. The second site revertants indicate that deleterious effects of the three missense mutants can be compensated by the introduction of phenylalanine 45, which may occupy space normally filled by tryptophan 64. Altered shapes of Calpha-band spectra and at least partial instability were characteristics of all iso-1-cytochromes c found lacking tryptophan 64. Apparently, the principal role of the invariant tryptophan is stabilization of the active protein structure, by providing a large hydrophobic group at the proper location.  相似文献   

15.
Direct protein electrochemistry was used to obtain the thermodynamic parameters of transition from the native (state III) to the alkaline (state IV) conformer for untrimethylated Saccharomyces cerevisiae iso-1-cytochrome c expressed in E. coli and its single and multiple lysine-depleted variants. In these variants, one or more of the lysine residues involved in axial Met substitution (Lys72, Lys73, and Lys79) was mutated to alanine. The aim of this work is to determine the thermodynamic affinity of each of the substituting lysines for the heme iron and evaluate the interplay of enthalpic and entropic factors. The equilibrium constants for the deprotonation reaction of Lys72, 73, and 79 were computed for the minimized MD average structures of the wild-type and mutated proteins, applying a modified Tanford-Kirkwood calculation. Solvent accessibility calculations for the substituting lysines in all variants were also performed. The transition enthalpy and entropy values within the protein series show a compensatory behavior, typical of a process involving extensive solvent reorganization effects. The experimental and theoretical data indicate that Lys72 most readily deprotonates and replaces M80 as the axial heme iron ligand, whereas Lys73 and Lys79 show comparably higher pKa values and larger transition free energies. A good correlation is found within the series between the lowest calculated Lys pKa value and the corresponding experimental pKa value, which can be interpreted as indicative of the deprotonating lysine itself acting as the triggering group for the conformational transition. The triple Lys to Ala mutant, in which no lysine residues are available for heme iron binding, features transition thermodynamics consistent with a hydroxide ion replacing the axial methionine ligand.  相似文献   

16.
Yeast iso-1- unmethylated and methylated apocytochrome c were synthesized in vitro by translating yeast cytochrome c mRNA, and by subsequently methylating the protein product. Unmethylated and methylated iso-1-holocytochrome c were extracted from Saccharomyces cerevisiae. By employing a column isoelectrofocusing technique, the pI values of these proteins were determined. The pI values of unmethylated and methylated apocytochrome c were found to be 9.60 and 8.70, respectively, with a difference of 0.90 pI unit. On the other hand, the pI values of unmethylated and methylated holocytochrome c were 9.72 and 9.68, respectively, with a difference of 0.04 unit. Therefore, although the pI values of both apo- and holocytochrome c decreased by methylation, methylation of apocytochrome c had a more profound effect on the pI of the protein. The result also indicated that conjugation of heme to apocytochrome c increased its pI value, resulting in the more "compact" and basic structure of the protein. The observed magnitude of the pI change subsequent to the methylation of apocytochrome c (decrease of 0.90 unit) seemed to be contradictory to the predicted increase in the value, since the positive charge is fixed on the quaternary amino group of trimethyllysine and there is no proton to titrate. Trimethylation of epsilon-NH2 group of Res-72 lysine of apocytochrome c could disrupt any possible hydrogen bond formed by the nitrogen atom of Res-72 lysine residues, as visualized by a space-filling model. The model and observed shift in the "effective charge" of the protein strongly suggest that conformational change in the apoprotein takes place upon methylation. This presumably altered conformation along with the decrease in pI caused by methylation may play a role in enhancement of apocytochrome c import into mitochondria.  相似文献   

17.
The suppressors SUP6-2 and SUP7-2 can cause the production of approxi- mately 25 to 60% of the normal amount of iso-1-cytochrome c when they are coupled to the amber (UAG) mutants cy1–179 and cy1–76. The iso-1-cytochromes c contain residues of tyrosine at the positions which correspond to the sites of the amber codons. SUP6-2 and SUP7-2 do not suppress ochre (UAA) mutants. The SUP6-2 and the SUP7-2 genes are apparently alleles of the SUP6-1 and SUP7-1 genes, respectively, which cause the insertion of tyrosine at ochre (UAA) codons (ochre-specific suppressors). It is suggested that the gene products of the allelic amber suppressors and ochre-specific suppressors (the SUP6-1 and SUP6-2 suppressors and theSUP7-1 andSUP7-2 suppressors) are two differently altered forms of the same tyrosine tRNA.  相似文献   

18.
19.
Rates and energetics of tyrosine ring flips in yeast iso-2-cytochrome c   总被引:2,自引:0,他引:2  
B T Nall  E H Zuniga 《Biochemistry》1990,29(33):7576-7584
Isotope-edited nuclear magnetic resonance spectroscopy is used to monitor ring flip motion of the five tyrosine side chains in the oxidized and reduced forms of yeast iso-2-cytochrome c. With specifically labeled protein purified from yeast grown on media containing [3,5-13C]tyrosine, isotope-edited one-dimensional proton spectra have been collected over a 5-55 degrees C temperature range. The spectra allow selective observation of the 10 3,5 tyrosine ring proton resonances and, using a two-site exchange model, allow estimation of the temperature dependence of ring flip rates from motion-induced changes in proton line shapes. For the reduced protein, tyrosines II and IV are in fast exchange throughout the temperature range investigated, or lack resolvable differences in static chemical shifts for the 3,5 ring protons. Tyrosines I, III, and V are in slow exchange at low temperatures and in fast exchange at high temperatures. Spectral simulations give flip rates for individual tyrosines in a range of one flip per second at low temperatures to thousands of flips per second at high temperatures. Eyring plots show that two of the tyrosines (I and III) have essentially the same activation parameters: delta H++ = 28 kcal/mol for both I and III; delta S++ = 42 cal/(mol.K) for I, and delta S++ = 41 cal/(mol.K) for III. The remaining tyrosine (V) has a larger enthalpy and entropy of activation: delta H++ - 36 kcal/mol, delta S++ = 72 cal/(mol.K). Tentative sequence-specific assignments for the tyrosines in reduced iso-2 are suggested by comparison to horse cytochrome c.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The replacement of Phe82 in yeast iso-1-cytochrome c by a glycine residue substantially alters both the tertiary structure and electron transfer properties of this protein. The largest structural change involves a polypeptide chain refolding of residues 79 through 85. Refolding places glycines 82, 83 and 84 immediately adjacent to the plane of the heme group in a spatial positioning comparable to that of the phenyl ring of Phe82 in the wild-type protein. Despite this perturbation in structure, solvent accessibility computations show that heme solvent exposure has not increased in the Gly82 variant protein. However, refolding does result in the introduction of a number of polar groups into the hydrophobic heme pocket. This appears to be responsible for the decreased reduction potential of the heme in this protein. The present study, along with that of the Ser82 variant protein (Louie et al., 1988b), clearly establishes the link between dielectric constant within the heme crevice and reduction potential. The further anomalously low electron transfer activity of the Gly82 variant protein would appear to arise from two factors. First, the polypeptide chain medium now adjacent to the heme is unable to facilitate electron transfer in a manner similar to that of the aromatic side-chain of Phe82. Second, polypeptide chain refolding significantly alters the surface contour of the Gly82 protein rendering it less suitable to interact with the corresponding complementary surfaces of redox partners. Our data support the conclusion that Phe82 plays a number of roles in the electron transfer process mediated by yeast iso-1-cytochrome c. These include the maintenance of the heme environment, provision of an optimal medium along the path of electron transfer and formation of interactions at the contact interface in complexes with redox partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号