首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I investigated the effect of male mate competition and inbreeding avoidance on natal dispersal of chipmunks by longitudinally monitoring known individuals from 1986 to 1990. Natal males exhibited greater absolute and effective dispersal distances but dispersed at the same proportion as natal females. Recruitment of juvenile males was negatively affected by density of resident males, but there was no evidence of local mate competition among male kin. Analysis of the spatial distribution of neighbors showed that natal males settled farther from their mothers than did their female siblings and farther than unrelated juvenile males. In addition, mothers apparently tolerated daughters as close neighbors and occasionally shared den sites with grandprogeny. Sexually mature males were never neighbors of their mothers and were never observed at maternal mating bouts. Males may disperse to improve reproductive opportunities by avoiding competition with resident males, and by increasing access to unrelated females. Maternal tolerance of daughters but not sons may result in the close affiliation between mothers and daughters, and indirectly contribute to dispersal of natal males. Hence male-biased dispersal could be a consequence of mate competition and maternal avoidance of incestuous matings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
According to kin selection and inbreeding avoidance hypotheses,natal dispersal should be facultatively adjusted to balancingthe costs and benefits of mother–offspring interactions.In polygynous mammals, it is hypothesized that female offspringshould seek to avoid local resource competition with their mother,whereas male dispersal should be determined by inbreeding avoidance.We tested these hypotheses with a field experiment investigatingthe relationship between territory acquisition and mother'spresence in the root vole Microtus oeconomus. This species hasa flexible social system in which sisters' and mother's homeranges overlap substantially, whereas sons disperse to a greaterextent. Immature sibling voles aged 20 days were released for20 days together with an unrelated adult male in a 2-patch systemeither in the presence of their mother or in the presence ofan unrelated adult female. Offspring movements were not influencedby mother's presence, but offspring, especially females, avoidedthe patch occupied by the adult female irrespective of kinship.Offspring remaining in contact with their mother were reproductivelysuppressed at the middle, but not by the end, of the experimentalperiod. These results indicate that juvenile root voles adoptedan opportunistic settlement strategy where they avoided theadult female irrespective of kinship and inbreeding risks.  相似文献   

3.
4.
We explored two hypotheses related to potential differences between sexes in dispersal behaviour in western lowland gorillas (Gorilla gorilla gorilla). Direct observations suggest that immature females have more opportunities to move between breeding groups than immature males. The distribution of kin dyadic relationships within and between groups does not, however, support this hypothesis. At larger geographical scales, dispersal is likely to be easier for males than females because of the solitary phase most blackbacks experience before founding their own breeding group. However, previous work indicates that males settle preferentially close to male kin. By specifically tracing female and male lineages with mitochondrial and Y-chromosomal genetic markers, we found that male gorillas in the 6000 km2 area we surveyed form a single population whereas females are restricted to the individual sites we sampled and do not freely move around this area. These differences are more correctly described as differences in dispersal distances, rather than differences in dispersal rates between sexes (both sexes emigrate from their natal group in this species). Differences in resource competition and dispersal costs between female and male gorillas are compatible with the observed pattern, but more work is needed to understand if these ultimate causes are responsible for sex-biased dispersal distances in western lowland gorillas.  相似文献   

5.
Processes which generate natal dispersal are largely unknown. This is particularly the case for the sources of differences among families. Three types of processes can generate the variability among families: genetic, prenatal and postnatal. We first tested the family resemblance of dispersal behaviour in the common lizard (Lacerta vivipara). We then experimentally investigated the role of pre‐ and postnatal factors in the variability of dispersal among families. From 1989 to 1992, we studied dispersal of juveniles from pregnant females captured in the field and maintained in laboratory until parturition. We manipulated the conditions of gestation to test for prenatal effects on juvenile dispersal. We tested postnatal effects by releasing siblings of the same family in contrasted environments. We also examined covariances of natal dispersal with maternal and offspring traits. The results showed that: (1) dispersal behaviour was similar among siblings, (2) determinants of offspring dispersal differed between sexes and years, (3) offspring dispersal was related to litter sex‐ratio and offspring corpulence at birth, (4) postnatal conditions influenced male dispersal, (5) short‐term prenatal conditions (i.e. maternal conditions during gestation) influenced juvenile dispersal, varying per year, (6) long‐term prenatal conditions (i.e. maternal conditions during gestation in the previous year) could also influence juvenile dispersal (marginally significant). Thus, several types of processes determine natal dispersal in the common lizard. Resemblance among siblings can partly be explained by both pre‐ and postnatal effects. The environment seems to be the major factor influencing juvenile dispersal in this species, i.e. dispersal essentially appears condition‐dependent. The genetic basis of dispersal in vertebrates remains to be demonstrated by studies controlling for both prenatal and postnatal conditions.  相似文献   

