首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the history dependence of force production during and following stretch-shortening and shortening-stretch cycles in mammalian skeletal muscle. Thirty-three different isometric, stretch, shortening, stretch-shortening and shortening-stretch experiments were preformed in cat soleus (n=8) using previously established methods. Stretch-shortening and shortening-stretch cycles are not commutative with respect to the isometric forces following the length changes. Whereas force depression following shortening is virtually unaffected by previous stretching of the muscle, force enhancement following stretch depends in a dose-dependent manner on the amount of muscle shortening preceding the stretch. The history dependence of isometric force following shortening-stretch cycles can conveniently be modelled using an elastic (compressive and tensile) element that engages at the length of muscle activation. Such an "elastic" mechanism has been proposed by Edman and Tsuchiya (1996) (Edman, K.A. P., Tsuchiya, T., 1996. Strain of passive elements during force enhancement by stretch in frog mucle fibres. Journal of Physiology 490. 1, 191-205) based on experimental observations, and has been implemented theoretically in a rheological model of muscle (Forcinito et al., 1997) (Forcinito, M., Epstein, M., Herzog, W., 1997. Theoretical considerations on myofibril stiffness. Biophysics Journal 72, 1278-1286). The history dependence of isometric force following stretch-shortening cycles appears independent of the stretch preceding the shortening, except perhaps, if stretching occurs at very high speeds (i.e. 6-10 times fibre length per second). The results of this study are hard to reconcile with the two major mechanisms associated with history dependence of force production: sarcomere length non-uniformity (Edman et al., 1993) and stress-induced cross-bridge inhibition (Maréchal and Plaghki, 1979) (Maréchal, G., Plaghki, L., 1979. The deficit of the isometric tetanic tension redeveloped after a relase of frog muscle at a constant velocity. Journal of General Physiology 73, 453-467). It appears that studying the history dependence of force production under more functionally relevant conditions than has been done to date may provide new information that contributes to our understanding of possible mechanisms associated with force depression and force enhancement following muscular length changes.  相似文献   

2.
The main purpose of this study was to evaluate the effects of shortening on the stretch-induced force enhancement in single muscle fibers, and indirectly test the hypothesis that force enhancement may be associated with the engagement of a passive element upon activation. Fibers were placed on the descending limb of the force-length relationship, and stretch and shortening contractions were performed. Fibers underwent two sets of shortening-stretch cycles. First, fibers were shortened by a fixed amplitude and speed (10% fiber length, and at 40% fiber length/s), and then were stretched (10% fiber length, and at 40% fiber length/s) immediately following shortening, or 500 or 1000 ms following the shortening. Second, fibers were shortened by varying amounts (5%, 10% and 15% fiber length) and at a constant speed (40% fiber length/s) immediately preceding a given fiber stretch (10% fiber length, and at 40% fiber length/s). When stretching was immediately preceded by shortening, force enhancement was decreased proportionally with the shortening magnitude. When intervals were introduced between shortening and stretch, the effects of shortening on the stretch-induced force enhancement became less prominent. We concluded that, in contrast to published suggestions, shortening affects the stretch-induced force enhancement in an amplitude-dependent manner in single fibers, as it does in whole muscles, but this effect is diminished by increasing the time period between the shortening and stretch phases.  相似文献   

3.
The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.  相似文献   

4.
It has been stated repeatedly for the past 50 years that the steady-state force depression following shortening of an activated muscle depends on the speed of shortening. However, these statements were based on results from experiments in which muscles were shortened at different speeds but identical activation levels. Therefore, the force during shortening was changed in accordance with the force-velocity relationship of muscles: that is, increasing speeds of shortening were associated with decreasing forces, and vice versa. Consequently, it is not possible at present to distinguish whether force depression is caused by the changes in speed, as frequently stated, or the associated changes in force, or both. The purpose of this study was to test if force depression depends on the speed of shortening. We hypothesized that force depression was dependent on the force but not the speed of contraction. Our prediction is that the amount of force depression after shortening contractions at different speeds could be similar if the force during contraction was controlled at a similar level. Cat soleus muscles (n=7) were shortened by 9 or 12 mm at speeds of 3, 9, and 27 mm/s, first with a constant activation during shortening (30Hz), then with activation levels that were reduced (<30Hz) for the slow speeds (3 and 9 mm/s) to approximate the shortening forces of the fast speed contractions (27 mm/s). If done properly, force depression could be precisely matched at the three different speeds, indicating that force depression was related to the force during the shortening contraction but not to the speed. However, in order to match force depression, the forces during shortening had to be systematically greater for the slow compared to the fast speeds of shortening, suggesting that force depression also depends on the level of activation, as force depression at constant activation levels can only be matched if the force during shortening, evaluated by the mechanical work, is identical. Therefore, we conclude that force depression depends on the force and activation level during shortening, but does not depend on the speed of shortening as has been assumed for half a century. These results support, but do not prove, the current hypothesis that force depression is caused by a stress-related cross-bridge inhibition in the actin-myosin overlap zone that is newly formed during muscle shortening.  相似文献   