6.
A combination of direct (mark-resight) and indirect geneticmethods were used to investigate natal dispersal patterns andgenetic population structure in a population of North Americanpikas, Ochotona princeps. Pikas are small lagomorphs found intalus habitat of alpine areas throughout western North America.Adult pikas are individually territorial and rarely disperse.I used multilocus DNA fingerprinting to identify the parentsof juvenile animals. The settlement pattern of marked juvenilesand the pattern of relatedness of pikas across the study sitewas then examined within the study area. Although juvenilesborn at the study site exhibited a philopatric settlement pattern,an isolation-by-distance analysis did not reveal clusters ofhighly related individuals within the population. The FST estimatesuggests little genetic differentiation between populations2 km apart, and average DNA fingerprinting band-sharing amongadults was similar to values reported for outbred species. Anaverage of 34% of the adult population was replaced each winterby immigrants. DNA fingerprinting band-sharing analysis suggeststhat these immigrants had dispersed short, intermediate, andlong distances. These findings differ from earlier studies whichused observations of marked animals only to characterize dispersalpatterns. Direct observations of marked juveniles had documenteda philopatric settlement pattern, little or no dispersal outof natal populations, and no direct evidence of long distancemovement. Of the three major hypotheses proposed to explainthe evolution of dispersal in birds and mammals, competitionfor resources, competition for mates, and inbreeding avoidance,the results of this study support a competition for resourceshypothesis, where the key resource is territory  相似文献   

7.
For more than 21 years a small semi-isolated group of wild chimpanzees have been studied at Bossou, Guinea, west Africa. All individuals have been identified since the beginning of the study. Remaining rates of infants (0–3 yr) and juveniles (4–7 yr) in the group were 64–80% for both sexes, however, those of adolescents (8–11 yr) dropped drastically, particularly for males (14%). As a result, most natal males as well as females disappeared before fully maturing. Two male visitors and an immigrant were observed in the group. More adult males than females disappeared from Bossou. Group males could be excluded as the genetic father of an offspring born in the group. From these demographic trends it is highly likely that some of these males emigrated rather than succumbed to sickness and death. It seems likely that they left on their own by choice. The reason for male dispersal is hypothesized to be influenced by intra-group male-male competition and the habitat ecology and structure of Bossou. There are no competitive adjacent groups or predators to prevent males from living alone and males can sire offspring out of their natal group.  相似文献   

8.
我们于2002 ~ 2007 年在广西龙州县和宁明县采用标记重捕法对扁颅蝠的扩散行为进行研究, 共标记669 只(成体316 只,亚成体353 只;雌雄分别为293 只和376 只),重捕到139 只(重捕率20. 8% )。结果表明,大部分扁颅蝠雌雄后代在性成熟前发生扩散,其亚成体扩散率无性别差异(雄
性82.2% ,雌性66.7% ;P > 0.05)。对成年雌雄两性扩散率(雄性76.5% ,雌性58.5% )的分析亦未见性别差异(P > 0.05),但亚成体和成体合并结果显示雄蝠扩散率(80.7% )高于雌蝠(62.3% ,P < 0.01)。此外,我们还测量了扩散的距离,雄性后代的扩散距离(787. 5 ± 26.980 m,n = 37)比雌
性(517.4 ± 25.308 m,n = 24)远(P < 0. 01);在出现扩散的61 只后代中,仅有一只(0. 7% )雄性亚成体扩散到其它的竹林,其余个体均在出生竹林内的不同竹筒之间进行扩散。  相似文献   