5.
The elevated intramuscular pressure (IMP) associated with sustained muscle contraction can affect blood flow, and could influence the long-term viability of functional skeletal muscle grafts. We therefore examined the relationship between force, peak IMP and blood flow in the tibialis anterior muscle of the anaesthetized rabbit. During isometric contractions, IMP was related linearly to force, and only the slope of the relationship varied between animals. During isotonic contractions, however, the highest values of IMP were found at the lowest force levels, and IMP appeared to be related to the amount and speed of shortening. During repeated isometric contractions, the ratio of IMP to force varied with time, stimulation pattern and subject. Mean blood flow did not differ appreciably between␣repetitive isometric contractions at duty cycles of 10–40%, and was unrelated to integrated pressure, integrated force, or depth from the surface. We conclude: (1) that IMP is unlikely to affect mean blood flow during cyclic activity that has a duty cycle less than 40%; and (2) that the clinical use of IMP as a predictor of muscle force appears to be justified only for single isometric contractions, and needs to be interpreted cautiously when contractions involve shortening or fatigue. Accepted: 17 November 1997  相似文献   

6.
The purpose of this study was to determine the influence of speed and distance of muscle shortening on the amount of force depression for voluntary contractions. Two experimental tests were performed. In the first test, subjects performed isometric knee extensor contractions following muscle shortening produced by isokinetic knee extensions over the range 25-50 degrees. In the second test, subjects performed isometric knee extensor contractions following muscle shortening produced by isokinetic knee extensions at two speeds: 20 and 240 degrees /s. Knee extensor moments, surface electromyographical (EMG) signals of quadriceps femoris, and interpolated twitch moments were measured during all contractions and were compared with the corresponding values obtained during purely isometric contractions. Force depression following muscle shortening for the voluntary contractions tested in this study did not depend on the distance or the speed of muscle shortening. These results are in contrast to the corresponding results in the literature obtained using artificial electrical stimulation in which force depression was always found to be directly related to the distance of shortening and inversely related to the speed of shortening. The difference in force depression as a function of the distance and speed of muscle shortening between voluntary and artificial electrical stimulation may be associated with changes in activation following the voluntary shortening contractions, whereas activation is controlled and constant in all artificial stimulation protocols.  相似文献   

7.
It is well known that muscular force production is history-dependent, which results in enhanced (RFE) and depressed (RFD) steady-state forces after stretching and shortening, respectively. However, it remains unclear if force-enhancing mechanisms can contribute to increased performance during in vivo stretch-shortening cycles (SSCs) of human locomotor muscles. The purpose of this study was to investigate whether RFE-related mechanisms contribute to enhanced force and power output during SSCs of the human plantar flexor muscles. Net ankle torques of fourteen participants were measured during and after pure isometric, pure stretch, pure shortening, and SSC contractions when the triceps surae muscles were electrically stimulated at a submaximal level that resulted in 30% of their maximum isometric torque. Dynamic contractions were performed over an amplitude of 15°, from 5° plantar flexion to 10° dorsiflexion, at a speed of 120° s−1. External ankle work during shortening was 11.6% greater during SSCs compared to pure shortening contractions (p = .003). Additionally, RFD after SSCs (8.6%) was reduced compared to RFD after pure shortening contractions (12.0%; p < .05). It is therefore concluded that RFE-related mechanisms contribute to increased performance following SSCs of human locomotor muscles. Since RFD after SSCs decreased although work during shortening was increased, we speculate that the relevant mechanism lies outside actin-myosin interaction. Finally, our data suggests that RFE might be relevant and beneficial for human locomotion whenever a muscle is stretched, but this needs to be confirmed.  相似文献   