9.
1. We investigated the causes of natal dispersal in four Spanish areas where 35 breeding groups of the polygynous great bustard Otis tarda were monitored intensively. A total of 392 juveniles were radio-tracked between 1991 and 2006 by ground and via aeroplane to avoid potential biases derived from the non-detection of long-distance dispersers. 2. We explored 10 explanatory variables that were related to individual phenotypic features, habitat and conspecific traits in terms of group size and breeding performance, and spatial distribution of available breeding groups. Probability of group change and natal dispersal distances were investigated separately through multifactorial analyses. 3. Natal dispersal occurred in 47.8% of the birds and median natal dispersal distance of dispersers was 18.1 km (range 4.97-178.42 km). Sex largely determined the dispersal probability, with 75.6% of males being dispersers and 80.0% of females being philopatric, in contrast to the general pattern of female-biased dispersal found in most avian species. 4. Both the frequency of natal dispersal and dispersal distances were affected by the spatial distribution of breeding groups. More isolated groups showed a higher proportion of philopatric individuals, the effect being more evident in males than in females. This implies a reduction in gene flow in fragmented populations, as most genetic exchange is achieved through male dispersal. Additionally, dispersers hatched in more isolated groups tended to exhibit longer dispersal distances, which increases the associated energetic costs and mortality risks. 5. The dispersal decision was influenced by the number of conspecifics in the natal group. The individual probability of natal dispersal was related inversely to the size of the natal group, which supports the balanced dispersal model and the conspecific attraction hypothesis. 6. Overall, our results provide a good example of phenotypic plasticity and reinforce the current view that dispersal is an evolutionary complex trait conditioned by the interaction of individual, social and environmental causes that vary between individuals and populations.  相似文献   

10.
Locating birthplaces using genetic parentage determination can increase the precision and accuracy with which animal dispersal patterns are established. We re-analyse patterns of movement away from the birthplace as a function of time, sex and population density for a sample of 303 banner-tailed kangaroo rats, Dipodomys spectabilis. We located birth sites using a combination of likelihood-based parentage analysis with live-trapping of mothers during the breeding season. The results demonstrate that natal-breeding site distances are density dependent in this species; in particular, both sexes emigrate earlier in the year, and females disperse farther than males, at low population densities. Banner-tailed kangaroo rats were chosen as a study system because live-trapping easily detects maternal and offspring locations; nevertheless, parentage analysis reveals that some offspring evade early detection and move substantial distances before their first capture. In a few cases, the approach even detects dispersal out of the natal 'deme' prior to first capture. Parentage analysis confirms the extreme philopatry of both sexes but indicates that prior estimates of median dispersal distance were too low. For D. spectabilis, more accurate location of individual birthplaces clarifies patterns of sex bias and density dependence in dispersal, and may resolve apparent discrepancies between direct and indirect estimates of dispersal distance. For species in which mothers can be more reliably trapped than juveniles, using offspring genotypes to locate parents is a novel way that genetic techniques can contribute to the analysis of animal dispersal.  相似文献   

11.
Natal dispersal is usually sex biased in birds and mammals.Female-biased natal dispersal is the prevailing pattern in birdsbut is rare among mammals. Hypotheses explaining sex bias indispersal include the mate-defense mating hypothesis, whichpredicts male-biased dispersal, the resource-defense hypothesispredicting female-biased dispersal, and the competition hypothesis,which predicts that if dispersal is caused by competition forresources between sexes, then the subdominant sex will disperse.We studied natal dispersal of Siberian flying squirrels Pteromysvolans using radio telemetry in Southern Finland in 1996–2004.Of 86 juveniles that survived over the dispersal period, almostall young females dispersed from the natal site, whereas almost40% of males were philopatric. Dispersal was farther for femalesthan males. Females began dispersal on average 2 weeks earlierthan males and were lighter in mass at the onset of dispersalthan later dispersing males. No mate- or resource-defense matingsystem could be found among males, but females seemed to defendnest and apparently food resources, in contrast to the expectationof dispersal bias in resource-defense systems. Competition forresources between sexes does not explain female bias either:in the flying squirrel, the female seems to be the dominantsex. We propose that young females are subordinate to theirmothers and have to disperse to find a vacant, suitable sitefor reproduction.  相似文献   

12.
ABSTRACT Dispersal events can affect the distribution, abundance, population structure, and gene flow of animal populations, but little is known about long‐distance movements due to the difficulty of tracking individuals across space. We documented the natal and breeding dispersal of shrubland birds among 13 study sites in a 1000 km2 area in southeastern Ohio. In addition, we radio‐marked and tracked 37 adult males of one shrubland specialist, the Yellow‐breasted Chat (Icteria virens). We banded 1925 juveniles and 2112 adults of nine shrubland species from 2002 to 2005. Of these, 33 (1.7%) juveniles were encountered in subsequent years (2003–2006) as adults (natal dispersal) and 442 (20.9%) birds initially banded as breeding adults were re‐encountered in subsequent years (breeding dispersal). Apparent survival of juvenile shrubland birds on their natal patches was 0.024 (95% CI 0.016–0.036). After accounting for the probability of detection, we found that 21% of birds banded as juveniles and recaptured as adults returned to their natal patches, whereas 78% of adult birds showed fidelity to the patch where they were originally captured. Moreover, natal dispersers tended to move farther than breeding dispersers (corrected natal median = 1.7 km ± 0.37; corrected breeding median = 0.23 km ± 0.10). We used our estimates of natal dispersal and annual apparent survival to estimate true survival at 0.11 (95% CI 0.07–0.18) for juveniles in their first year. However, this estimate was only applicable for birds dispersing within 7 km of their natal patches. Interpatch movements of radio‐marked Yellow‐breasted Chats were not uncommon, with 13 of 37 males located in more than one habitat patch. Overall, we observed low natal philopatry, but high adult site fidelity for shrubland birds in our study area. Considering the frequency of short‐distance movements observed (median = 531 m, range = 88–1045 m), clustering of patches within 1 km might facilitate use of shrubland habitat.  相似文献   