8.
9.
Titin is a structural protein in muscle that spans the half sarcomere from Z-band to M-line. Although there are selected studies on titin's mechanical properties from tests on isolated molecules or titin fragments, little is known about its behavior within the structural confines of a sarcomere. Here, we tested the hypothesis that titin properties might be reflected well in single myofibrils. Single myofibrils from rabbit psoas were prepared for measurement of passive stretch-shortening cycles at lengths where passive titin forces occur. Three repeat stretch-shortening cycles with magnitudes between 1.0 and 3.0μm/sarcomere were performed at a speed of 0.1μm/s·sarcomere and repeated after a ten minute rest at zero force. These tests were performed in a relaxation solution (passive) and an activation solution (active) where cross-bridge attachment was inhibited with 2,3 butanedionemonoxime. Myofibrils behaved viscoelastically producing an increased efficiency with repeat stretch-shortening cycles, but a decreased efficiency with increasing stretch magnitudes. Furthermore, we observed a first distinct inflection point in the force-elongation curve at an average sarcomere length of 3.5μm that was associated with an average force of 68±5nN/mm. This inflection point was thought to reflect the onset of Ig domain unfolding and was missing after a ten minute rest at zero force, suggesting a lack of spontaneous Ig domain refolding. These passive myofibrillar properties observed here are consistent with those observed in isolated titin molecules, suggesting that the mechanics of titin are well preserved in isolated myofibrils, and thus, can be studied readily in myofibrils, rather than in the extremely difficult and labile single titin preparations.  相似文献   

10.
Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.  相似文献   

11.
The purpose of this study was to examine the effects of stretching and shortening on the isometric forces at different lengths on the descending limb of the force-length relationship. Cat soleus (N = 10) was stretched and shortened by various amounts on the descending limb of the force-length relationship, and the steady-state forces following these dynamic contractions were compared to the isometric forces at the corresponding muscle lengths. We found a shift of the force-length relationship to greater force values following muscle stretching, and to smaller force values following muscle shortening. Shifts in both directions critically depended on the magnitude of stretching/shortening and the final muscle length. We confirm recent findings that the steady-state isometric force following some stretch conditions clearly exceeded the maximal isometric forces at optimum muscle length, and that force enhancement was associated with an increase in the passive force, i.e., a passive force enhancement. When the passive force enhancement was subtracted from the total force enhancement, forces following stretch were always equal to or smaller than the isometric force at optimum muscle length. Together, these findings led to the conclusions: (a). that force enhancement is composed of an "active and a "passive" component; (b). that the "passive" component of force enhancement allows for forces greater than the maximal isometric forces at the muscle's optimum length; and (c). that force enhancement and force depression are critically affected by muscle length and stretch/shortening amplitude.  相似文献   

12.
It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n = 10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6 s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.  相似文献   

13.
When a skeletal muscle that is actively producing force is shortened or stretched, the resulting steady-state isometric force after the dynamic phase is smaller or greater, respectively, than the purely isometric force obtained at the corresponding final length. The cross-bridge model of muscle contraction does not readily explain this history dependence of force production. The most accepted proposal to explain both, force depression after shortening and force enhancement after stretch, is a nonuniform behavior of sarcomeres that develops during and after length changes. This hypothesis is based on the idea of instability of sarcomere lengths on the descending limb of the force-length relationship. However, recent evidence suggests that skeletal muscles may be stable over the entire range of active force production, including the descending limb of the force-length relationship. The purpose of this review was to critically evaluate hypotheses aimed at explaining the history dependence of force production and to provide some novel insight into the possible mechanisms underlying these phenomena. It is concluded that the sarcomere nonuniformity hypothesis cannot always explain the total force enhancement observed after stretch and likely does not cause all of the force depression after shortening. There is evidence that force depression after shortening is associated with a reduction in the proportion of attached cross bridges, which, in turn, might be related to a stress-induced inhibition of cross-bridge attachment in the myofilament overlap zone. Furthermore, we suggest that force enhancement is not associated with instability of sarcomeres on the descending limb of the force-length relationship and that force enhancement has an active and a passive component. Force depression after shortening and force enhancement after stretch are likely to have different origins.  相似文献   

14.
The objective of the present study was to investigate the impact of muscle length during stretch-shortening cycles on static and dynamic muscle performance. Animals were randomly assigned to an isometric (control, Con, n = 12), a short-muscle-length (S-Inj, 1.22-2.09 rad, n = 12), or a long-muscle-length (L-Inj, 1.57-2.44 rad, n = 12) group. The dorsiflexor muscles were exposed in vivo to 7 sets of 10 stretch-shortening contractions (conducted at 8.72 rad/s) or 7 sets of isometric contractions of the same stimulation duration by using a custom-designed dynamometer. Performance was characterized by multipositional isometric exertions and positive, negative, and net work before exposure, 6 h after exposure, and 48 h after exposure to contractions. Real-time muscle performance during the stretch-shortening cycles was characterized by stretch-shortening parameters and negative, positive, and net work. The S-Inj group recovery (force difference) was similar to the Con group force difference at 48 h, whereas the L-Inj group force difference was statistically greater at 1.39, 1.57, and 1.74 rad than the Con group force difference (P < 0.05). Negative work (P < 0.05) and net work (P < 0.05) were statistically lower in the S-Inj and L-Inj groups than in the Con group 48 h after exposure to contractions. Of the real-time parameters, there was a difference in cyclic force with treatment during the stretch-shortening cycles (P < 0.0001), with the L-Inj group being the most affected. Thus longer ranges of motion result in a more profound isometric force decrement 48 h after exposure to contractions and in real-time changes in eccentric forces.  相似文献   

15.
The purpose of this study was to evaluate the relationship between force and stiffness after stretch of activated fibers, while simultaneously changing contractility by interfering with the cross-bridge kinetics and muscle activation. Single fibers dissected from lumbrical muscles of frogs were placed at a length 20% longer than the plateau of the force-length relationship, activated, and stretched by 5 and 10% of fiber length (speed: 40% fiber length/s). Experiments were conducted with maximal and submaximal stimulation in Ringer solution and with the addition of 2 and 5 mM of the myosin inhibitor 2,3-butanedione monoxime (BDM) to the solution. The steady-state force after stretch of an activated fiber was higher than the isometric force produced at the corresponding length in all conditions investigated. Lowering the frequency of stimulation decreased the force and stiffness during isometric contractions, but it did not change force enhancement and stiffness enhancement after stretch. Administration of BDM decreased the force and stiffness during isometric contractions, but it increased the force enhancement and stiffness enhancement after stretch. The relationship between force enhancement and stiffness suggests that the increase in force after stretch may be caused by an increase in the proportion of cross bridges attached to actin. Because BDM places cross bridges in a weakly bound, pre-powerstroke state, our results further suggest that force enhancement is partially associated with a recruitment of weakly bound cross bridges into a strongly bound state.  相似文献   

16.
Sarcomere overextension has been widely implicated in stretch-induced muscle injury. Yet, sarcomere overextensions are typically inferred based on indirect evidence obtained in muscle and fibre preparations, where individual sarcomeres cannot be observed during dynamic contractions. Therefore, it remains unclear whether sarcomere overextensions are permanent following injury-inducing stretch-shortening cycles, and thus, if they can explain stretch-induced force loss. We tested the hypothesis that overextended sarcomeres can regain filament overlap in isolated myofibrils from rabbit psoas muscles. Maximally activated myofibrils (n=13) were stretched from an average sarcomere length of 2.6±0.04μm by 0.9μm sarcomere(-1) at a speed of 0.1μm sarcomere(-1)s(-1) and immediately returned to the starting lengths at the same speed (sarcomere strain=34.1±2.3%). Myofibrils were then allowed to contract isometrically at the starting lengths (2.6μm) for ~30s before relaxing. Force and individual sarcomere lengths were measured continuously. Out of the 182 sarcomeres, 35 sarcomeres were overextended at the peak of stretch, out of which 26 regained filament overlap in the shortening phase while 9 (~5%) remained overextended. About 35% of the sarcomeres with initial lengths on the descending limb of the force-length relationship and ~2% of the sarcomeres with shorter initial lengths were overextended. These findings provide first ever direct evidence that overextended sarcomeres can regain filament overlap in the shortening phase following stretch, and that the likelihood of overextension is higher for sarcomeres residing initially on the descending limb.  相似文献   

17.
It is well-recognised that steady-state isometric muscle force is decreased following active shortening (force depression, FD) and increased following active stretch (force enhancement, FE). It has also been demonstrated that passive muscle force is increased following active stretch (passive FE). Several studies have reported that FD increases with shortening amplitude and that FE and passive FE increase with stretch amplitude. Here, we investigate whether these trends continue with further increases in shortening or stretch amplitude. Experiments were performed using in situ cat soleus muscles (n=8 for FD; n=7 for FE and passive FE). FD, FE and passive FE were measured after shortening or stretch contractions that covered as wide a range of amplitudes as practically possible without damaging the muscles. FD increased approximately linearly with shortening amplitude, over the full range of amplitudes investigated. This is consistent with the hypothesis that FD arises from a stress-induced inhibition of crossbridges. FE increased with stretch amplitude only up to a point, and then levelled off. Passive FE, and the transient increase in force at the end of stretch, showed relationships to stretch amplitude that were qualitatively very similar to the relationship for FE, increasing only until the same critical stretch amplitude had been reached. We conclude that FE and passive FE do not increase with stretch amplitude under all circumstances. This finding has important consequences for determining the mechanisms underlying FE and passive FE because any mechanism that is proposed to explain them must be able to predict it.  相似文献   