13.
We found significant sex differences in the mtDNA genetic structure and dispersal patterns of great bustards in a population of 11 breeding groups, "leks", in central Spain. The analysis of genetic distances showed that the female population was divided into three groups of leks separated by ca. 50 km, whereas male haplotypes were randomly distributed among leks. Genetic distances among pairs of leks were positively correlated with geographical distances in females but not in males. While female haplotype distributions were homogeneous among leks at close distances, differences in male genetic structure were highly variable even between two close leks. These results from genetic analyses were concordant with those from a radiotracking study on natal dispersal. Natal dispersal distances were higher in males than in females. Also, the frequency of movement of a female between two leks was positively correlated with their genetic affinity and geographical proximity. In males, the frequency of movement was correlated with geographical proximity but not with genetic affinity. Males dispersed among genetically unrelated leks, contributing to keep nuclear genetic diversity in the population, whereas females tended to be philopatric. These results suggest that isolation-by-distance influences the distribution of maternal lineages at a regional level.  相似文献   

14.
Differences in the emergence, movement, and settling patterns of individuals during natal dispersal can provide testable hypotheses about the costs and functions of movement. Emergence, movement, and settling patterns were studied in desert isopods, Hemilepistus reaumuri. The young of this semelparous, monogamous, crustacean emerge from their natal burrows each spring and search for sites to establish new burrows or gain acceptance as mates in occupied burrows. Dispersal was measured in a long, narrow corridor into which individuals marked after emergence were monitored. Females emerged slightly earlier than males with substantial overlap. Size or condition varied with time before settling differently in males and females. Isopods in good or poor condition did not differ in distance traveled, but males in good condition took more time before settling. Small males were more likely to start new burrows and took less time before settling, suggesting they might be acting in anticipation of losing contests for female-initiated burrows. Larger females and those in higher condition were more likely to start new burrows and took less time before settling. The pattern in females could reflect male choice or constraints or costs associated with burrow establishment in females, which should be tested. Measures of dispersal based on recaptures of traveling or recently settled individuals may differ from the distribution of successful reproduction. In this study travelers were observed at shorter average distances than settlers, but successful settlers traveled less far than unsuccessful ones.  相似文献   

15.
We demonstrated that sand lizards (Lacerta agilis) are more likely to have malformed offspring when they mate with siblings. Offspring with malformations, such as deformed limbs and heads, have zero survival in a natural population. Normal-looking siblings of malformed hatchlings also had a reduced survival in the wild, compared to offspring from clutches in which all siblings appeared normal. The proportion of malformed hatchlings in the natural population was ca. 10%, in spite of differences in juvenile dispersal between males and females. Male juveniles disperse significantly further from their natal sites than do female juveniles.  相似文献   

16.
Species that alternate periods of solitary and social living may provide clues to the conditions that favor sociality. Social spiders probably originated from subsocial‐like ancestors, species in which siblings remain together for part of their life cycle but disperse prior to mating. Exploring the factors that lead to dispersal in subsocial species, but allow the development of large multigenerational colonies in social species, may provide insight into this transition. We studied the natal dispersal patterns of a subsocial spider, Anelosimus cf. jucundus, in Southeastern Arizona. In this population, spiders disperse from their natal nests in their penultimate and antepenultimate instars over a 3‐mo period. We tracked the natal dispersal of marked spiders at sites with clustered vs. isolated nests. We found that most spiders initially dispersed less than 5 m from their natal nests. Males and females, and spiders in patches with different densities of nests, dispersed similar distances. The fact that both sexes in a group dispersed, the lack of a sex difference in dispersal distance, and the relatively short distances dispersed are consistent with the hypothesis that natal dispersal results from resource competition within the natal nest, rather than inbreeding avoidance in competition for mates. Additionally, an increase in the average distance dispersed with time and with the number of spiders leaving a nest suggests that competition for nest sites in the vicinity of the natal nest may affect dispersal distances. The similar distances dispersed in patches with isolated vs. clustered nests, in contrast, suggest that competition among dispersers from different nests may not affect dispersal distances.  相似文献   