18.
Mechanical properties of skeletal muscles are often studied for controlled, electrically induced, maximal, or supra-maximal contractions. However, many mechanical properties, such as the force-length relationship and force enhancement following active muscle stretching, are quite different for maximal and sub-maximal, or electrically induced and voluntary contractions. Force depression, the loss of force observed following active muscle shortening, has been observed and is well documented for electrically induced and maximal voluntary contractions. Since sub-maximal voluntary contractions are arguably the most important for everyday movement analysis and for biomechanical models of skeletal muscle function, it is important to study force depression properties under these conditions. Therefore, the purpose of this study was to examine force depression following sub-maximal, voluntary contractions. Sets of isometric reference and isometric-shortening-isometric test contractions at 30% of maximal voluntary effort were performed with the adductor pollicis muscle. All reference and test contractions were executed by controlling force or activation using a feedback system. Test contractions included adductor pollicis shortening over 10 degrees, 20 degrees, and 30 degrees of thumb adduction. Force depression was assessed by comparing the steady-state isometric forces (activation control) or average electromyograms (EMGs) (force control) following active muscle shortening with those obtained in the corresponding isometric reference contractions. Force was decreased by 20% and average EMG was increased by 18% in the shortening test contractions compared to the isometric reference contractions. Furthermore, force depression was increased with increasing shortening amplitudes, and the relative magnitudes of force depression were similar to those found in electrically stimulated and maximal contractions. We conclude from these results that force depression occurs in sub-maximal voluntary contractions, and that force depression may play a role in the mechanics of everyday movements, and therefore may have to be considered in biomechanical models of human movement.  相似文献   

19.
There is evidence that the stretch-induced residual force enhancement observed in skeletal muscles is associated with 1) cross-bridge dynamics and 2) an increase in passive force. The purpose of this study was to characterize the total and passive force enhancement and to evaluate whether these phenomena may be associated with a slow detachment of cross bridges. Single fibers from frog lumbrical muscles were placed at a length 20% longer than the plateau of the force-length relationship, and active and passive stretches (amplitudes of 5 and 10% of fiber length and at a speed of 40% fiber length/s) were performed. Experiments were conducted in Ringer solution and with the addition of 2, 5, and 10 mM of 2,3-butanedione monoxime (BDM), a cross-bridge inhibitor. The steady-state active and passive isometric forces after stretch of an activated fiber were higher than the corresponding forces measured after isometric contractions or passive stretches. BDM decreased the absolute isometric force and increased the total force enhancement in all conditions investigated. These results suggest that total force enhancement is directly associated with cross-bridge kinetics. Addition of 2 mM BDM did not change the passive force enhancement after 5 and 10% stretches. Addition of 5 and 10 mM did not change (5% stretches) or increased (10% stretches) the passive force enhancement. Increasing stretch amplitudes and increasing concentrations of BDM caused relaxation after stretch to be slower, and because passive force enhancement is increased at the greatest stretch amplitudes and the highest BDM concentrations, it appears that passive force enhancement may be related to slow-detaching cross bridges.  相似文献   

20.
In activities such as running, many muscles of the lower extremities appear to be actively stretched before they are allowed to shorten. In this study we investigated the effect of an active pre-stretch on the fatigability of muscles. Thus muscle contractions were compared in which shortening was preceded by an active isometric phase or by an active stretch. Rat medial gastrocnemius muscle-tendon complexes (with arrested blood flow) performed a series of ten repeated contractions (1.s-1) with either an active stretch or an isometric phase preceding the shortening. Contraction duration (0.45 s), and shortening duration (0.3 s), distance (6 mm) and velocity (20 mm.s-1) were the same in both types of contraction. Work output during the ten shortening phases was approximately 40% higher in the contractions with an active pre-stretch; in contrast, high-energy phosphate utilization was similar. Over the ten repeated contractions reduction of work output during the shortening phases of both types of contraction was similar in absolute terms (approx. 9.5 mJ). It is suggested that all the extra work performed during the shortening phases after a pre-stretch originated from sources other than cross-bridge cycling, which are hardly affected by fatigue. However, reduction of work output in relative terms, which is how the reduction is often expressed in voluntary exercise, was less after a pre-stretch (26% vs 32%), giving the impression of protection against fatigue by an active pre-stretch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号