17.
Stingless bee males (Hymenoptera: Apidae) aggregate themselves for reproductive purposes. The knowledge of relatedness among the males attending the aggregations and the distance that they disperse from their natal nests to aggregations may provide important data to effectively conserve these bees. Here, we estimated these properties for Tetragonisca angustula (Latreille, 1811) males. Microsatellite molecular markers were used to genotype bees sampled from local nests and in mating swarms in order to identify the nests of origin of males and maternal genotypes of concerning queens. The distances from assigned nests to the mating swarms allowed us to estimate the distances travelled by males. A genetic relationship analysis was conducted to verify whether T. angustula males were closely related to nests where they aggregated. A pairwise relatedness analysis was also performed among all T. angustula males in each mating swarm. Our results demonstrated that T. angustula mating swarms received dozens to hundreds of males from several colonies (up to 70). Only two of the five mating swarms contained any males that were closely related to the bees from the new nests in construction. The relatedness among males was also extremely low. Yet, dispersal distance of T. angustula males ranged hundreds of meters up to 1.6 km, with evidence of reaching 2.25 km according to their flight radius obtained from their foraging area for locality. These data indicate a highly efficient mating system with minimal inbreeding in this bee species, with a great dispersal capability not previously found for stingless bee males.  相似文献   

18.
In an experimental study in Denmark, it was previously foundthat male barn swallows (Hirundo rustica) with elongated tailstreamers obtained an apparent fitness advantage through earlierpairing, an increased frequency of second clutches, and highertotal reproductive success per season. In a parallel study offive barn swallow colonies in Ontario, Canada, we also foundthat elongated males paired earlier and thus were apparentlypreferred by females. Now, using DNA fingerprinting on familiesfrom two of those Ontario colonies, we show that five elongatedmales fathered only 59% of the offspring in their nests, whereassix shortened males fathered 96% of their nestlings. Thus, althoughelongated males were clearly preferred by females at the timeof pair formation, tail elongation may have hampered the abilityof a male to guard his mate, resulting in an increase in extrapairfertilizations (EPFs). A significant negative correlation betweenthe number of EPFs and natural tail length in this experimentalstudy also suggests that tail streamer length may reflect malequality. (Behav Ecol 1990; 2: 90–98)  相似文献   

19.
Red squirrels (Tamiasciurus hudsonicus) defend food-based territoriesyear round, and juveniles must acquire a territory before winterto survive. We experimentally removed territory owners duringthe time that juveniles were becoming independent to examinethe effect of local vacancies on dispersal patterns. Juvenilesattempted to take over removal territories most frequently.However, females with offspring still on the natal territoryactually took over twice as many territories as juveniles. Thesefemales did not appear to move because of low reproductive potentialor to increase territory quality. Instead, moving to a removalterritory allowed more of their offspring to remain on the natalterritory, which appeared to increase juvenile survival.  相似文献   

20.
Natural recolonization of bobcat (Lynx rufus) populations in the midwestern United States presents challenges for managers with limited knowledge of the species’ population dynamics in a highly fragmented agricultural landscape. Dispersal is a component of population dynamics of a recolonizing population, which is likely influenced by landscape features. To better understand population expansion, we examined dispersal characteristics of juvenile (<2 yr) bobcats in recently recolonized south-central Iowa, USA, from 2003–2009. We radio-collared and tracked dispersal fates of 61 individuals (34 males, 27 females), with 29 (22 males, 7 females) dispersing by approximately 2 years of age and the rest remaining philopatric. Most (65%) juvenile males dispersed, whereas only 26% of females dispersed. Initiation of dispersal varied, but none occurred in July–August. Dispersal duration ranged from 4–240 days. Average age at dispersal was 16.9 ± 1.1 (SE) months. Dispersal was most prevalent in an east-west direction and straight-line distances ranged from 6.6–203.2 km ( = 57.9 km). On average, males dispersed 44 km farther than females. Land cover composition was similar in natal and post-dispersal core ranges and consisted predominantly (70%) of forest and grassland. Lower abundance of forest and grassland in areas north of the study area may ultimately limit the ability of juvenile bobcats to successfully disperse and expand throughout the Corn Belt of Iowa. © 2019 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号